4. Genové inženýrství ve farmaceutické biotechnologii

Rozměr: px
Začít zobrazení ze stránky:

Download "4. Genové inženýrství ve farmaceutické biotechnologii"

Transkript

1 4. Genové inženýrství ve farmaceutické biotechnologii Hlavními produkty rekombinantních technologií ve farmacii jsou rekombinantní proteiny, které budeme označovat spíše jako terapeutické proteiny, protože důvodem jejich produkce je terapeutický zásah do organismu. V principu existují dva základní postupy, jak připravit takové proteiny: 1) Zásah fyzikálního nebo chemického mutagenu (mutageneze), kterým dojde ke změně nukleotidové sekvence v genu, který kóduje terapeutický protein. Pokud dojde k takové změně kodónu nebo kodónů, která má za následek změnu sekvence aminokyselin v proteinu, pak může vzniknout protein s novými vlastnostmi. 2) Cílená genetická manipulace, kterou je záměrně změněn sled nukleotidů tak, aby došlo ke změně definovaných aminokyselin ve struktuře terapeutického proteinu. Cílená genetická manipulace ale může probíhat i tak, že je gen pro protein naklonován a protein exprimován v jiném druhu organismu, v tzv. heterologním systému. Geny, které jsou takto klonovány, označujeme jako rekombinantní geny a podobně jimi produkované proteiny jako rekombinantní proteiny. Přípravu rekombinantních genů a proteinů nazýváme genovým inženýrstvím, klonováním genů, genetickými manipulacemi in vitro nebo rekombinantní DNA technologií. Postupy genového inženýrství vycházejí z hlubokých znalostí procesů přenosu genetické informace u živých systémů, řadu těchto procesů využívají a vhodně je kombinují. V důsledku zásahů genových inženýrů vznikají proteiny s výrazně pozměněnou strukturou, vznikají kvalitativně nové druhy proteinů a dochází k naprostému rozbourání bariér mezi druhy, neboť je možné např. produkovat proteiny vyšších obratlovců (člověka) i v bakteriálních buňkách. Co je asi nejdůležitější z hlediska využití genového inženýrství v produkci rekombinantních proteinů, že tyto manipulace umožňují přinutit organismus vytvářet protein, který mu není vlastní. Toho není možné dosáhnout ani klasickou mutagenezou ani klasickými genetickými postupy spojenými s hybridizací. Primárním cílem rekombinantních technologií ve farmaceutickém průmyslu je genetickou manipulací zajistit syntézu komerčně výhodného produktu v takovém organismu, který jej bude produkovat ve velkém množství a levně. V průběhu přenosu (transformace) genetického materiálu z původního organismu do organismu produkčního, v principu do cizí buňky musí být zabezpečeny všechny kroky tak, aby byla transformovaná DNA schopna replikace a geny, které obsahuje, byly v produkčním organismu exprimovány. Po transformaci tedy dochází k pozměnění genetické informace příjemce tak, že se do jejího genomu začlení cizorodá DNA. Jak vyplynulo už z konceptu farmaceutické biotechnologie, který byl popsán v kapitole 1, jsou takové procesy možné, protože jsou genetický základ všech organismů a genetický kód stejné a procesy genové exprese velmi podobné. Proto i zdrojem cizorodé DNA může být jakákoli buňka: živočišná, rostlinná nebo mikrobiální. Klonovat je možné taky geny virů, ať už DNA nebo RNA. V posledních letech vznikla dokonce nová možnost, v přírodě nemyslitelná, a to klonování a přenos synteticky připravených úseků DNA. Podobně na druhé straně se může rekombinantní DNA, bez ohledu na typ zdroje, inkorporovat do buněk bakteriálních, do kvasinek nebo plísní či buněk vyšších, ale taky do buněk rostlinných nebo živočišných či dokonce do celých rostlin nebo živočichů.

2 To, že je možné vybrat si zcela konkrétní gen nebo geny a poté je přenést z jednoho organismu do druhého, např. z člověka na mikroorganismus nebo z jednoho druhu rostliny na druhý apod. otevřelo nejen nové směry výzkumu organismů, ale umožnilo i praktické využití takových manipulací v průmyslu, medicíně, zemědělství i jiných oborech. K nejznámějším příkladům patří využití bakterie Escherichia coli k syntéze lidského inzulínu, lidského růstového hormonu, hematopoetických růstových faktorů, cytokinů nebo interferonů. Co se týče praktických aplikací postupů genového inženýrství, můžeme je kategorizovat do těchto dvou základních směrů: 1) Konstrukce organismů, které jsou cíleně určeny k produkci nebo superprodukci technologicky nebo farmaceuticky významných lidských, zvířecích či virových proteinů, jako jsou hormony, enzymy, protilátky, vakcíny, interferony a mnohé další. Existuje celá plejáda výrobních postupů peptidů, proteinů a vakcín. Vakcíny se vyrábějí klonováním genů pro povrchové proteiny virů a výsledné rekombinantní proteiny se využívají k očkování (aktivní imunizace). Nebo jsou proti těmto proteinům produkovány protilátky využívané k pasivní imunizaci. 2) Modifikování jedno nebo i mnohobuněčných organismů takovým způsobem, aby získaly vlastnosti, které se přirozeným způsobem nemohou vytvořit. Připravují se tak průmyslové mikroorganismy se zvýšenou generační schopností, s upravenými nároky na živiny nebo vysokou produktivitou. Tyto mikroorganismy mohou také přeměňovat nízkomolekulární látky, které by chemickými procesy byly upravovány ve dvou nebo více krocích. Konstruují se také mikroorganismy, které se uplatňují v ochraně a čištění životního prostředí. Manipulace s buňkami vyšších eukaryot jsou složitější a techniky genového inženýrství jsou u eukaryotických buněk rozvinuté méně než v případě klonování do buněk prokaryotických. U mnohobuněčných organismů je nutné vyřešit dvě důležité otázky: 1) Klonovaný gen se musí stát součástí genomu všech buněk mnohobuněčného organismu. Toho je možné dosáhnout, když je gen transformován do embrya, hovoříme o embryonálním inženýrství. Dnes už jsou vypracovány postupy oplodnění vajíček savců v podmínkách in vitro, umíme je taky kultivovat a zajistit podmínky tak, aby se oplodněná vajíčka začala rýhovat. Vnášet geny do oplozeného savčího vajíčka nebo do embrya v časných fázích vývoje už dnes umíme taky. Existuje řada geneticky modifikovaných, transgenních, hospodářských zvířat s výhodnějšími užitnými vlastnostmi a řada takových, které v mléce exprimují farmakologicky významné skupiny látek, růstový hormon, laktoferin, krevní faktory apod. Experimentálně se nahrazují vadné geny zodpovědné za dědičná onemocnění funkčními geny, což je oblast genových terapií, o které píšeme v kapitole 11. 2) Druhým vážným problémem genových manipulací s vyššími eukaryotickými organismy je to, že jsou jejich geny v chromozómech uspořádány specificky. Cizí gen může toto uspořádání narušit, porušit genetický program vývoje a tím ohrozit vývoj mnohobuněčného organismu. Pokud tedy zavedeme do embrya cizí geneticky manipulovanou buňku, může dojít ke vzniku mutantů a malformací. Kromě technických problémů je tedy manipulace s eukaryotickým organismem zatížena nepředpověditelnými riziky, která vyžadují řešit i otázky právní a etické. Některé země proto zakazují experimenty s klonováním cizích genů do savců.

3 4.1. Základní kroky při klonování genů Klonování genů bylo na počátku prováděno tak, že příjemcem rekombinantní DNA byla bakteriální buňka. K tomu ale bylo zapotřebí překonat několik překážek. První z nich je bariéra, kterou pro vstup DNA představují buněčné obaly, tedy cytoplasmatická membrána a především buněčná stěna. Po překonání této bariéry je třeba se vypořádat se skutečností, že bakterie obsahují nukleázy, které cizorodou DNA nemilosrdně rozloží. I když se podaří zabezpečit, aby k likvidaci cizorodé DNA nedošlo, je nutné zajistit, aby nezůstala v buňce v jediné kopii. Kdyby se cizorodá DNA nereplikovala, znamenalo by to, že i v případě rozmnožování samotných buněk by stále jen jedna obsahovala rekombinantní DNA. To by bylo samo o sobě nedostatečné k produkci významného množství rekombinantního proteinu, nehledě na skutečnost, že exprese genu je další podmínkou úspěšné transformace. Pokud tedy chceme, aby se rekombinantní gen v cizí buňce množil (replikoval), musíme jej začlenit do takové molekuly DNA, která je v dané buňce schopna replikace. Tato molekula musí mít takové nukleotidové sekvence, aby ji replikační enzymy bakterie rozpoznaly. V principu to znamená, aby obsahovala počátek replikace, v případě Escherichia coli lokus označovaný ori (origin). Molekuly DNA, které zajistí vnesení cizorodé DNA do buňky bakteriální, se označují jako vektory. Vektory v novém prostředí recipientní buňky chrání cizorodou DNA, se kterou jsou spojeny a zajišťují samotné její přežití, ale i replikaci a následnou expresi expresi. Jako vektory se používají malé molekuly DNA, a to plasmidy nebo fágy, případně uměle připravené konstrukty označované jako kosmidy. V případě transformace jiných než bakteriálních buněk se využívají vektory na bázi virů. Plasmidy jsou extrachromozomální kružnicové molekuly DNA, které se vyskytují v celé řadě bakteriálních druhů. Nesou pouze geny, které nejsou pro buňku esenciální, ale nesou některé druhotné znaky, např. geny rezistence k antibiotikům. Plasmidy se v buňce často vyskytují v mnoha kopiích, dají se relativně snadno izolovat a opět transformovat do buňky, ve které se opět mohou replikovat, a protože se namnoží do mnoho kopií, zajišťují tím také namnožení kopií klonovaného genu. Fágy jsou bakteriální viry, které jsou schopny se v hostitelské buňce replikovat. Pokud buňku nezahubí, hovoříme o tzv. lyzogenizaci, kdy se fág (a jím nesený rekombinantní gen) začlení do chromozómu hostitele a množí se spolu s tímto chromozómem. Ve vhodných podmínkách je činnost fágových genů zodpovědných za lyzi hostitelských buněk utlumena, kdežto rekombinantní gen je exprimován jako by byl součástí chromozómu. Lyzogenní cyklus je možné změnou podmínek změnit na lytický, při kterém jsou hostitelské buňky lyzovány a exprimované proteiny se z buňky uvolní. Kosmidy jsou uměle připravené vektory, které spojují vlastnosti plasmidů a fágů. Infikují buňku mechanismem, který připomíná fága, ale v buňce se chovají jako plasmid. Mají velkou klonovací kapacitu. Viry, respektive vektory na nich založené jsou vhodné především pro genové manipulace v živočišných nebo rostlinných buňkách, které nemají plasmidy. Virové vektory jsou hojně využívané při genových terapiích viz kapitola 11.

