Statistická analýza jednorozměrných dat

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Statistická analýza jednorozměrných dat"

Transkript

1 Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky. 1

2 Kapitola 5.1 ANALÝZA ROZPTYLU ANOVA 2

3 Analýza rozptylu ANOVA K posouzení významnosti zdrojů variability v datech: 1. vliv přípravy na výsledek (analýzy), 2. vliv přístroje, člověka, experimentu na výsledek, 3. vliv laboratoří na výsledek analýz, 4. vyhodnocování plánovaných experimentů, 5. vliv faktorů A, B, C, (například teploty, času, koncentrace) na výsledek (analýzy). 3

4 Analýza rozptylu ANOVA rozptyl = složka objasněná + složka neobjasněná (známé zdroje variability) (náhodné chyby) Faktor A je na jistých úrovních A 1, A 2, A 3 Zdrojem variability měření y ij jsou úrovně A 1, A 2, A 3 y ij = μ i + ε ij μ i je skutečná hodnota a ε ij je j tá náhodná chyba. Cíl: který z faktorů A, B, C, má významný vliv na výsledek analýzy (např. reakční výtěžek) μ? Hodnotu μ zde odhadujeme x i, i = 1,, n i. 4

5 Jednofaktorová analýza rozptylu Faktor A má K úrovní A 1,, A K. Na každé úrovni A i je provedeno n i měření y ij, j = 1,, n i. Celkový počet měření je N = Uspořádání dat: K i=1 n i. 5

6 Sloupcový a celkový průměr, odhad efektů Sloupcový průměr n i μ i = 1 n i y ij Celkový průměr j=1 K μ = 1 K μ i Odhad efektů j=1 K α i = μ i μ za podmínky i=1 n i α i = 0 6

7 Sloupcový a celkový průměr, odhad efektů 7

8 Sloupcový a celkový průměr, odhad efektů 8

9 Modely s pevnými efekty Předpoklad: náhodné chyby ε ij jsou nezávislé náhodné veličiny s normálním rozdělením N 0, σ 2. Součet čtverců odchylek od celkového průměru S c K n i S c = y ij μ 2 i=1 lze rozložit na dvě složky K n i j=1 S c = (y ij μ i ) + (μ i μ) 2 i=1 j=1 = S A + S R 9

10 Modely s pevnými efekty kde S A je mezi jednotlivými úrovněmi faktoru A S A = K i=1 n i μ i μ 2 kde S R je reziduální S R, tj. uvnitř jednotlivých úrovní faktoru A K n i S R = y ij μ i 2 i=1 j=1 10

11 Faktor ANOVA u modelu s pevnými efekty Hypotéza nulová H 0 : α i = 0, i = 1,, K vs. Alternativní H A : α i 0, i = 1,, K 11

12 Testační statistika Fisher-Snedecorova F-testu: Testování: F exp = S A(N K) S R (K 1) Je-li F exp > F 1 α (K 1, N K), je nutné H 0 zamítnout a efekty považovat významné. 12

13 Příklad: Testování kvality AgNO 3 od různých výrobců U AgNO 3 od pěti dodavatelů byla sledována kvalita chemikálie. Z každé láhve byl odebrán počet vzorků (n 1 = n 3 = 6, n 2 = n 5 = 3, n 4 = 4). Otázka: Existují významné rozdíly v kvalitě AgNO 3 od těchto výrobců. 13

14 Pokračování příkladu Procentuální obsah chloru při užití AgNO 3 od pěti výrobců 14

15 Pokračování příkladu Řešení: μ = , μ 1 = , μ 2 = , μ 3 = , μ 4 = , μ 5 = , α 1 = , α 2 = , α 3 = 0.277, α 4 = 0.534, α 5 = 0.575, 15

16 Pokračování příkladu 16

17 Tabulka analýzy rozptylu pro jednoduché třídění u modelu s pevnými efekty 17

18 Analýza rozptylu pro obsah AgNO 3 Pro α = 0.05 je kvantil F ,17 = Závěr: F e > F 0.95 (4,17), a proto H 0 je nutné zamítnout. Kvalita AgNO 3 od pěti výrobců se významně liší. 18

19 Ověření normality chyb 1. Rankitové grafy 2. Standardizovaná rezidua esi = σ eji 1 1 n i mají přibližně normální rozdělení N(0,1) 19