4 Při klonování genů se postupuje podle těchto základních kroků (Obr. 4.1): 1) Izolace deoxyribonukleové kyseliny 2) Rozštěpení DNA na požadovaných místech a úprava konců 3) Spojení produktů štěpení - rekombinace 4) Vnesení produktů rekombinace do buňky transformace 5) Selekce buněk, které obsahují cizorodý gen 6) Analýza produktů transformace, respektive klonované DNA Obr. 4.1: Základní kroky při klonování genů

5 Izolace DNA Jak získat gen, který má být klonován, tedy vložen pomocí vektoru do cílové buňky? Situaci si popíšeme na genu pro lidský růstový hormon. Jaké jsou možnosti? Je možné izolovat celkovou DNA lidské buňky, rozštěpit ji některou z mnoha stovek dostupných restriktáz, např. EcoR I, a poté transformovat získané restrikční fragmenty s využitím vektorů do buněk bakterie Escherichia coli. Po kultivaci získáme množství bakteriálních kolonií. Každá kolonie představuje potomstvo buňky, do které byl vnesen vektor s jedním fragmentem lidské DNA a mezi nimi bude pravděpodobně jedna, která nese požadovaný fragment s genem pro růstový hormon (nezbytným předpokladem je, že právě tento gen není enzymem rozštěpen). Vzhledem k tomu, že restriktáza EcoRI štěpí lidskou DNA asi na fragmentů, získáme zhruba stejný počet různých kolonií! Sbírka takových kolonií, které nesou celý genom určitého organismu ve formě fragmentů, se označuje jako genomová knihovna. Jak v genomové knihovně nalézt nositele právě toho genu, který nás zajímá? Najít jedinečnou sekvenci v rozsáhlé genomové knihovně o několika stech tisících různých záznamů je podobné, jako to pověstné hledání jehly v kupce sena! Máme-li tu možnost, a v případě kompletně zmapovaného lidského genu tato možnost většinou existuje, použijeme úsek nukleové kyseliny, který je komplementární k sekvenci hledaného genu, tzv. sondu. K přípravě sondy využijeme skutečnost, že v jednotlivých buňkách organismu dochází k expresi různých genů. Genetický materiál je shodný u všech buněk mnohobuněčného organismu. Ať se jedná o buňku nervovou, svalovou nebo jaterní, každá z nich obsahuje stejnou genetickou informaci. Buňky se liší aktivitou jednotlivých genů, tedy genovou expresí, tím, jaké proteiny vyrábí. Např. buňky pankreatu nemají o nic víc genu pro inzulín než jiné buňky, ale tento gen je v nich aktivně přepisován, a v buňkách pankreatu se proto nachází mnohem více mrna pro inzulín než v ostatních buňkách. Tuto mrna můžeme z buněk pankreatu izolovat v čistém stavu. Například ribozómy, které syntetizují příslušný protein, jsou současně připojeny k mrna, která nese gen pro tento protein. Takové ribozómy s navázanou mrna lze izolovat pomocí protilátky proti syntetizovanému polypeptidu. Jakmile získáme vhodnou mrna, nemůžeme ji sice přímo naklonovat do vektoru, který je tvořen DNA, ale mrna můžeme přepsat do tzv. cdna. Existuje virový enzym, zpětná transkriptáza, který dokáže mrna přepsat do jednořetězcové DNA, k níž se DNA polymerázou doplní komplementární DNA-řetězec. Vzniklá komplementární DNA (cdna) se vloží do vektoru, kterým se transformuje hostitelská buňka. Komplementární DNA obsahuje tu část sekvence genu, která je translací překládána do sekvence aminokyselin příslušného proteinu. Neobsahuje promotory ani introny, ale je to materiál dostatečný pro expresi proteinu a taky pro vyhledání původního genu pro inzulín v genomové knihovně. Vyhledávání v genomové knihovně bakteriálních kolonií se provádí metodou hybridizace kolonií, která je znázorněna na obr Uvedený postup je vhodný pouze u těch genů, pro které lze získat z vhodné tkáně neporušenou čistou mrna. Pokud to není možné, je třeba postupovat složitějším způsobem. Z fragmentované mrna se výše uvedeným způsobem připraví klony, které obsahují cdna, vznikne tak knihovna cdna. Z primární struktury peptidů (sekvencí aminokyselin) se odvodí možné sekvence nukleotidů v genu (využívá se přitom degenerace genetického kódu), který tyto peptidy kóduje, a zjištěné oligonukleotidy se připraví synteticky. Připravené oligonukleotidy mohou hybridizovat s molekulami cdna z knihovny cdna. Jinou možností je připravit sondu s využitím znalostí sekvencí příslušného genu u jiných savců.

6 Rozštěpení DNA na požadovaných místech a úprava konců Rozštěpení DNA se provádí restrikčními enzymy. Restrikční enzymy, restriktázy, jsou enzymy využívané bakteriemi jako obranný systém před napadením bakteriofágy, štěpí molekuly dsdna ve specifických sekvencích. Tím je zajištěno, že je proces přípravy fragmentů DNA ke klonování reprodukovatelný. Restriktázy se označují podle názvu mikroorganismu, ze kterého byly izolovány, tedy například EcoR I je restriktáza izolovaná z Escherichia coli, kmene R a jedná se o první enzym izolovaný z tohoto kmene. Příklady běžně používaných restriktázy jsou uvedeny v Tabulce 4.1. Přehled všech popsaných restriktáz je možno najít na adrese Tabulka 4.1: Příklady běžně používaných restriktáz. Název enzymu/původ Rozpoznávaná sekvence Produkty štěpení EcoRI Escherichia coli HindIII Haemophilus influenzae BamHI Bacillus amyloliquefaciens HaeIII Haemophyllus aegytius Sau3A Staphylococcus aureus NotI Nocardia otitidis-caviarum G-A-A-T-T-C....C-T-T-A-A-G..A-A-G-C-T-T..T-T-C-G-A-A..G-G-A-T-C-C....C-C-T-A-G-G....G-G-C-C..C-C-G-G -G-A-T-C..C-T-A-G-...G-C-G-G-C-C-G-C...C-G-C-C-G-G-C-G....G...C-T-T-A-A A T-T-C-G-A..G...C-C-T-A-G.. G-G..C-C...C-T-A-G A-A-T-T-C.. G.. A-G-C-T-T A G-A-T-C-C.. G.. C-C... G-G.. G-A-T-C... G-G-C-C-G-C... C-G..... G-C...C-G-C-C-G-G Restriktázy štěpí nejčastěji čtveřice, šestice nebo osmice nukleotidů. Protože se specifická osmice (sekvence 8 bp) vyskytuje s nižší četností než specifická sekvence 4 bp, je zřejmé, že ty enzymy, které rozpoznávají sekvenci 4 bp, budou DNA štěpit častěji, než ty enzymy, které rozpoznávají sekvenci 8 bp. Znamená to tedy, že pokud chceme štěpit DNA na kratší fragmenty, použijeme např. enzymy, které štěpí 4 bp (např. HaeIII, Sau3A), zatímco chceme-li získat delší fragmenty, použijeme např. EcoRI (štěpí šestice bp). Enzym Not I, který rozpoznává a štěpí sekvenci 8 bp, se používá při štěpení lidských chromozómů na menší počet větších fragmentů (mají délku i přes milion párů bazí). Pro tento typ restriktáz je rovněž typické, že jsou rozpoznávané a štěpené sekvence symetrické, tzn., že fragmenty mají po štěpení stejné zakončení. Ke štěpení dochází zpravidla mimo střed symetrie, což vede ke vzniku lepivých neboli kohezivních konců DNA. Takové konce, ať už mají původ v DNA z jakéhokoli organismu, lze následně snadno spojit.

7 Spojení produktů štěpení - rekombinace Do vektoru otevřeného po štěpení restrikční endonukleázou může být vložen fragment dsdna, a to tehdy, mají-li vektor i fragment na svých koncích komplementární sekvence kohezivní konce. Kohezivní konce se získají po štěpení vektoru a DNA stejnou restriktázou. Rozštěpený vektor a fragmenty se smíchají za podmínek vhodných k reasociaci komplementárních konců. DNA fragment a vektor je pak kovalentně propojen DNA ligázou. Schéma spojování molekul je zachyceno na Obr Pokud nemají fragmenty DNA a vektor konce kohezivní, ale tupé, pak je spojení DNA ligázou asi 1 000x méně účinné. Změnit konce tupé na kohezivní lze použitím tzv. linkerů, což jsou uměle syntetizované řetězce krátkých oligonukleotidů. Linkery nesou rozpoznávací místa pro jednu konkrétní restriktázu. Napojí se ligázou na tupé konce fragmentů DNA. Účinnost spojení linkerů s tupými konci DNA je málo účinné, proto se linkery dávají do reakce v nadbytku. Tím je zabezpečeno, že na každý tupý konec vkládaného fragmentu připadá jeden linker. Štěpením linkeru restriktázou vznikne na fragmentu DNA kohezivní konec. Obr. 4.2: Spojování molekul DNA

8 Vnesení produktů rekombinace do buňky transformace Jakmile je úsek DNA vložen do vektoru, je potřeba vnést (transformovat) tento vektor (spolu s oním úsekem DNA zpět do živé, tzv. recipientní buňky. Principiálně není snadné transformaci recipientních buněk provést, k tomu je třeba vystavit buňky extrémním podmínkám. Součástí transformačního procesu je uvedení buněk do stavu tzv. kompetence. Kompetentní buňky lze získat z mladých, rychle rostoucích buněk, tedy z kultury nacházející se v exponenciální fázi růstu. Takové buňky se opracují chloridem vápenatým, který v buněčné stěně nahradí všechny ionty a buňka se stane kladně nabitým iontem, na který se snadno váží negativně nabité molekuly deoxyribonukleových kyselin. Teplotním šokem pak dojde k penetraci buněčných obalů a DNA vnikne dovnitř buňky, kde může dojít k její inkorporaci do buněčných struktur a DNA se stane součástí buněčného genomu. Příprava kompetentních buněk a transformace. Aktivně rostoucí buňky se přenesou do prostředí CaCl 2 při 4 C. Přenos se uskutečňuje opakovaným vypíráním biomasy v tomto prostředí. Pozitivně nabité buněčné stěny se pak stávají vysoce propustné pro záporně nabité molekuly. DNA určená k transformaci se nechá v kontaktu s těmito buňkami po dobu asi 30 minut na ledové lázni. Teplotní šok spočívá v přenesení směsi buněk a DNA na 42 C po dobu sekund. Poté je k buňkám přidáno regenerační médium a po krátké inkubaci (zpravidla do 1 hodiny) buňka obnoví své funkce včetně exprese genů z transformovaných molekul vektorů s inzerty cizorodé DNA. Některé druhy bakterií, např. stafylokoky, je možno transformovat až poté, co jsou z nich připraveny sféroplasty, tedy buňky částečně zbavené buněčné stěny. Kromě výše uvedených metod transformace je možné připravit buňky bez náboje v buněčné stěně a takové buňky pak použít k transformaci elektrickými vysokonapěťovými pulsy, tzv. elektroporaci. Elektroporací lze transformovat všechny typy buněk. K transformaci buněk živočišných lze využít také lipozómů nebo ve formě zahušťovadla polyethylenglykolu. Rostlinné buňky jsou transformovány mimo jiné biobalisticky. Při této metodě je DNA nastřelována vysokou rychlostí wolframovými nebo zlatými projektily s navázanou DNA. Zásadní problém transformace je to, že její účinnost je i s použitím nejlepší techniky stále velmi nízká, což znamená, že cizí DNA přijme nakonec pouze malé procento buněk. Proto je nutné po transformaci pečlivě zvolit metodu, kterou je možno jednoznačně určit, které z narostlých buněčných kolonií obsahují buňky nesoucí transformovanou DNA, a které nikoli. Zpravidla se zjišťuje, je-li v buňce přítomen vektor. Protože vektory nesou geny rezistence k antibiotikům, jsou snadno selektovatelné. Příklady běžně vektorů jsou uvedeny v následujících odstavcích Selekce buněk, které obsahují rekombinantní gen K selekci transformovaných buněk využívají genoví inženýři celou řadu více či méně sofistikovaných metod. Představíme si alespoň některé z nich, které se používají nejčastěji, a to na úrovni bakteriálních buněk. U eukaryotických buněk lze pak použít metod analogických. Protože jsou recipientní buňky senzitivní k antibiotikům a vektor naopak nese některý z genů pro rezistenci, nejčastěji k ampicilinu nebo kanamycinu, probíhá selekce primárně na základě rezistence

9 k antibiotikům. Transformovaná buňka musí být k antibiotiku rezistentní. Mezi rezistentními klony pak můžeme provést další selekci některou z následujících metod: 1) Inzerční inaktivace 2) α-komplementace 3) Hybridizace kolonií 4) Restrikční analýza plasmidové DNA 5) Test PCR 6) Sekvenování Inzerční inaktivace doplňuje primární selekci. Některé vektory, např. na obr. 4.3 uvedený plasmid pbr322 obsahují dva geny pro dvě různé rezistence k antibiotikům. Naklonování fragmentu DNA do některého z těchto genů dojde k jeho inaktivaci a tím tedy ke ztrátě příslušné rezistence. Jestliže tedy recipientní buňky úspěšně transformované kompletním plasmidem bez inzertu ponesou dvě rezistence (v případě pbr322 k tetracyklinu a ampicilinu), pak buňky transformované rekombinantním plasmidem s naklonovaným fragmentem jednu z rezistencí ztratí. Selekce buněk se pak provádí tzv. otiskovou metodou, znázorněnou na obr Obr. 4.3: Mapa vektoru pbr322. Převzato z bla = gen pro rezistenci k ampicilinu, tet = gen pro rezistenci k tetracyklinu, rep = počátek replikace, rop = regulační sekvence pro zajištění vysokého počtu kopií plasmidu v buňce

10 Obr. 4.4: Otisková metoda, selekce na citlivost k tetracyklinu. DNA fragment byl klonován do genu tet. Kolonie transformovaných buněk rostoucích na neselektivním médiu Otisk kolonií na selektivní média TETRACYKLIN AMPICILIN Inkubace 16 hodin/37 C Pro další práci selektujeme kolonie rezistentní k ampicilinu, ale citlivé na tetracyklin

11 Alfa-komplementace. Jedná se o jednoduchý jednokrokový rychlý test, který má odhalit, zdali vektor obsahuje nebo neobsahuje inzert. Test je založen na skutečnosti, že produkt genu lacz, β-galaktozidáza, je tetramer, sestávající ze dvou částí: lacz-α a lacz-ω (omega). Pokud je z buněčného chromozómu recipientní buňky odstraněn gen lacz-α, kódující fragment α, je zbytek enzymu nefunkční. Chybějící gen pro fragment α je proto transformován vektorem, odtud název α-komplementace. Pokud je recipientní buňka transformována vektorem, vznikají uvnitř ní funkční molekuly β-galaktozidázy, dochází tedy k α-komplementaci. Jestliže je ovšem gen lacz-α na vektoru porušen naklonovaným DNA fragmentem, pak ke komplementaci nedochází a molekuly β-galaktozidázy jsou nefunkční. Enzym β-galaktozidáza štěpí molekulu laktózy na glukózu a galaktózu. Jestliže je v růstovém médiu namísto laktózy přítomen chromogenní substrát, např. analog laktózy tzv. X-gal (5-bromo-4- chloro-3-indolyl-β-d-galaktopyranozid), dojde k rozštěpení této látky a buňky (respektive kolonie takových buněk) se zabarví domodra. Buňky, které ovšem nemají funkční β-galaktozidázu, chromogenní substrát neštěpí a zůstávají zbarveny standardně, tedy v odstínu slonové kosti, zjednodušeně řečeno, zůstávají bílé. A právě na principu modro/bílého zbarvení lze rozpoznat, která recipientní buňka obdržela plasmid bez naklonovaného DNA fragmentu, a která rekombinantní molekulu. Princip selekce na základě α-komplementace je zachycen na obr K obr. 4.5 je třeba doplnit dvě informace 1) Fragment α je poměrně rezistentní k tomu, co je do genu, který jej kóduje naklonováno. Pokud je klonovaný fragment naklonován ve stejném čtecím rámci jako gen lacz-α a pokud je tento fragment krátký, pak zůstává fragment α funkční, a přestože buňky nesou plasmid s naklonovanou DNA, stejně ke komplementaci dochází a tyto buňky se barví modře. Tento jev je výraznou komplikací selekce na principu α-komplementace, přesto je metoda velmi často v laboratořích využívána pro prvotní screening transformantů. 2) Gen lacz-α je v běžně používaných vektorech zpravidla pod kontrolou laktózového operónu. Tento operón je indukován laktózou, která je nahrazována molekulou IPTG (isopropyl-β-dthiogalaktozid). IPTG je tedy při tomto testu běžnou součástí růstového média. Princip α-komplementace se využívá i při klonování do fágových vektorů. Plaky, které se po takové transformaci vytvářejí, mají modře opaleskující nádech. Takové plaky jsou potomstvem vektorů, které nenesou naklonovaný fragment!

12 Obr. 4.5: Selekce na základě α-komplementace Buňky bez plasmidu na neselektivním médiu (LB médium) = buňky jsou zbarveny bíle Buňky bez plasmidu na selektivním médiu (LB médium + ampicilin + Xgal + IPTG) = buňky nerostou Buňky s plasmidem bez inzertu na selektivním médiu (LB médium + ampicilin + Xgal + IPTG) = buňky jsou zbarveny modře Buňky s plasmidem s dlouhým inzertem na selektivním médiu (LB médium + ampicilin + Xgal + IPTG) = buňky jsou zbarveny bíle Buňky s plasmidem s krátkým inzertem na selektivním médiu (LB médium + ampicilin + Xgal + IPTG) = buňky jsou zbarveny modrobíle

13 Metoda, při které je selekce založena na hybridizaci kolonií, je schematicky znázorněna na obr Při této metodě jsou narostlé bakteriální kolonie otištěny na nylonovou membránu. Získané otisky buněk jsou pak lyzovány a podrobeny izolaci genomové DNA. Vznikne tak otisk DNA na nylonové membráně, který odpovídá původní poloze kolonií na kultivační Petriho misce. DNA je podobně jako u metody Southern blot denaturována a vzniklé jednořetězcové molekuly jsou fixovány na membránu. Membrána je pak hybridizována se značenou sondou (cdna), která nese sekvence komplementární ke klonovanému DNA fragmentu. Pokud došlo k naklonování DNA fragmentu, dojde k hybridizaci sondy a místo, kde se původně nacházela bakteriální kolonie s oním klonem je tak označeno. Tuto bakteriální kolonii je pak možné z původní misky odebrat a použít k další práci. Obr. 4.6: Schématický postup hybridizace kolonií. V prvním kroku je dvouřetězcová DNA denaturována vysokou teplotou nebo alkáliemi, dojde k oddělení jednotlivých řetězců. Komplementární řetězce se pak zase spojí po ochlazení nebo neutralizaci. Ke spojení může dojít u řetězců, které pocházejí ze stejné molekuly nebo (a to je účelem této metody) z různých zdrojů. Pokud se spojí řetězce původem z chromozomálního genu a cdna, hovoříme o hybridizaci. Tímto postupem je možné prostřednictvím cdna identifikovat klony, které nesou sledovaný chromozomální gen. nylonová nebo nitrocelulózová membrána působením NaOH dojde k lyzi buněk, denaturaci DNA a její fixaci na membránu kolonie z genomové banky narostlé na agaru obtisknutí kolonií na membránu fluorescenčně nebo radioaktivně označená denaturovaná cdna otisk chromozomální DNA film stanovení pozice kolonie nesoucí hledanou sekvenci expozice inkubace s cdna (přes noc) dojde k hybridizaci

14 Princip selekce vhodných klonů na základě restrikční analýzy je znázorněn na obr Vycházíme-li ze znalosti fyzikální mapy vektoru, pak můžeme vhodnou volbou restriktázy zjistit, jestli a v jaké orientaci je ve vektoru naklonován gen. Restrikčním štěpením a následnou elektroforézou získáme informaci o délkách fragmentů v rekombinantním plasmidu a z nich můžeme odvodit restrikční mapu, která orientaci odhalí. Zajímá nás především, jestli je gen naklonován ve shodném směru, jako je směr transkripce z promotoru, který je umístěn na vektoru. Správný směr je podmínkou pro následnou úspěšnou translaci. Obr. 4.7: Selekce restrikční analýzou izolovaného rekombinantního plasmidu a) Situace, kdy je gen naklonován ve správné orientaci vzhledem ke směru transkripce směr transkripce šipky značí štěpení restriktázou vektor ATG gen TAA vektor produkty štěpení b) Situace, kdy je gen naklonován v nesprávné orientaci vzhledem ke směru transkripce směr transkripce šipky značí štěpení restriktázou vektor AAT gen GTA vektor produkty štěpení Metodu polymerázové řetězové reakce můžeme k analýze přítomnosti klonovaného DNA fragmentu použít vždy, protože známe sekvenci vektoru. Na všech vektorech jsou k dispozici sekvence určené k sekvenování z obou stran vektoru (viz obr. 4.8). Na tyto sekvence se váží primery a ty je zpravidla možné zkombinovat a použít jako primery pro PCR. Na základě velikosti amplikonů získaných

15 amplifikací z původně sekvenačních primerů je možné odlišit, jestli vektor obsahuje naklonovaný DNA fragment. Jestliže totiž máme k dispozici mapu vektoru, pak známe vzdálenost sekvenačních primerů a pokud známe velikost klonovaného DNA fragmentu, pak dovedeme vypočítat také velikost amplikonů z vektoru, který má tento DNA fragment naklonovaný. Obr. 4.8: Jak lze potvrdit přítomnost inzertu ve vektoru s využitím sekvenačních primerů. Sekvenační primery jsou označeny jako primer 1 a primer 2. a) Vektor bez inzertu primer 1 vektor vektor primer 2 délka amplikonů N b) Vektor s inzertem primer 1 vektor Inzert délky X vektor primer 2 délka amplikonů N + X

16 Pokud známe sekvenci nukleotidů na koncích inzertu, popřípadě pokud jsme klonovali produkty PCR, pak můžeme této znalosti využít ke stanovení orientace inzertu ve vektoru. Vysvětlení je možno nalézt na obr Obr. 4.9: Stanovení orientace inzertu ve vektoru pomocí PCR. Sekvenační primery jsou označeny jako primer 1 a primer 2. Primery, ze kterých vznikl inzert, jsou označeny primer F a primer R. primer 1 primer F vektor Inzert délky X vektor primer R primer 2 Při tomto uspořádání mohou amplikony vznikat v PCR reakcích, ve kterých jsou použity následující kombinace primerů sekvenační primer 1 + sekvenační primer 2 (délka amplikonu = N + X) primer F + primer R (délka amplikonu = X) sekvenační primer 1 + primer R sekvenační primer 2 + primer F Metoda sekvenování je rozhodující metodou, která jediná může potvrdit přítomnost klonované DNA sekvence ve vektoru. Může taky přesně stanovit, zda klonovaná sekvence odpovídá sekvenci původní nebo zda nedošlo k nějakým změnám. V principu je doporučeno sekvenovat každý inzert. Sekvenování je metodou, kterou nejenže potvrdíme přítomnost inzertu ve vektoru, ale také současně klonovanou DNA analyzujeme Analýza produktů transformace Jak už bylo uvedeno výše, provádí se analýza klonované DNA sekvenováním. Kromě toho je možné provést také hybridizaci DNA:DNA s využitím metody Southern blotting nebo DNA:RNA pomocí metody Northern blotting. Není předmětem tohoto učebního textu všechny tyto metody popisovat, k tomu autoři odkazují na běžně dostupnou literaturu zabývající se metodami molekulární biologie.

17 4.2. Rekombinantní proteiny Rekombinantní proteiny jsou takové proteiny, které vznikají expresí umělých (rekombinantních) genů připravených metodami genového inženýrství. Rekombinantní proteiny jsou produkovány v tzv. expresních systémech, což jsou takové buňky nebo jejich části, které jsou používány právě k produkci rekombinantních proteinů. Expresním systémem může být jakákoli živá buňka, tedy jakákoli buňka prokaryotická (nejčastěji je to Escherichia coli, Bacillus subtilis, Mycobacterium smegmatis nebo zástupci rodu Streptomycetes) nebo buňka eukaryotická. Z eukaryot se používají buňky kvasinek (S. cerevisiae, P. pastoris), houby, pseudomonády, hmyzí (systém bakulovirus-drosophila), savčí (s vektory na bázi adenovirů) nebo rostlinné buňky (vektorem je např. virus polyhedrie). Jako expresní systémy se ale využívají taky in vitro expresní systémy založené na extraktech buněk savčích nebo rostlinných. V souvislosti s expresemi rozlišujeme mezi vektory dva základní typy: transkripční (fúzní) vektory a translační (fúzní) vektory. Transkripční fúzní vektory jsou takové, které nenesou translační signály, především vazebné místo pro ribozom (RBS, ribosome binding site) a kodón AUG. Pokud má být transkripční vektor použit k produkci rekombinantního proteinu, musí být translační signály do takových vektorů naklonovány spolu s klonovaným genem. Příkladem transkripčních vektorů mohou být např. plasmidy puc18/19 uvedené v kapitole Naproti tomu translační vektory jsou přímo určené k expresi rekombinantních proteinů a nesou translační signály jako nezbytnou součást základní struktury vektoru. Do translačních vektorů tak mohou být klonovány nejen celé geny, ale také jejich části nebo jakákoli sekvence nukleotidů, která má být podrobena translaci. U translačních vektorů je exprese rekombinantního proteinu plně pod kontrolou tohoto vektoru. K translačním vektorům patří pgemex nebo plasmidy řady pet zmíněné v kapitole U translačních vektorů je zpravidla část rekombinantního proteinu kódována ze sekvencí ležících na samotném vektoru a proto výsledný rekombinantní protein označujeme také jako fúzní protein, tedy rekombinantní protein vznikající fúzí dvou částí jedna pochází ze samotného proteinu, druhá z vektoru. Z termínu fúzní protein bylo odvozeno označení translační fúzní vektor a následně také transkripční fúzní vektor. Označení translační vektor a transkripční vektor je ale dostatečné. Obecná struktura transkripčního a translačního vektoru je znázorněna na obr Ačkoli jsou fúzní proteiny v podstatě umělé produkty, složené z přirozené části a části dodané vektorem, mají celou řadu výhod, které jim přináší právě ta část, kterou kóduje vektor. Této části se říká fúzní partner. Dnes dostupné komerční vektory nesou dlouhé sekvence kódující fúzní partnery, často jsou to celé geny. Při expresi fúzních proteinů a následně také při jejich purifikaci se využívá právě specifických vlastností fúzních partnerů. Většina dnes produkovaných rekombinantních proteinů má charakter fúzních proteinů. K hlavním výhodám fúzních proteinů patří to, že díky vektorové části mají zajištěný počátek translace malé proteiny jsou stabilnější je u nich zajištěna vysoká pravděpodobnost exprese výsledný produkt bývá vysoce rozpustný, tedy správně sbalený