20 Indikace ε ij N(0, σ 2 ) Rankitový graf, tzn. přímka s nulovým úsekem a jednotkovou směrnicí 20

21 Technika vícenásobného porovnávání Vliv jednotlivých efektů je významný, tj. rozdíly mezi průměry μ i, μ j, i j jsou významné. Scheffého metoda vícenásobného porovnání: H 0 : μ i = μ j se zamítá pro všechny dvojice (i, j), pro které platí μ i μ j K 1 σ 2 F 1 α K 1, N K 1 n i + 1 n j pro všechny možné dvojice indexů (i, j). 21

22 Transformace k zesymetričtění rozdělení Přiblížení k normalitě transformací, např. posunutou logaritmickou transformaci y = ln(y + C) Optimální C se volí tak, 1. aby rezidua byla přibližně symetrická, 2. aby rankitový graf esi byl lineární závislostí. 22

23 Vyšetření vybočujících hodnot Užívají se Jackknife rezidua e Jij ejij = esij N K 1 2 N K esij Test: pro ejij 2 > 10 lze y ij považovat za silně vybočující. 23

24 24

25 25

26 26

27 Druhy analýzy rozptylu Jednofaktorová analýza rozptylu (faktor A) Rozklad μ i : μ i = μ + α i - Na průměr μ ze všech úrovní faktoru A - Efekt α i od i-té úrovně faktoru A Nulová hypotéza H 0 : μ 1 = μ 2 = μ 3, neboli H 0 : α 1 = α 2 = α 3 = 0. Vícefaktorová analýza rozptylu (faktory A, B, C, ) Rozklad μ ij : μ ij = μ + α i + β j + τ ij, na celkový průměr μ, složky α i odpovídající vlivu faktoru A, složky β j odpovídající vlivu faktoru B, a interakce τ ij faktoru A s faktorem B. 27

28 Dvoufaktorová analýza rozptylu V cele je obecně n ij pozorování. ANOVA bez opakování: v každé cele je jedno pozorování y ij = μ ij + ε ij Řádkové efekty α i, sloupcové efekty β i, interakce τ ij. 28

29 Modely interakcí Tukeyův model interakce τ ij = Cα i β j kde C je konstanta. Řádkově lineární model interakcí τ ij = γ i β j C R Sloupcově lineární model interakcí τ ij = α i C K δ j Aditivně multiplikativní model interakcí τ ij = γ i δ j C W 29

30 30

31 Modely s pevnými efekty bez opakování (každá cela: 1 hodnota) Předpoklady: 1. Náhodné chyby ε ij jsou nezávislé náhodné veličiny s normálním rozdělením N(0, σ 2 ). 2. Omezující podmínky N M i=1 α i = 0; j=1 β j = 0; i=1 τ ij = 0; j=1 τ ij = 0 3. U modelů bez interakce je τ ij = 0 pro i = 1, N, j = 1, M. N M 31

32 Odhady parametrů μ = 1 NM α i = 1 M β j = 1 N N i=1 M j=1 N i=1 M j=1 y ij y ij μ y ij μ Výpočet rezidua e ij podle e ij = y ij μ α i β j Výpočet interakce τ ij = E y ij μ α i β j e ij 32

33 Tukeyův model interakce Ze směrnice C přímky grafu neaditivity e ij vs. α i β j se odhaduje míra interakce N M i=1 j=1 e ijα i β j C = α 2 2 i β j N i=1 M j=1 Nenulová směrnice znamená interakci faktorů a součet čtverců odchylek Tukeyho interakce S T je k testování S T = N i=1 N i=1 M j=1 M j=1 y ij α i β j α 2 2 i β j 2 33

34 34

35 Reziduální součet čtverců bez interakcí S AB značí reziduální součet čtverců bez interakcí N M S AB = y ij μ α i β j 2 i=1 j=1 a odpovídající průměrný čtverec S AB M AB = (N 1)(M 1) 35

36 Příklad: Stanovení vody v rozpouštědlech v různých laboratořích U všech vzorků A 1, A 2 a A 3 nového rozpouštědla byl ve čtyřech laboratořích B 1, B 2, B 3 a B 4 určen obsah vody. Otázka: jsou významné odchylky v obsahu vody v zadaných vzorcích rozpouštědla a ve výsledcích zvolených laboratoří? Data: N = 3, M = 4 36

37 Pokračování příkladu 37

38 Pokračování příkladu Graf neaditivity vykazuje výrazný trend 38

39 Pokračování příkladu Analýza rozptylu dat obsahu vody v rozpouštědlech 39

40 Pokračování příkladu Závěr: Efekt interakce je nevýznamný a lze použít aditivní model analýzy rozptylu, zatímco efekty vzorků a laboratoří významné jsou. 40