18 Obr. 4.10: Obecné schéma transkripčního a translačního vektoru a souvislosti translace a) Transkripční vektor klonovací místo promotor inzert s translačními signály transkripce promotor AUG RBS, AUG, gen translace mrna rekombinantní protein b) Translační vektor klonovací místo promotor, RBS, AUG inzert bez translačních signálů promotor, RBS, AUG gen AUG transkripce translace mrna fúzní protein

19 Fúzní partner rekombinantního proteinu může být naklonován jako C-koncová fúze nebo jako N-koncová fúze. Jediný rekombinantní protein může mít současně fúzního partnera na obou koncích. Fúzní partneři mají dvě základní funkce mohou sloužit jako selekční znak při imunodetekci rekombinantního proteinu protilátkami mohou být použity při purifikaci rekombinantního proteinu Příklady fúzních partnerů jsou gen lacz s jehož funkcí jsme se seznámili v kapitole , gen pro maltose binding protein (MBP), gen pro glutation-s-transferázu, gen pro thioredoxin nebo sekvence kódující oligopeptidy, např. hexahistidin, tzv. HisTag. S pojmem fúzní partner souvisí další termín, tzv. reportérový gen. Termín reportérový gen se používá pro gen kódující fúzního partnera fúzního rekombinantního proteinu, který slouží především k identifikaci tohoto proteinu. Nejčastěji využívanými reportérovými geny jsou kromě již zmíněných genů pro HisTag, β-galaktozidázu, thioredoxin nebo glutation-s-transferázu také gen pro chloramfenikolacetyltransferázu (CAT), secernovanou alkalickou fosfatázu, β-glukuronidázu a především dnes velmi populární gen luc pro luciferázu ze světlušky Photinus pyralis, gen zeleně fluoreskující protein (green fluorescent protein, GFP) kóduje protein, který je příčinou světélkování medúzy Aequorea victoria, gen pro červeně fluoreskující protein (red fluorescent protein, RFP) z korálu nebo řada bakteriálních genů pro proteiny fluoreskující v infraoblasti (infrared fluorescent protein, IFP); jeden z nich pochází z Deinococcus radiodurans. Především geny pro fluoreskující proteiny jsou dnes velmi často využívány při přípravě geneticky modifikovaných vyšších eukaryot pro účely studia exprese a distribuce proteinů v tkáních a orgánech.

20 4.3. Recipientní buňky Recipientní buňkou je každá, která živá buňka, která přijímá rekombinantní DNA některým z výše popsaných vektorů. Hostitelem rekombinantní DNA může z důvodu podobnosti replikačního aparátu bez ohledu na typ zdroje bakteriální buňka, buňka kvasinky a plísně, buňky rostlinné i živočišné nebo dokonce i celá rostlina nebo živočich (i v případech celých organismů je ale vždy transformovaná konkrétní buňka). Nejčastěji používanými recipientními buňkami jsou ty, které jsou odvozeny od bakterie Escherichia coli. Tato bakterie má malý kružnicový chromozóm o velikosti 3x10 6 bp, generační dobu 20 minut, ve stacionární fázi dorůstají do koncentrace až 2x10 9 b/ml. V průběhu mnoha desítek let výzkumu na této bakterii byly připraveny tisíce mutantů, většinou na bázi kmene K12. K nejznámějším recipientním kmenům patří DH5α, HB101, BL21, aj. Nejjednodušším eukaryotickým organismem, který je využíván pro účely produkce rekombinantních proteinů je pekařská kvasinka Saccharomyces cerevisiae. Ta obsahuje lineární chromozómy o celkové délce přibližně bp, které nesou asi strukturních genů. Protože se jedná eukaryotický organismus, má shodný transkripční a translační aparát jako vyšší eukaryota, rozdíly jsou ale v posttranslačních procesech. Vedle tohoto druhu se jako recipientní používají také buňky kvasinek druhů Schizosaccharomyces pombe a Pichia pastoris. Hmyzí buňky a jejich parazité, bakuloviry, jsou systémy, které představují klonovací systémy vyšších eukaryot. Využívá se u nich podobných selekčních principů jako u nižších eukaryot či bakterií, používají se i principiálně shodné binární vektory. U vektorů dochází v procesu rekombinace k náhradě sekvence polyhedrinového genu genem rekombinantním. Proteiny jsou secernovány do média a hostitelskou buňkou jsou buňky Drosophila melanogaster. Protože hmyzí viry nenapadají savčí buňky, je klonování do takových vektorů pro výzkumné pracovníky relativně bezpečná technologie. U rostlinných buněk se k transformaci používají typické bakteriální plasmidy, které obsahují tzv. rostlinné expresní kazety. K transformaci těmito plasmidy se využívají bakterie rodu Agrobacterium nebo je možné provést transformaci přímou. Jiné systémy jsou založeny na virových vektorech. Jedná se opět o relativně bezpečnou technologii. Jako recipientní buňky se používají buňky modelových organismů Arabidopsis thaliana nebo Nicotiana tabacum. Technologie transformace rostlinných buněk je už ale propracována pro stovky různých rostlinných druhů. Člověku nejbližší systémy jsou založeny na bázi savčích buněk a jejich virů. Jako recipientní buňky se nejčastěji používají buňky ovarií zlatého křečka, CHO (Chinesse hamster ovary), které jsou transformovány vektory na bázi adenovirů, retrovirů nebo herpesvirů. Technologie manipulace s těmito systémy jsou pro obsluhu nebezpečné!

21 4.4. Prokaryotické expresní systémy Na bakteriích byly založeny první expresní systémy a i v současnosti jsou to nejrozšířenější producenti rekombinantních proteinů. I expresní systémy eukaryotické v přípravných fázích vyžadují jako mezistupeň bakteriální buňku. Absolutní většina rekombinantních proteinů je produkována v buňkách Escherichia coli upravených metodami genového inženýrství. Využívají se ale také bakterie Bacillus subtilis, Streptomyces, Mycobacterium smegmatis, a jiné. V bakteriálních buňkách byly úspěšně produkovány jak jiné prokaryotické, tak i eukaryotické proteiny a to především jako fůzní proteiny, intracelulární i secernované proteiny do molekulové hmotnosti Tyto systémy určitě nejsou vhodné pro produkci secernovaných a povrchových proteinů větších než Bakteriální buňky rovněž nemají glykosylační aparát, proto se zpravidla nedoporučují k expresi glykosylovaných proteinů. Ačkoli je exprese jakéhokoli rekombinantního proteinu zpravidla individuální záležitostí a každý nový rekombinantní protein má takové vlastnosti, že jeho exprese je výjimkou z jakýchkoli definovaných pravidel, pro expresi v E. coli obecně platí, že je možné v nich exprimovat proteiny, které jsou větší než malé jsou menší než velké nejsou příliš hydrofobní neobsahují příliš mnoho cysteinů Ideální exprese v E. coli probíhá při splnění následujících vlastností proteinu: protein je tvořen jedním polypeptidovým řetězcem není nutná glykosylace velikost proteinu je < 50kDa protein je produkován v rozpustné cytosolické frakci protein je produkován do inkluzních tělísek s vysokou možností opětovného sbalení K výhodám exprese v Escherichia coli patří především vysoké výtěžky produktu purifikovatelné produkty vhodné pro další analýzu levná produkce Co se týče vlastností ostatních bakteriálních systémů, jsou specifické a před výběrem příslušného expresního systému je třeba se s nimi podrobně seznámit.

22 Prokaryotické vektory V současné době se pro izolaci, namnožení a expresi klonované DNA v prokaryotických buňkách používají tři typy vektorů - plasmidy, bakteriofágy a kosmidy. Vektory byly upraveny tak, aby vyhovovaly specifickým účelům, např. pro přípravu velkého množství plasmidové DNA, vysokou expresi heterologních proteinů, cílenou mutagenezi, přípravu radioaktivně značených sond či genomových knihoven. Volba vhodného vektoru pro klonování pak závisí na účelu, k němuž má být použit. Plasmidy ve funkci vektorů. Všechny plasmidy, v současné době používané ke klonování, jsou oproti přirozeným plasmidům upravené. Ideální plasmid upravený do podoby vektoru musí být malý, aby se s ním dalo snadno manipulovat, musí se dát snadno izolovat nebo transformovat. Zároveň musí být v buňce stabilní a replikovatelný. Pro každou restriktázu by měl mít jen jedno restrikční místo, aby se účinkem enzymu pouze otevřel, ale nezničil. Měl by obsahovat geny (tzv. selekční geny nebo selekční znaky), které umožňují snadnou selekci transformantů. V přírodě takové plasmidy prakticky neexistují - pokud mají výhodný znak, jsou zase moc velké nebo je restriktázy štěpí na nevhodných nebo více místech. Pokud plasmid malý a obsahuje jediné restrikční místo, pak zase zpravidla nemá selekční znak. V současnosti se používají uměle vytvořené vektory na bázi plasmidů. Jedním z příkladů je plasmid pbr322; tento plasmid byl zkonstruován kombinací různých částí přirozeně se vyskytujících plasmidů. Je využíván k přenášení cizorodé DNA do buněk Escherichia coli. Jedná se o malý plasmid (4 361 bp), obsahuje dva geny rezistence - k ampicilinu a k tetracyklinu, má restrikční místa pro restriktázy EcoRI, BamHI, HindIII, PstI a SalI. Replikuje se nezávisle na hlavním chromozómu, a proto se může v buňce vyskytovat v mnoha kopiích, je v tzv. relaxovaném stavu. Konstrukce plasmidu pbr322. Tento plasmid byl zkonstruován Bolivarema Rodriguezem na Kalifornské univerzitě v San Francisco v USA. K použití byl schválen v roce 1977 a v tomtéž roce byl využit k vnesení prvního savčího genu do bakterie. Jednalo se o gen pro insulin od potkana vnesený do E. coli. Na bázi plasmidu pbr322 jsou odvozeny další vektory, které se liší například v rezistenci k antibiotikům a spektrem restrikčních míst. Plasmidy odvozené od pbr322 jsou využívány ke vnášení cizorodé DNA do buněk eukaryotických kvasinek, rostlin i živočichů. Velmi často používanými jsou vektory odvozené od plasmidu puc18/puc19. Tyto dva vektory jsou velmi malé molekuly (2 686 bp), které nesou umělý konstrukt, tzv. mnohočetné klonovací místo multicloning site, MCS), polylinker, který obsahuje v krátké sekvenci několik různých restrikčních míst. Plasmidy puc18 a puc19 se liší pouze orientací tohoto klonovacího místa. Oba plasmidy nesou také gen rezistence k ampicilinu a jako selekční znak využívají exprese genu pro β-galaktozidázu. Schéma plasmidů puc18 a puc19 je uvedeno na obr Plasmidy psp64, psp65 a řada plasmidů pgem jsou vektory odvozené od plasmidu pvc. Před klonovacím místem obsahují promotory rozpoznávané vysoce účinnými fágovými RNA polymerázami. Transkripcí inzertů vložených do těchto míst lze získat velké množství jednořetězcové RNA.

23 Obr. 4.11: Struktura plasmidu puc18/19 Struktura klonovacího místa plasmidů puc18/19 je znázorněna na obr Obr. 4.12: Klonovací místo plasmidů puc18/19 Plasmid puc18 obsahuje stejnou sekvenci, ale v opačné orientaci. Komerčně dostupných plasmidů jsou na trhu aktuálně tisíce. Všechny ale obsahují 1) Počátek replikace, který je podmínkou produkce nových kopií 2) Selekční znak, zajišťující zvýhodněný růst transformovaných bakterií 3) Klonovací místo, umožňující vložit do plasmidu fragment cizorodé DNA

24 Kromě vektorů, které jsou využívány pro jednoduché klonování DNA fragmentů, existují také vektory zaměřené přímo na expresi proteinu z naklonovaného genu. Jedním z mnoha takových vektorů je plasmidový vektor pgemex. Ten slouží k expresi proteinů v E. coli. Tento vektor a z něj odvozené vektory obsahují mimo jiné gen pro RNA polymerázu bakteriofága T7. Tato polymeráza přepisuje geny umístěné za promotorem genu 10 tohoto bakteriofága tak účinně, že ke své činnosti spotřebuje většinu ribonukleotidů v buňce. To vede k dramatickému snížení transkripce ostatních genů hostitelské buňky. Kmeny E. coli, které nejsou infikovány bakteriofágem T7 tento enzym neprodukují. Proto se k expresi používají buňky infikované bakteriofágem nebo vektorem M13 nebo takové buňky, do nichž byl uměle vložen gen pro T7 RNA polymerázu (např. E. coli BL21 (DE3). Tento gen bývá pod kontrolou teplotně indukovatelného promotoru nebo častěji lac promotoru indukovatelného 1aktózou nebo jejími analogy. V tomto případě IPTG tedy indukuje syntézu RNA polymerázy, která specificky přepisuje pouze geny umístěné za T7 promotorem. Vektory řady pgem obsahují polyklonovací místo obklopené opačně orientovanými fágovými promotory T7 a SP6. Díky tomuto uspořádání je možno získat sense a antisepse transkript klonovaného genu. Příkladem jednoho z celé rodiny vektorů pgemex je uveden na obr Jedná se o komerční produkt firmy Promega, na jejichž stránkách ( možné o tomto a podobných vektorech najít další informace. Obr. 4.13: Vektor pgemex-2. Převzato ze stránek společnosti Promega. Jinou rodinu expresních vektorů tvoří vektory pet. Jedním z příkladů této řady je vektor pet22 (obr. 4.14) produkovaný firmou Novagen ( Tento plasmid nese kromě běžných sekvencí jako je T7 promotor, terminátor a polyklonovaci místo také N-terminální pele signální sekvenci pro periplasmatickou lokalizaci a C-terminální hexahistidinovou sekvenci pro afinitní purifikaci fúzního produktu. Dále je zde úsek f1 ori, který po infekci fágem zajišťuje syntézu jednořetězcové DNA shodné s kódujícím řetězcem, která je vhodná pro jednořetězcové sekvenování.

25 Z obr je zřejmé, že pasmid pet22b je konstruován tak, aby bylo možno klonovat sledovaný gen ve fázi se sekvencí kódující hexahistidinovou kotvu pro následnou purifikaci genového produktu. Obr. 4.14: Vektor pet-22. Převzato ze stránek společnosti Novagen. Vektor λgt11 je založen na fágu lambda. Obsahuje gen pro β-galaktozidázu E. coli, včetně kontrolních sekvencí pro jeho expresi. V části kódující počátek tohoto proteinu je jediné restrikční místo EcoRI, do něhož lze vložit heterologní DNA. Pokud je inzert vložen ve správném čtecím rámci, vznikne proteinová chiméra (obr. 4.15) produkt fúze klonovaného genu a genu pro β-galaktozidázu. Exprimovaný protein lze detekovat protilátkou.

26 Obr. 4.15: Proteinová chiméra vzniklá expresí z vektoru λgt11 EcoR I promotor β-galaktozidáza inzert promotor β-galaktozidáza AUG inzert mrna fúzní protein Bakteriofágové vektory: Vektory na bázi plasmidů mají několik omezení. Jsou relativně malé, a proto mohou nést jen malé inzerty. Při inkorporaci delšího úseku DNA vznikne nestabilní produkt, který má tendenci se rozpadat na malé fragmenty. Proto se plasmidy nehodí např. jako vektory pro zacházení s lidským genomem. Některé nevýhody plasmidových vektorů překonávají vektory na bázi bakteriofágů, tzv. fágové vektory. Nejčastěji se fágové vektory odvozují od bakteriofága λ. Bakteriofág λ replikuje svůj genom v hostitelské buňce dvěma způsoby: 1) První způsob začíná přichycením fága na bakteriální buňku, po kterém následuje injekce fágové DNA dovnitř buňky a dochází k replikaci jeho DNA za využití replikačního aparátu hostitele. Replikovaná DNA se pak obalí kapsidovými proteiny, dojde k destrukci hostitelské buňky a uvolnění nových fágových částic do vnějšího prostředí. Tomuto způsobu množení fága říkáme lytický cyklus. 2) Druhý způsob začíná stejně, ale namísto replikace a tvorby nových virových částic se fágová DNA začlení místně-specifickou rekombinací do bakteriální DNA. Stává se tzv. profágem. Hostitelská buňka v tomto případě nezaniká, ale žije dál a množí se, čímž současně množí i fágovou DNA. Proces začlenění fágové DNA do hostitelského genomu a jeho replikaci ve formě profága označujeme jako lyzogenizaci. Změnou podmínek může dojít k opětovnému vyčlenění profága a spuštění lytického cyklu. Vektory odvozené od bakteriofága λ jsou oproti divokému typu modifikovány. Mají neesenciální část genomu odstraněnu nebo nahrazenu úsekem DNA, který je ve vhodném okamžiku nahrazen klonovaným úsekem. Délka úseku, který je možno u fága nahradit, představuje jeho klonovací kapacitu fága, ta se pohybuje mezi kbp. Další modifikace spočívají ve změně počtu a uspořádání

27 restrikčních míst, případně přidání reportérových genů. Po otevření fágové DNA v restrikčním místě je do tohoto vložen klonovaný úsek, podobně jako se to děje v případě plasmidových vektorů. Kromě toho lze vzniklou rekombinantní DNA opatřit proteinovým obalem z proteinů kapsidy (tzv. sbalování in vitro - in vitro packaging), takže se DNA dostane do recipientní buňky přímo standardní fágovou injekcí. V tomto případě není třeba provádět transformaci, čímž se zvýší účinnost celého procesu. Jiným typem, často používam, jsou vektory odvozené od vláknitého bakteriofága M13, který obsahuje v některých fázích svého replikačního cyklu jednořetězcovou ssdna. Výhodou těchto vektorů je to, že umožňují získat jak dsdna pro restrikční štěpení a klonování, tak ssdna formy vhodné pro sekvenování či řízenou mutagenezi. Při klonování DNA fragmentů do těchto vektorů se pracuje s dsdna. Uvnitř buněk E. coli je replikativní dsdna vláknitých bakteriofágů replikována za vzniku jak dsdna, tak ssdna, vzniklé podle jednoho matricového řetězce. Jednořetězcové ssdna jsou inkorporovány do bakteriofágových částic a opouštějí buňky (pokud je nelyzují). Centrifugací kultury infikovaných buněk lze tedy získat supematant s bakteriofágy obsahujícími pouze jeden řetězec DNA. Mezi běžně používané vektory založené na bázi vláknitých bakteriofágů patří např. M13mpI8, což je genom bakteriofága M13, do nějž byl naklonován gen lacz-α s polyklonovacím místem pro vložení inzertu. V tomto případě je možné monitorovat inzerční inaktivaci genu pomocí reakce s chromogenním substrátem X-gal, jak bylo popsáno v kapitole Jedním z problémů při používání vektorů tohoto typu je skutečnost, že se dsdna získává z infikovaných buněk, které nelze žádným vhodným způsobem selektovat. Druhým problémem je to, že pokud obsahují inzert delší než několik set nukleotidů, dochází při růstu na E. coli k selekci tzv. delečních mutantů. Důvodem je pravděpodobně skutečnost, že buňky infikované fágem s delším genomem rostou pomaleji než kratší, deleční mutanty. Deleční mutanty mají tedy růstovou výhodu. Kosmidy: Kosmidy jsou umělé konstrukty plasmidů a fága. Kosmidy byly zkonstruovány ke konci 70. let 20. století. Od té doby byl původní konstrukt několikrát vylepšen. Základ kosmidů tvoří plasmidové DNA, obsahující prokaryotický počátek replikace oriv, selekční znak a klonovací místo. Tato DNA nese na svých koncích tzv. sekvence cos původem z bakteriofága λ, které jsou rozpoznávány mechanismy, jež se podílejí na tvorbě proteinové kapsidy fága. Jakmile je do kosmidu vložen nový úsek DNA, je tato rekombinantní DNA opatřena proteinovým obalem a může být vnesena do buňky, kde se chová jako běžný plasmid. Důsledkem replikace kosmidu je lyze buňky a uvolnění částic, které mají zase charakter fága. Klonovací kapacita kosmidů se pohybuje kolem kbp. Díky možnosti vstoupit do buňky jako fág je u kosmidů vyřešen problém s transformací velkých molekul, problém nestability ale zůstává. Existují už i binární kosmidy (shuttle cosmids), které jsou replikovány jak v prokaryotické, tak savčí buňce, protože nesou počátek replikace oriv savčího viru SV40 a selekční znak pro savčí buňky.

Zdrojem je mrna. mrna. zpětná transkriptáza. jednořetězcová DNA. DNA polymeráza. cdna

Zdrojem je mrna. mrna. zpětná transkriptáza. jednořetězcová DNA. DNA polymeráza. cdna Obsah přednášky 1) Klonování složených eukaryotických genů 2) Úprava rekombinantních genů 3) Produkce rekombinantních proteinů v expresních systémech 4) Promotory 5) Vektory 6) Reportérové geny Zdrojem

Více

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)

Více

Organismy. Látky. Bakterie drobné, okem neviditelné, některé jsou původci nemocí, většina z nich je však velmi užitečná a v přírodě potřebná

Organismy. Látky. Bakterie drobné, okem neviditelné, některé jsou původci nemocí, většina z nich je však velmi užitečná a v přírodě potřebná Organismy Všechny živé tvory dohromady nazýváme živé organismy (zkráceně "organismy") Živé organismy můžeme roztřídit na čtyři hlavní skupiny: Bakterie drobné, okem neviditelné, některé jsou původci nemocí,

Více

-1- N á v r h ČÁST PRVNÍ OBECNÁ USTANOVENÍ. 1 Předmět úpravy

-1- N á v r h ČÁST PRVNÍ OBECNÁ USTANOVENÍ. 1 Předmět úpravy -1- I I. N á v r h VYHLÁŠKY ze dne 2009 o účetních záznamech v technické formě vybraných účetních jednotek a jejich předávání do centrálního systému účetních informací státu a o požadavcích na technické

Více

účetních informací státu při přenosu účetního záznamu,

účetních informací státu při přenosu účetního záznamu, Strana 6230 Sbírka zákonů č. 383 / 2009 Částka 124 383 VYHLÁŠKA ze dne 27. října 2009 o účetních záznamech v technické formě vybraných účetních jednotek a jejich předávání do centrálního systému účetních

Více

209/2004 Sb. VYHLÁŠKA ze dne 15. dubna 2004. o bližších podmínkách nakládání s geneticky modifikovanými organismy a genetickými produkty

209/2004 Sb. VYHLÁŠKA ze dne 15. dubna 2004. o bližších podmínkách nakládání s geneticky modifikovanými organismy a genetickými produkty 209/2004 Sb. VYHLÁŠKA ze dne 15. dubna 2004 o bližších podmínkách nakládání s geneticky modifikovanými organismy a genetickými produkty Změna: 86/2006 Sb., kterou se mění vyhláška č. 209/2004 Sb., Změna:

Více

Klonování DNA a fyzikální mapování genomu

Klonování DNA a fyzikální mapování genomu Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální

Více

ZADÁVACÍ DOKUMENTACE

ZADÁVACÍ DOKUMENTACE Příloha č. 7 ZADÁVACÍ DOKUMENTACE pro veřejnou zakázku na stavební práce mimo režim zákona o veřejných zakázkách č. 137/2006 Sb., o veřejných zakázkách v platném znění, a dle Závazných pokynů pro žadatele

Více

BIOKATALYZÁTORY I. ENZYMY

BIOKATALYZÁTORY I. ENZYMY BIOKATALYZÁTORY I. Obecné pojmy - opakování: Katalyzátory látky, které ovlivňují průběh katalyzované reakce a samy se přitom nemění. Dělíme je na: pozitivní (aktivátory) urychlující reakce negativní (inhibitory)

Více

Vydání občanského průkazu

Vydání občanského průkazu Vydání občanského průkazu 01. Identifikační kód 02. Kód 03. Pojmenování (název) životní situace Vydání občanského průkazu 04. Základní informace k životní situaci Občanský průkaz je povinen mít občan,

Více

Model mitózy Kat. číslo 103.7491

Model mitózy Kat. číslo 103.7491 Model mitózy Kat. číslo 103.7491 Mitóza Mitóza, nazývaná také nepřímé jaderné dělení nebo ekvační dělení, je nejvíce rozšířená forma rozmnožování buněk. Buňka (mateřská buňka) se přitom rozdělí na 2 dceřiné

Více

Příloha č. 54. Specifikace hromadné aktualizace SMS-KLAS

Příloha č. 54. Specifikace hromadné aktualizace SMS-KLAS Název projektu: Redesign Statistického informačního systému v návaznosti na zavádění egovernmentu v ČR Příjemce: Česká republika Český statistický úřad Registrační číslo projektu: CZ.1.06/1.1.00/07.06396

Více

120/2002 Sb. ZÁKON. ze dne 8. března 2002. o podmínkách uvádění biocidních přípravků a účinných látek na trh a o změně některých souvisejících zákonů

120/2002 Sb. ZÁKON. ze dne 8. března 2002. o podmínkách uvádění biocidních přípravků a účinných látek na trh a o změně některých souvisejících zákonů 120/2002 Sb. ZÁKON ze dne 8. března 2002 o podmínkách uvádění biocidních přípravků a účinných látek na trh a o změně některých souvisejících zákonů Změna: 120/2002 Sb. (část) Změna: 120/2002 Sb. (část)

Více

STUDNY a jejich právní náležitosti.