41 Vyvážené modely V každé cele je n ij = n pozorování. Odhadem μ ij jsou aritmetické průměry μ ij = 1 n y ijk n k=1 α i = 1 M β j = 1 N M j=1 N i=1 μ = 1 NM μ ij μ μ ij μ N i=1 M j=1 μ ij 41

42 Vyvážené modely Odhad reziduí e ijk = y ijk μ α i β j Odhad interakcí τ ijk = μ ijk μ α i β j K ověření interakce lze vynášet graf τ ij vs. α i β j. Průměrné hodnoty E M A = σ 2 + nm N i=1 2 α i N 1 σ 2 = σ2 2 + nmσ A E M B = σ 2 + nm M j=1 2 β j M 1 σ 2 = σ2 2 + nnσ B 42

43 Vyvážené modely a E M AB = σ 2 + n N i=1 M j=1 2 τ ij N 1 (M 1)σ 2 = σ2 2 + nσ AB Rozptyl M R je nevychýleným odhadem σ 2 rozptylu chyb. Rozptyly σ A, σ B a σ AB odpovídají efektům řádků, sloupců a interakcí. 43

44 Vyvážené modely Test: s využitím F AB, F B a F A, zda je možné považovat sloupcové a řádkové efekty, resp. interakce za nevýznamné. H 0 : τ ij = 0, i = 1,, N a j = 1,, M Je-li F AB > F 1 α * N 1 M 1, M N (n 1)+ je H 0 zamítnuta. H 0 : α i = 0, i = 1,, N Je-li F A > F 1 α * N 1, M N (n 1)+ je H 0 zamítnuta. 44

45 Vyvážené modely H 0 : β j = 0, j = 1,, M Je-li F B > F 1 α * M 1, M N (n 1)+ je H 0 zamítnuta. 45

46 Dvoufaktorová ANOVA pro vyvážený experiment 46

47 Příklad: Přesnost chromatografického stanovení diethylenglykolu Tři laboranti A 1, A 2 a A 3 provádějí dvě opakovaná stanovení diethylenglykolu (DEG) v ethylenglykolu na třech chromatografech B 1, B 2 a B 3. Otázka: má na výsledek analýzy přístroj či laborant Data: N = 3, M = 3, n = 2. 47

48 Pokračování příkladu Obsahy DEG [%], měření třemi laboranty A na třech přístrojích B 48

49 Pokračování příkladu Řešení: F ,9 = 4.26 a F ,9 =

50 Pokračování příkladu Test: 1. Mají laboranti vliv na výsledek analýz zjistíme vyšetřením nulové hypotézy H 01 : α i = 0 a zároveň H 02 : τ ij = 0 S PA = S A + S AB = a testovací statistika F PA = =

51 Pokračování příkladu Jelikož F ,9 = je větší než statistika F PA, nemají laboranti významný vliv na výsledek analýz a model ANOVA lze vyjádřit rovnicí y ijk = μ + β j + e ijk 2. Otestujeme H 0 : β j = 0 a sloučíme příspěvky S A + S AB s reziduálním součtem čtverců. M R = S R + S A + S AB = =

52 Pokračování příkladu Testovací statistika F B = M B M = 4.58 je větší než R F ,15 = 3.68 a H 0 je zamítnuta. Vliv faktoru B (přístroje) na výsledek analýzy je na hladině α = 0.95 významný. Střední hodnota průměrného čtverce M B je E(M B ) = σ σ B. Pro odhad přístrojové chyby platí σ 2 B + M B σ 2 =

53 Pokračování příkladu Závěr: Na přesnost stanovení diethylenglykolu má statisticky významný vliv pouze použitý chromatograf. Variabilita způsobaná laboranty je σ 2 = , variabilita způsobená přístroji je σ B 2 = ^ 6. 53

54 Nevyvážené modely V (i, j)-té cele je n ij pozorování Přibližný rozklad celkového součtu čtverců n k pro všechny cely. μ ij = 1 n k Reziduální součet čtverců N M n k k=1 y ijk S R = y ijk μ ij 2 i=1 j=1 Pro výpočet dalších složek rozkladu celkového součtu čtverců se používá μ ij. k 54

55 Nevyvážené modely Jsou určeny z ekvivalentního počtu n n = 1 NM N i=1 M j=1 1 n ij S A = n N M i=1 μ i μ 2 s ( N 1) stupni volnosti S B = n M N μ j μ 2 j=1 s ( M 1) stupni volnosti 1 55