STUDNY a jejich právní náležitosti. STUDNY a jejich právní náležitosti. V současné době je toto téma velmi aktuální, a to na základě mediální kampaně, která však je, jako obvykle, silně poznamenána povrchními znalostmi a řadou nepřesností,

Více

S t r á n k a 1 I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

S t r á n k a 1 I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í S t r á n k a 1 Zadavatel: Centrum pro zjišťování výsledků vzdělávání, příspěvková organizace Jeruzalémská 957/12 110 06 Praha 1 IČ: 72029455 DIČ: CZ72029455 Zastoupený: Mgr. Martinem Machem, ředitelem

Více

OBEC HORNÍ MĚSTO Spisový řád

OBEC HORNÍ MĚSTO Spisový řád OBEC HORNÍ MĚSTO Spisový řád Obsah: 1. Úvodní ustanovení 2. Příjem dokumentů 3. Evidence dokumentů 4. Vyřizování dokumentů 5. Podepisování dokumentů a užití razítek 6. Odesílání dokumentů 7. Ukládání dokumentů

Více

Veřejnoprávní smlouva o poskytnutí investiční dotace č. 1/2016

Veřejnoprávní smlouva o poskytnutí investiční dotace č. 1/2016 Veřejnoprávní smlouva o poskytnutí investiční dotace č. 1/2016 Zastupitelstvo města Nová Role dle usnesení č. 10/02-4) ze dne 30. 12. 2015 a dle 85 odst. c zákona 128/2000 Sb., o obcích, rozhodlo o přidělení

Více

Zásady pro prodej bytových domů Městské části Praha 5

Zásady pro prodej bytových domů Městské části Praha 5 Zásady pro prodej bytových domů Městské části Praha 5 Základní pojmy Pro účely těchto Zásad pro prodej nemovitostí (pozemků, jejichž součástí jsou bytové domy) Městské části Praha 5 (dále jen Zásady )

Více

Podrobný postup pro doplnění Žádosti o dotaci prostřednictvím Portálu Farmáře. 1. kolo příjmu žádostí Programu rozvoje venkova (2014 2020)

Podrobný postup pro doplnění Žádosti o dotaci prostřednictvím Portálu Farmáře. 1. kolo příjmu žádostí Programu rozvoje venkova (2014 2020) Podrobný postup pro doplnění Žádosti o dotaci prostřednictvím Portálu Farmáře 1. kolo příjmu žádostí Programu rozvoje venkova (2014 2020) V tomto dokumentu je uveden podrobný postup doplnění Žádosti o

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

Pardubický kraj Komenského náměstí 125, Pardubice 532 11. SPŠE a VOŠ Pardubice-rekonstrukce elektroinstalace a pomocných slaboproudých sítí

Pardubický kraj Komenského náměstí 125, Pardubice 532 11. SPŠE a VOŠ Pardubice-rekonstrukce elektroinstalace a pomocných slaboproudých sítí Pardubický kraj Komenského náměstí 125, Pardubice 532 11 Veřejná zakázka SPŠE a VOŠ Pardubice-rekonstrukce elektroinstalace a pomocných slaboproudých sítí Zadávací dokumentace 1. Obchodní podmínky, platební

Více

Rychnov nad Kněžnou. Trutnov VÝVOJ BYTOVÉ VÝSTAVBY V KRÁLOVÉHRADECKÉM KRAJI V LETECH 1998 AŽ 2007 29

Rychnov nad Kněžnou. Trutnov VÝVOJ BYTOVÉ VÝSTAVBY V KRÁLOVÉHRADECKÉM KRAJI V LETECH 1998 AŽ 2007 29 3. Bytová výstavba v okresech Královéhradeckého kraje podle fází (bez promítnutí územních změn) Ekonomická transformace zasáhla bytovou výstavbu velmi negativně, v 1. polovině 90. let nastal rapidní pokles

Více

Společné stanovisko GFŘ a MZ ke změně sazeb DPH na zdravotnické prostředky od 1. 1. 2013

Společné stanovisko GFŘ a MZ ke změně sazeb DPH na zdravotnické prostředky od 1. 1. 2013 Společné stanovisko GFŘ a MZ ke změně sazeb DPH na zdravotnické prostředky od 1. 1. 2013 Od 1. 1. 2013 došlo k novelizaci zákona č. 235/2004 Sb., o dani z přidané hodnoty (dále jen zákon o DPH ), mj. i

Více

Seriál: Management projektů 7. rámcového programu

Seriál: Management projektů 7. rámcového programu Seriál: Management projektů 7. rámcového programu Část 4 Podpis Konsorciální smlouvy V předchozím čísle seriálu o Managementu projektů 7. rámcového programu pro výzkum, vývoj a demonstrace (7.RP) byl popsán

Více

V Černošicích dne 30. 9. 2014. Výzva k podání nabídky na veřejnou zakázku malého rozsahu s názvem: Nákup a pokládka koberců OŽÚ.

V Černošicích dne 30. 9. 2014. Výzva k podání nabídky na veřejnou zakázku malého rozsahu s názvem: Nákup a pokládka koberců OŽÚ. Město Černošice IČ: 00241121 Riegrova 1209 252 28 Černošice V Černošicích dne 30. 9. 2014 Výzva k podání nabídky na veřejnou zakázku malého rozsahu s názvem: Nákup a pokládka koberců OŽÚ. Město Černošice

Více

DAŇ Z PŘÍJMŮ FYZICKÝCH OSOB

DAŇ Z PŘÍJMŮ FYZICKÝCH OSOB DAŇ Z PŘÍJMŮ FYZICKÝCH OSOB Předmět daně z příjmů fyzických osob Fyzická osoba zdaňuje všechny své příjmy jedinou daní a přitom tyto příjmy mohou mít různý charakter. Příjmy fyzických osob se rozdělují

Více

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Aplikační list Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Ref: 15032007 KM Obsah Vyvažování v jedné rovině bez měření fáze signálu...3 Nevýhody vyvažování jednoduchými přístroji...3

Více

STANOVISKO č. STAN/1/2006 ze dne 8. 2. 2006

STANOVISKO č. STAN/1/2006 ze dne 8. 2. 2006 STANOVISKO č. STAN/1/2006 ze dne 8. 2. 2006 Churning Churning je neetická praktika spočívající v nadměrném obchodování na účtu zákazníka obchodníka s cennými papíry. Negativní následek pro zákazníka spočívá

Více

PŘÍLOHA 1.6 SMLOUVY O PŘÍSTUPU K VEŘEJNÉ PEVNÉ KOMUNIKAČNÍ SÍTI LOGISTIKA KONCOVÝCH ZAŘÍZENÍ

PŘÍLOHA 1.6 SMLOUVY O PŘÍSTUPU K VEŘEJNÉ PEVNÉ KOMUNIKAČNÍ SÍTI LOGISTIKA KONCOVÝCH ZAŘÍZENÍ PŘÍLOHA 1.6 SMLOUVY O PŘÍSTUPU K VEŘEJNÉ PEVNÉ KOMUNIKAČNÍ SÍTI LOGISTIKA KONCOVÝCH ZAŘÍZENÍ Obsah 1 Koncová zařízení... 3 2 Charakteristika typů služeb logistika KZ Dodání KZ, Instalace KZ... 3 3 Další

Více

Pracovní návrh. VYHLÁŠKA Ministerstva práce a sociálních věcí. ze dne.2013. o hygienických požadavcích na prostory a provoz dětské skupiny do 12 dětí

Pracovní návrh. VYHLÁŠKA Ministerstva práce a sociálních věcí. ze dne.2013. o hygienických požadavcích na prostory a provoz dětské skupiny do 12 dětí Pracovní návrh VYHLÁŠKA Ministerstva práce a sociálních věcí ze dne.2013 o hygienických požadavcích na prostory a provoz dětské skupiny do 12 dětí Ministerstvo práce a sociálních věcí stanoví podle 26

Více

KAPITOLA 6.3 POŽADAVKY NA KONSTRUKCI A ZKOUŠENÍ OBALŮ PRO INFEKČNÍ LÁTKY KATEGORIE A TŘÍDY 6.2

KAPITOLA 6.3 POŽADAVKY NA KONSTRUKCI A ZKOUŠENÍ OBALŮ PRO INFEKČNÍ LÁTKY KATEGORIE A TŘÍDY 6.2 KAPITOLA 6.3 POŽADAVKY NA KONSTRUKCI A ZKOUŠENÍ OBALŮ PRO INFEKČNÍ LÁTKY KATEGORIE A TŘÍDY 6.2 POZNÁMKA: Požadavky této kapitoly neplatí pro obaly, které budou používány dle 4.1.4.1, pokynu pro balení

Více

Klonování gen a genové inženýrství

Klonování gen a genové inženýrství Klonování gen a genové inženýrství Genové inženýrství užite né termíny Rekombinantní DNA = DNA, ve které se nachází geny nejmén ze dvou zdroj, asto ze dvou zných druh organism Biotechnologie = manipulace

Více

OVĚŘENÍ ELEKTRICKÉHO ZAŘÍZENÍ STROJŮ NOVĚ UVÁDĚNÝCH DO PROVOZU PODLE ČSN/STN EN 60204-1 Ed. 2

OVĚŘENÍ ELEKTRICKÉHO ZAŘÍZENÍ STROJŮ NOVĚ UVÁDĚNÝCH DO PROVOZU PODLE ČSN/STN EN 60204-1 Ed. 2 OVĚŘENÍ ELEKTRICKÉHO ZAŘÍZENÍ STROJŮ NOVĚ UVÁDĚNÝCH DO PROVOZU PODLE ČSN/STN EN 60204-1 Ed. 2 Ing. Leoš KOUPÝ, ILLKO, s. r. o. Masarykova 2226, 678 01 Blansko ČR, www.illko.cz, l.koupy@illko.cz ÚVOD Stroj

Více

METODICKÝ POKYN NÁRODNÍHO ORGÁNU

METODICKÝ POKYN NÁRODNÍHO ORGÁNU Ministerstvo pro místní rozvoj METODICKÝ POKYN NÁRODNÍHO ORGÁNU Program přeshraniční spolupráce Cíl 3 Česká republika Svobodný stát Bavorsko 2007-2013 MP číslo: 2/Příručka pro české žadatele, 5. vydání

Více

Všeobecné obchodní podmínky portálu iautodíly společnosti CZ-Eko s.r.o.

Všeobecné obchodní podmínky portálu iautodíly společnosti CZ-Eko s.r.o. Všeobecné obchodní podmínky portálu iautodíly společnosti CZ-Eko s.r.o. I. Úvodní ustanovení 1.1 Tyto všeobecné obchodní podmínky (dále jen VOP ) tvoří nedílnou součást každé kupní smlouvy, jejímž předmětem

Více

Uplatňování nařízení o vzájemném uznávání u předmětů z drahých kovů

Uplatňování nařízení o vzájemném uznávání u předmětů z drahých kovů EVROPSKÁ KOMISE GENERÁLNÍ ŘEDITELSTVÍ PRO PODNIKY A PRŮMYSL Pokyny 1 V Bruselu dne 1. února 2010 - Uplatňování nařízení o vzájemném uznávání u předmětů z drahých kovů 1. ÚVOD Účelem tohoto dokumentu je

Více

Výzva k podání nabídek (zadávací dokumentace)

Výzva k podání nabídek (zadávací dokumentace) Výzva k podání nabídek (zadávací dokumentace) 1.Číslo zakázky 2.Název programu: 3.Registrační číslo projektu 4.Název projektu: 5.Název zakázky: Operační program Vzdělání pro konkurenceschopnost CZ.1.07/1.1.07/02.0129

Více

Pokyny k vyplnění Průběžné zprávy

Pokyny k vyplnění Průběžné zprávy Pokyny k vyplnění Průběžné zprávy Verze: 2 Platná od: 15. 1. 2013 Doplnění nebo úpravy v pokynech jsou odlišeny červenou barvou písma. Termín pro podání elektronické verze průběžné zprávy obou částí je

Více

obecně závazné vyhlášky o vedení technické mapy obce A. OBECNÁ ČÁST Vysvětlení navrhované právní úpravy a jejích hlavních principů

obecně závazné vyhlášky o vedení technické mapy obce A. OBECNÁ ČÁST Vysvětlení navrhované právní úpravy a jejích hlavních principů O D Ů V O D N Ě N Í obecně závazné vyhlášky o vedení technické mapy obce A. OBECNÁ ČÁST Vysvětlení navrhované právní úpravy a jejích hlavních principů 1. Definice technické mapy Technickou mapou obce (TMO)

Více

Výzva pro předložení nabídek k veřejné zakázce malého rozsahu s názvem Výměna lina