56 Nevyvážené modely N M S AB = n μ ij μ i μ j + μ 2 i=1 j=1 s N 1 (M 1) stupni volnosti. Je použito μ i = 1 M M j=1 μ ij ; μ j = 1 N N i=1 μ ij ; μ i = 1 NM N i=1 M j=1 μ ij Testování hypotéz: stejně jako u vyvážených experimentů. 56

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

PYTHAGORAS Statistické zpracování experimentálních dat

PYTHAGORAS Statistické zpracování experimentálních dat UNIVERZITA PARDUBICE Fakulta chemicko-technologická, Katedra analytické chemie SEMESTRÁLNÍ PRÁCE Květen 2008 Licenční studium PYTHAGORAS Statistické zpracování experimentálních dat Předmět 1.4 ANOVA a

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato

Více

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D. Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Statistika, Biostatistika pro kombinované studium. Jan Kracík

Statistika, Biostatistika pro kombinované studium. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

AVDAT Geometrie metody nejmenších čtverců

AVDAT Geometrie metody nejmenších čtverců AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε

Více

Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj.

Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj. Uvedeme obecný postup statistického testování:. Formulace nulové H 0a alternativní hpotéz H A.. Volba hladin významnosti α.. Volba testační statistik např... Určení kritického oboru testové charakteristik.

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Masarykova univerzita v Brně. Analýza rozptylu. Vypracovala: Marika Dienová

Masarykova univerzita v Brně. Analýza rozptylu. Vypracovala: Marika Dienová Masarykova univerzita v Brně Přírodovědecká fakulta BAKALÁŘSKÁ PRÁCE Analýza rozptylu Vypracovala: Marika Dienová Vedoucí bakalářské práce: Mgr. Jan Koláček, Ph.D. Brno 2006/2007 Prohlášení Prohlašuji,

Více

ANALÝZA ROZPTYLU (ANOVA)

ANALÝZA ROZPTYLU (ANOVA) ANALÝZA ROZPTYLU (ANOVA) 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

INTERAKTIVNÍ POČÍTAČOVÁ ANALÝZA DAT prof. RNDr. Milan Meloun, DrSc.

INTERAKTIVNÍ POČÍTAČOVÁ ANALÝZA DAT prof. RNDr. Milan Meloun, DrSc. INTERAKTIVNÍ POČÍTAČOVÁ ANALÝZA DAT prof. RNDr. Milan Meloun, DrSc. studijní materiál ke kurzu Mezioborové dimenze vědy Fakulta informatiky a managementu Univerzity Hradec Králové Projekt Informační, kognitivní

Více

Přednáška IX. Analýza rozptylu (ANOVA)

Přednáška IX. Analýza rozptylu (ANOVA) Přednáška IX. Analýza rozptylu (ANOVA) Princip a metodika výpočtu Předpoklady analýzy rozptylu a jejich ověření Rozbor rozdílů jednotlivých skupin násobné testování hypotéz Analýza rozptylu jako lineární

Více

1.4 ANOVA. Vliv druhu plodiny na míru napadení houbami Fusarium culmorum a Fusarium graminearum v systému ekologického hospodaření

1.4 ANOVA. Vliv druhu plodiny na míru napadení houbami Fusarium culmorum a Fusarium graminearum v systému ekologického hospodaření 1.4 ANOVA Úloha 1 Jednofaktorová ANOVA Vliv druhu plodiny na míru napadení houbami Fusarium culmorum a Fusarium graminearum v systému ekologického hospodaření Bylo měřeno množství DNA hub Fusarium culmorum

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování

Více

Úvod do analýzy rozptylu

Úvod do analýzy rozptylu Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KALIBRACE

Více

Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup

Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ

Více

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního

Více

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu 1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.

Více

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846 1 5 ANALÝZA ROZPTYLU Vzorová úloha 5.1 Zkrácený postup jednofaktorové analýzy rozptylu Na úloze B5.02 Porovnání nové metody v sedmi laboratořích ukážeme postup 16 jednofaktorové analýzy rozptylu. Kirchhoefer

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je = Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

Regulační diagramy (RD)

Regulační diagramy (RD) Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.