Výzva pro předložení nabídek k veřejné zakázce malého rozsahu s názvem Výměna lina VÝCHOVNÝ ÚSTAV A ŠKOLNÍ JÍDELNA NOVÁ ROLE Školní 9, Nová Role, PSČ: 362 25, Tel: 353 851 179 Dodavatel: Výzva pro předložení nabídek k veřejné zakázce malého rozsahu s názvem Výměna lina 1. Zadavatel Výchovný

Více

Vyřizuje: Tel.: Fax: E-mail: Datum: 6.8.2012. Oznámení o návrhu stanovení místní úpravy provozu na místní komunikaci a silnici

Vyřizuje: Tel.: Fax: E-mail: Datum: 6.8.2012. Oznámení o návrhu stanovení místní úpravy provozu na místní komunikaci a silnici M Ě S T S K Ý Ú Ř A D B L A N S K O ODBOR STAVEBNÍ ÚŘAD, oddělení silničního hospodářství nám. Svobody 32/3, 678 24 Blansko Pracoviště: nám. Republiky 1316/1, 67801 Blansko Město Blansko, nám. Svobody

Více

( pracovní podklad pro jednání dne 3.6. 2011 na MMR)

( pracovní podklad pro jednání dne 3.6. 2011 na MMR) Vrty pro využití energetického potenciálu podzemních vod a horninového prostředí Metodické doporučení pro stavební a vodoprávní úřady ( pracovní podklad pro jednání dne 3.6. 2011 na MMR) Zpracovatel: Ministerstvo

Více

Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích

Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích Změny 1 vyhláška č. 294/2015 Sb. Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích a která s účinností od 1. ledna 2016 nahradí vyhlášku č. 30/2001 Sb. Umístění svislých

Více

Provozní deník jakosti vody

Provozní deník jakosti vody Provozní deník jakosti vody Pro zdroje tepla z hliníku Pro odbornou firmu Logamax plus GB162 Logano plus GB202 Logano plus GB312 Logano plus GB402 Před montáží a údržbou pečlivě pročtěte. 6 720 642 944

Více

LETTER 3/2016 NEWSLETTER 3/2016. Novela zákona o významné tržní síle

LETTER 3/2016 NEWSLETTER 3/2016. Novela zákona o významné tržní síle LETTER 3/2016 NEWSLETTER 3/2016 Novela zákona o významné tržní síle NOVELA ZÁKONA O VÝZNAMNÉ TRŽNÍ SÍLE PŘI PRODEJI ZEMĚDĚLSKÝCH A POTRAVINÁŘSKÝCH PRODUKTŮ A JEJÍM ZNEUŽITÍ Obsah: I. Úvodem II. Předchozí

Více

Pokyny České pošty pro označování Doporučených zásilek čárovými kódy

Pokyny České pošty pro označování Doporučených zásilek čárovými kódy Pokyny České pošty pro označování Doporučených zásilek čárovými kódy Zpracoval Česká pošta, s.p. Datum vytvoření 14.04.2010 Datum aktualizace 17.04.2014 Počet stran 20 Počet příloh 0 Obsah dokumentu 1.

Více

Střídavý proud v životě (energetika)

Střídavý proud v životě (energetika) Střídavý prod v životě (energetika) Přeměna energie se sktečňje v elektrárnách. Zde pracjí výkonné generátory střídavého napětí alternátory. V energetice se vyžívá střídavé napětí o frekvenci 50 Hz, které

Více

BÍLKOVINY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 2. 2013. Ročník: devátý

BÍLKOVINY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 2. 2013. Ročník: devátý BÍLKOVINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 15. 2. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí s oblastmi chemického

Více

STÍRÁNÍ NEČISTOT, OLEJŮ A EMULZÍ Z KOVOVÝCH PÁSŮ VE VÁLCOVNÁCH ZA STUDENA

STÍRÁNÍ NEČISTOT, OLEJŮ A EMULZÍ Z KOVOVÝCH PÁSŮ VE VÁLCOVNÁCH ZA STUDENA STÍRÁNÍ NEČISTOT, OLEJŮ A EMULZÍ Z KOVOVÝCH PÁSŮ VE VÁLCOVNÁCH ZA STUDENA ÚVOD Při válcování za studena je povrch vyválcovaného plechu znečištěn oleji či emulzemi, popř. dalšími nečistotami. Nežádoucí

Více

170/2010 Sb. VYHLÁŠKA. ze dne 21. května 2010

170/2010 Sb. VYHLÁŠKA. ze dne 21. května 2010 170/2010 Sb. VYHLÁŠKA ze dne 21. května 2010 o bateriích a akumulátorech a o změně vyhlášky č. 383/2001 Sb., o podrobnostech nakládání s odpady, ve znění pozdějších předpisů Ministerstvo životního prostředí

Více

Pokyn D - 293. Sdělení Ministerstva financí k rozsahu dokumentace způsobu tvorby cen mezi spojenými osobami

Pokyn D - 293. Sdělení Ministerstva financí k rozsahu dokumentace způsobu tvorby cen mezi spojenými osobami PŘEVZATO Z MINISTERSTVA FINANCÍ ČESKÉ REPUBLIKY Ministerstvo financí Odbor 39 Č.j.: 39/116 682/2005-393 Referent: Mgr. Lucie Vojáčková, tel. 257 044 157 Ing. Michal Roháček, tel. 257 044 162 Pokyn D -

Více

ÚŘAD PRO OCHRANU HOSPODÁŘSKÉ SOUTĚŽE ROZHODNUTÍ. Č. j.: ÚOHS-S0740/2015/KS-40547/2015/840/MWi Brno 23. 11. 2015

ÚŘAD PRO OCHRANU HOSPODÁŘSKÉ SOUTĚŽE ROZHODNUTÍ. Č. j.: ÚOHS-S0740/2015/KS-40547/2015/840/MWi Brno 23. 11. 2015 *UOHSX007UAGF* UOHSX007UAGF ÚŘAD PRO OCHRANU HOSPODÁŘSKÉ SOUTĚŽE ROZHODNUTÍ Č. j.: ÚOHS-S0740/2015/KS-40547/2015/840/MWi Brno 23. 11. 2015 Úřad pro ochranu hospodářské soutěže ve správním řízení sp. zn.

Více

Všeobecné obchodní podmínky Bakker Holland CZ s.r.o.

Všeobecné obchodní podmínky Bakker Holland CZ s.r.o. Všeobecné obchodní podmínky Bakker Holland CZ s.r.o. Článek 1 - Všeobecné informace 1.1 Tyto všeobecné obchodní podmínky se vztahují na používání webové stránky, tištěných katalogů a dalších publikací

Více

ŘÁD UPRAVUJÍCÍ POSTUP DO DALŠÍHO ROČNÍKU

ŘÁD UPRAVUJÍCÍ POSTUP DO DALŠÍHO ROČNÍKU 1. Oblast použití Řád upravující postup do dalšího ročníku ŘÁD UPRAVUJÍCÍ POSTUP DO DALŠÍHO ROČNÍKU na Německé škole v Praze 1.1. Ve školském systému s třináctiletým studijním cyklem zahrnuje nižší stupeň

Více

Celková částka pro tuto výzvu: 127 000 000 Kč v rozdělení dle tabulky č.1

Celková částka pro tuto výzvu: 127 000 000 Kč v rozdělení dle tabulky č.1 Ministerstvo práce a sociálních věcí ČR, odbor řízení pomoci z Evropského sociálního fondu, vyhlašuje výzvu k předkládání žádostí o finanční podporu v rámci Programu Iniciativy Společenství EQUAL. Identifikace

Více

A. PODÍL JEDNOTLIVÝCH DRUHŮ DOPRAVY NA DĚLBĚ PŘEPRAVNÍ PRÁCE A VLIV DÉLKY VYKONANÉ CESTY NA POUŽITÍ DOPRAVNÍHO PROSTŘEDKU

A. PODÍL JEDNOTLIVÝCH DRUHŮ DOPRAVY NA DĚLBĚ PŘEPRAVNÍ PRÁCE A VLIV DÉLKY VYKONANÉ CESTY NA POUŽITÍ DOPRAVNÍHO PROSTŘEDKU A. PODÍL JEDNOTLIVÝCH DRUHŮ DOPRAVY NA DĚLBĚ PŘEPRAVNÍ PRÁCE A VLIV DÉLKY VYKONANÉ CESTY NA POUŽITÍ DOPRAVNÍHO PROSTŘEDKU Ing. Jiří Čarský, Ph.D. (Duben 2007) Komplexní přehled o podílu jednotlivých druhů

Více

POKYNY Č. 45. Část I Zápis nové stavby jako samostatné věci

POKYNY Č. 45. Část I Zápis nové stavby jako samostatné věci Český úřad zeměměřický a katastrální POKYNY Č. 45 Českého úřadu zeměměřického a katastrálního ze dne 20.12.2013 č.j. ČÚZK 25639/2013-22 pro zápis nové stavby, zápis vlastnického práva k nové stavbě a zápis

Více

9. funkční období. (Navazuje na sněmovní tisk č. 590 z 6. volebního období PS PČR) Lhůta pro projednání Senátem uplyne 1.

9. funkční období. (Navazuje na sněmovní tisk č. 590 z 6. volebního období PS PČR) Lhůta pro projednání Senátem uplyne 1. 16 9. funkční období 16 Návrh zákona, kterým se mění zákon č. 378/2007 Sb., o léčivech a o změnách některých souvisejících zákonů (zákon o léčivech), ve znění pozdějších předpisů, zákon č. 167/1998 Sb.,

Více

VYR-32 POKYNY PRO SPRÁVNOU VÝROBNÍ PRAXI - DOPLNĚK 6

VYR-32 POKYNY PRO SPRÁVNOU VÝROBNÍ PRAXI - DOPLNĚK 6 VYR-32 POKYNY PRO SPRÁVNOU VÝROBNÍ PRAXI - DOPLNĚK 6 Platnost od 1.1.2004 VÝROBA PLYNŮ PRO MEDICINÁLNÍ ÚČELY VYDÁNÍ PROSINEC 2003 1. Zásady Tento doplněk se zabývá průmyslovou výrobou medicinálních plynů,

Více

Ovoce do škol Příručka pro žadatele

Ovoce do škol Příručka pro žadatele Ve smečkách 33, 110 00 Praha 1 tel.: 222 871 556 fax: 296 326 111 e-mail: info@szif.cz Ovoce do škol Příručka pro žadatele OBSAH 1. Základní informace 2. Schválení pro dodávání produktů 3. Stanovení limitu

Více

PŘÍRUČKA K PŘEDKLÁDÁNÍ PRŮBĚŽNÝCH ZPRÁV, ZPRÁV O ČERPÁNÍ ROZPOČTU A ZÁVĚREČNÝCH ZPRÁV PROJEKTŮ PODPOŘENÝCH Z PROGRAMU BETA

PŘÍRUČKA K PŘEDKLÁDÁNÍ PRŮBĚŽNÝCH ZPRÁV, ZPRÁV O ČERPÁNÍ ROZPOČTU A ZÁVĚREČNÝCH ZPRÁV PROJEKTŮ PODPOŘENÝCH Z PROGRAMU BETA č. j.: TACR/14666/2014 PŘÍRUČKA K PŘEDKLÁDÁNÍ PRŮBĚŽNÝCH ZPRÁV, ZPRÁV O ČERPÁNÍ ROZPOČTU A ZÁVĚREČNÝCH ZPRÁV PROJEKTŮ PODPOŘENÝCH Z PROGRAMU BETA Schválil/a: Lenka Pilátová, vedoucí oddělení realizace

Více

Návod k montáži a obsluze RJ 10

Návod k montáži a obsluze RJ 10 Návod k montáži a obsluze RJ 10 VŠEOBECNÉ INFORMACE Je striktně zakázané kopírovat nebo rozmnožovat tento Návod k montáži a obsluze, bez písemného souhlasu výrobce. Překlad do dalších jazyků celku nebo

Více

Napájení požárně bezpečnostních zařízení a vypínání elektrické energie při požárech a mimořádných událostech. Ing. Karel Zajíček

Napájení požárně bezpečnostních zařízení a vypínání elektrické energie při požárech a mimořádných událostech. Ing. Karel Zajíček Napájení požárně bezpečnostních zařízení a vypínání elektrické energie při požárech a mimořádných událostech Ing. Karel Zajíček Vyhláška č. 23/ 2008 Sb. o technických podmínkách požární ochrany staveb.