Více

Vzorová prezentace do předmětu Statistika

Vzorová prezentace do předmětu Statistika Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické

Více

ÚVOD D OPTIMÁLNÍ PLÁNY

ÚVOD D OPTIMÁLNÍ PLÁNY Ročník 2012 Číslo III ANOVA Základní metoda vyhodnocování experimentů M. Motyčka, O. Tůmová Katedra technologií a měření, Fakulta elektrotechnická, ZČU v Plzni, Univerzitní 26, Plzeň E-mail : mmotycka@ket.zcu.cz,

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko pro podporu jakosti 1 ANALÝZA ROZPTYLU a její využití při vyhodnocování experimentálních dat Eva Jarošová, VŠE Praha 2 Obsah Podstata metody, jednofaktorová ANOVA F-test Mnohonásobná

Více

Tabulka č. 1 95%ní intervaly Úsek Směrnice model L1 L2 L1 L2 Leco1-0, , , ,15618 OES -0, , , ,21271

Tabulka č. 1 95%ní intervaly Úsek Směrnice model L1 L2 L1 L2 Leco1-0, , , ,15618 OES -0, , , ,21271 1 Příklad 1. Porovnání dvou regresních přímek Při výrobě automatových ocelí dané jakosti byla porovnávána závislost obsahu uhlíku v posledním zkušebním vzorku (odebraném z mezipánve na ZPO a analyzovaném

Více

Regresní analýza. Eva Jarošová

Regresní analýza. Eva Jarošová Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

2.2 Kalibrace a limity její p esnosti

2.2 Kalibrace a limity její p esnosti UNIVERZITA PARDUBICE Òkolní rok 000/001 Fakulta chemicko-technologická, Katedra analytické chemie LICEN NÍ STUDIUM STATISTICKÉ ZPRACOVÁNÍ DAT PÌI MANAGEMENTU JAKOSTI P EDM T:. Kalibrace a limity její p

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

5 ANALÝZA ROZPTYLU. 5.1 Jednofaktorová analýza rozptylu (ANOVA1)

5 ANALÝZA ROZPTYLU. 5.1 Jednofaktorová analýza rozptylu (ANOVA1) 5 AALÝZA ROZPTYLU Analýza rozptylu AOVA (z anglického Analysis of Variance) se v technické praxi používá buď ako samostatná technika nebo ako postup umožňuící analýzu zdroů variability u lineárních statistických

Více

Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová

Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová Testování předpokladů pro metodu chain-ladder Seminář z aktuárských věd 4. 11. 2016 Petra Španihelová Obsah Datová struktura Posouzení dat Předpoklady metody chain-ladder dle T. Macka Běžná lineární regrese

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ SEMESTRÁLNÍ PRÁCE Kalibrace a limity její přesnosti Precheza a.s. Přerov 2005 Ing. Miroslav Štrajt 1. Zadání Úloha 1. Lineární kalibrace: u přímkové

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

Úloha 1: Lineární kalibrace

Úloha 1: Lineární kalibrace Úloha 1: Lineární kalibrace U pacientů s podezřením na rakovinu prostaty byl metodou GC/MS měřen obsah sarkosinu v moči. Pro kvantitativní stanovení bylo nutné změřit řadu kalibračních roztoků o různé

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty

Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou

Více

Zobecněná analýza rozptylu, více faktorů a proměnných

Zobecněná analýza rozptylu, více faktorů a proměnných Zobecněná analýza rozptylu, více faktorů a proměnných Menu: QCExpert Anova Více faktorů Zobecněná analýza rozptylu (ANalysis Of VAriance, ANOVA) umožňuje posoudit do jaké míry ovlivňují kvalitativní proměnné

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod

přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod Měření Pb v polyethylenu 36 různými laboratořemi 0,47 0 ± 0,02 1 µmol.g -1 tj. 97,4 ± 4,3 µg.g -1 Měření

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. ANOVA Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími proměnnými.

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení

Více

Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry

Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet

Více

Cvičení 9: Neparametrické úlohy o mediánech

Cvičení 9: Neparametrické úlohy o mediánech Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

STATISTIKA I Metodický list č. 1 Název tématického celku:

STATISTIKA I Metodický list č. 1 Název tématického celku: STATISTIKA I Metodický list č. 1 Analýza závislostí Základním cílem tohoto tématického celku je seznámit se s pokročilejšími metodami zpracování statistických údajů.. 1. kontingenční tabulky 2. regresní

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Přednáška X. Testování hypotéz o kvantitativních proměnných

Přednáška X. Testování hypotéz o kvantitativních proměnných Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody

Více

KALIBRACE A LIMITY JEJÍ PŘESNOSTI 2015

KALIBRACE A LIMITY JEJÍ PŘESNOSTI 2015 UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce KALIBRACE

Více