Více

1. kolo soutěže probíhá: od 19. 11. 2014 07:00:00 hod do 24. 12.2014 23:59:59 hod

1. kolo soutěže probíhá: od 19. 11. 2014 07:00:00 hod do 24. 12.2014 23:59:59 hod Pravidla soutěže Vyhrajte sadu DVD Disney Účelem tohoto dokumentu je úplná a jasná úprava pravidel soutěže Vyhrajte sadu DVD Disney (dále jen soutěž ). Tato pravidla jsou jediným dokumentem, který závazně

Více

KOMISE EVROPSKÝCH SPOLEČENSTVÍ. Návrh ROZHODNUTÍ RADY

KOMISE EVROPSKÝCH SPOLEČENSTVÍ. Návrh ROZHODNUTÍ RADY KOMISE EVROPSKÝCH SPOLEČENSTVÍ V Bruselu dne 18.12.2007 KOM(2007) 813 v konečném znění Návrh ROZHODNUTÍ RADY o povolení uvedení krmiv vyrobených z geneticky modifikovaných brambor EH92-527-1 (BPS-25271-9)

Více

VÝZVA K PODÁNÍ NABÍDKY

VÝZVA K PODÁNÍ NABÍDKY VÝZVA K PODÁNÍ NABÍDKY Výzva k podání nabídky a prokázání kvalifikace pro veřejnou zakázku: KOUTEX 2014 (recyklace textilního odpadu) - zadávanou jako zakázku malého rozsahu nespadající pod aplikaci zákona

Více

Směrnice pro oběh účetních dokladů Obce Batňovice

Směrnice pro oběh účetních dokladů Obce Batňovice Směrnice pro oběh účetních dokladů Obce Batňovice 1. ÚVOD 1.1 Tato směrnice stanovuje základní zásady pro nařizování, schvalování, ověřování a přezkušování přípustnosti hospodářských a účetních operací

Více

Vážení klienti, Upozorníme i na praktické důsledky nesjednání pravidelného pracoviště při poskytování cestovních náhrad. TaxVision, s.r.o.

Vážení klienti, Upozorníme i na praktické důsledky nesjednání pravidelného pracoviště při poskytování cestovních náhrad. TaxVision, s.r.o. Vážení klienti, v tomto čísle Informačního občasníku připomeneme, jak může být v pracovní smlouvě se zaměstnancem sjednáno místo výkonu práce, příp. pravidelné pracoviště, a jaké praktické důsledky to

Více

MĚSTO BENEŠOV. Rada města Benešov. Vnitřní předpis č. 16/2016. Směrnice k zadávání veřejných zakázek malého rozsahu. Čl. 1. Předmět úpravy a působnost

MĚSTO BENEŠOV. Rada města Benešov. Vnitřní předpis č. 16/2016. Směrnice k zadávání veřejných zakázek malého rozsahu. Čl. 1. Předmět úpravy a působnost MĚSTO BENEŠOV Rada města Benešov Vnitřní předpis č. 16/2016 Směrnice k zadávání veřejných zakázek malého rozsahu I. Obecná ustanovení Čl. 1 Předmět úpravy a působnost 1) Tato směrnice upravuje závazná

Více

POKYNY. k vyplnění přiznání k dani z příjmů fyzických osob za zdaňovací období (kalendářní rok) 2012

POKYNY. k vyplnění přiznání k dani z příjmů fyzických osob za zdaňovací období (kalendářní rok) 2012 dz_12dpfo5405_19_pok.pdf - Adobe Acrobat Professional POKYNY k vyplnění přiznání k dani z příjmů fyzických osob za zdaňovací období (kalendářní rok) 2012 Pokyny k vyplnění přiznání k dani z příjmů fyzických

Více

statutární město Děčín podlimitní veřejná zakázka na služby: Tlumočení a překlady dokumentů

statutární město Děčín podlimitní veřejná zakázka na služby: Tlumočení a překlady dokumentů statutární město Děčín Zadávací dokumentace podlimitní veřejná zakázka na služby: Tlumočení a překlady dokumentů vyhlášená v otevřeném řízení dle zákona č. 137/2006 Sb., o veřejných zakázkách, ve znění

Více

5.6.6.3. Metody hodnocení rizik

5.6.6.3. Metody hodnocení rizik 5.6.6.3. Metody hodnocení rizik http://www.guard7.cz/lexikon/lexikon-bozp/identifikace-nebezpeci-ahodnoceni-rizik/metody-hodnoceni-rizik Pro hodnocení a analýzu rizik se používají různé metody. Výběr metody

Více

Vzor pro poskytnutí dotace na vodohospodářskou infrastrukturu

Vzor pro poskytnutí dotace na vodohospodářskou infrastrukturu Vzor pro poskytnutí dotace na vodohospodářskou infrastrukturu evidenční číslo smlouvy Poskytovatele: S-./ /. Veřejnoprávní smlouva o poskytnutí individuální účelové dotace z rozpočtu Středočeského kraje

Více

Podrobný postup pro vygenerování a zaslání Žádosti o podporu a příloh OPR přes Portál farmáře

Podrobný postup pro vygenerování a zaslání Žádosti o podporu a příloh OPR přes Portál farmáře Podrobný postup pro vygenerování a zaslání Žádosti o podporu a příloh OPR přes Portál farmáře 3. a 4. výzva příjmu žádostí Operačního programu Rybářství (2014 2020) V následujícím dokumentu je uveden podrobný

Více

Sbírka zákonů ČR Předpis č. 27/2016 Sb.

Sbírka zákonů ČR Předpis č. 27/2016 Sb. Sbírka zákonů ČR Předpis č. 27/2016 Sb. Vyhláška o vzdělávání žáků se speciálními vzdělávacími potřebami a žáků nadaných Ze dne 21.01.2016 Částka 10/2016 Účinnost od 01.09.2016 (za 184 dní) http://www.zakonyprolidi.cz/cs/2016-27

Více

29 Evidence smluv. Popis modulu. Záložka Evidence smluv

29 Evidence smluv. Popis modulu. Záložka Evidence smluv 29 Evidence smluv Uživatelský modul Evidence smluv slouží ke správě a evidenci smluv organizace s možností připojení vlastní smlouvy v elektronické podobě včetně přidělování závazků ze smluv jednotlivým

Více

Číslo smlouvy prodávajícího: I. Smluvní strany

Číslo smlouvy prodávajícího: I. Smluvní strany Příloha č. 2 výzvy Obchodní podmínky zadavatele Číslo smlouvy kupujícího: Číslo smlouvy prodávajícího: KUPNÍ SMLOUVA uzavřená níže uvedeného dne, měsíce a roku v souladu s ust. 409 a následujícími paragrafy

Více

NÁVOD K OBSLUZE PRO REGULÁTOR KOMEXTHERM STABIL 02.2 D

NÁVOD K OBSLUZE PRO REGULÁTOR KOMEXTHERM STABIL 02.2 D NÁVOD K OBSLUZE PRO REGULÁTOR KOMEXTHERM STABIL 02.2 D OBSAH: str. 1. Určení 2 2. Funkce.. 2 3. Popis.. 4 4. Přednosti 4 5. Montáž... 5 5.1 Montáž mechanická... 5 5.2 Montáž elektro 5 5.3 Montáž čidel

Více

54_2008_Sb 54/2008 VYHLÁŠKA. ze dne 6. února 2008

54_2008_Sb 54/2008 VYHLÁŠKA. ze dne 6. února 2008 54/2008 VYHLÁŠKA ze dne 6. února 2008 o způsobu předepisování léčivých přípravků, údajích uváděných na lékařském předpisu a o pravidlech používání lékařských předpisů Změna: 405/2008 Sb. Změna: 177/2010

Více

ZADÁVACÍ DOKUMENTACE

ZADÁVACÍ DOKUMENTACE ZADÁVACÍ DOKUMENTACE V JEDNACÍM ŘÍZENÍ S UVEŘEJNĚNÍM podle ust. 44 zákona č. 137/2006 Sb., o veřejných zakázkách, v platném znění (dále jen zákon ) NA PODLIMITNÍ VEŘEJNOU ZAKÁZKU NA DODÁVKY S NÁZVEM Rekonstrukce

Více

Obchodní podmínky. 1. Úvodní ustanovení. 2. Cena zboží a služeb a platební podmínky

Obchodní podmínky. 1. Úvodní ustanovení. 2. Cena zboží a služeb a platební podmínky Obchodní podmínky 1. Úvodní ustanovení 1.1 Tyto obchodní podmínky upravují v souladu s ustanovením 1751 odst. 1 zákona č. 89/2012 Sb., Občanského zákoníku (dále jen OZ ) vzájemná práva a povinnosti smluvních

Více

S M L O U V A O D Í L O. uzavřená podle ust. 2586 a násl. zákona č. 89/2012 Sb., občanského zákoníku v platném znění II.

S M L O U V A O D Í L O. uzavřená podle ust. 2586 a násl. zákona č. 89/2012 Sb., občanského zákoníku v platném znění II. S M L O U V A O D Í L O uzavřená podle ust. 2586 a násl. zákona č. 89/2012 Sb., občanského zákoníku v platném znění Čl. I. Smluvní strany Objednatel: Město Bílina Břežánská 50/4, 418 31 Bílina Zastoupení:

Více

227/2000 Sb. ZÁKON ČÁST PRVNÍ ELEKTRONICKÝ PODPIS

227/2000 Sb. ZÁKON ČÁST PRVNÍ ELEKTRONICKÝ PODPIS 227/2000 Sb. ZÁKON ze dne 29. června 2000 o elektronickém podpisu a o změně některých dalších zákonů (zákon o elektronickém podpisu) Změna: 226/2002 Sb. Změna: 517/2002 Sb. Změna: 440/2004 Sb. Změna: 635/2004

Více

Obecně závazná vyhláška města Žlutice č. 2/2011 Požární řád obce

Obecně závazná vyhláška města Žlutice č. 2/2011 Požární řád obce Obecně závazná vyhláška města č. 2/2011 Požární řád obce Zastupitelstvo města svým usnesením ZM/2011/8/11 ze dne 31. října 2011 vydává na základě 29 odst. 1 písm o) bod 1 zák. 133/1985 Sb., o požární ochraně

Více

PŘIJÍMACÍ ŘÍZENÍ. Strana

PŘIJÍMACÍ ŘÍZENÍ. Strana PŘIJÍMACÍ ŘÍZENÍ Strana Vyhledávání textu - přidržte klávesu Ctrl, kurzor umístěte na příslušný řádek a klikněte levým tlačítkem myši. 1. Právní předpisy upravující přijímací řízení ke studiu ve střední

Více

Zadávací dokumentace pro podlimitní veřejnou zakázku na dodávky

Zadávací dokumentace pro podlimitní veřejnou zakázku na dodávky Zadávací dokumentace pro podlimitní veřejnou zakázku na dodávky Zjednodušené podlimitní řízení Název zakázky: Pořízení úklidového stroje na snížení prašnosti v obci Hvozdná Zadavatel zakázky: Obec Hvozdná

Více

rové poradenství Text k modulu Kariérov Autor: PhDr. Zdena Michalová,, Ph.D

rové poradenství Text k modulu Kariérov Autor: PhDr. Zdena Michalová,, Ph.D Kariérov rové poradenství Text k modulu Kariérov rové poradenství Autor: PhDr. Zdena Michalová,, Ph.D CO JE TO KARIÉROV ROVÉ PORADENSTVÍ? Kariérové poradenství (dále KP) je systém velmi různorodě zaměřených

Více

EVROPSKÝ PARLAMENT 2014-2019. Výbor pro životní prostředí, veřejné zdraví a bezpečnost potravin NÁVRH STANOVISKA

EVROPSKÝ PARLAMENT 2014-2019. Výbor pro životní prostředí, veřejné zdraví a bezpečnost potravin NÁVRH STANOVISKA EVROPSKÝ PARLAMENT 2014-2019 Výbor pro životní prostředí, veřejné zdraví a bezpečnost potravin 4. 3. 2015 2014/0255(COD) NÁVRH STANOVISKA Výboru pro životní prostředí, veřejné zdraví a bezpečnost potravin

Více

VEŘEJNÁ VYHLÁŠKA. Oznámení o zahájení vodoprávního řízení

VEŘEJNÁ VYHLÁŠKA. Oznámení o zahájení vodoprávního řízení *KUCBX00ITEYJ* KUCBX00ITEYJ O D B O R Ž I V O T N Í H O P R O S T Ř E D Í, Z E M Ě D Ě L S T V Í A L E S N I C T V Í Čj.: KUJCK 88035/2015/OZZL/2 Sp.zn.: OZZL 87860/2015/hery datum: 1.12.2015 vyřizuje:

Více

TĚHOTENSKÉ TESTY. gynekologické vyšetření (hmatatelné změny v pochvě i děloze) imunologické těhotenské testy (provedené s pomocí moči či krve)

TĚHOTENSKÉ TESTY. gynekologické vyšetření (hmatatelné změny v pochvě i děloze) imunologické těhotenské testy (provedené s pomocí moči či krve) TĚHOTENSKÉ TESTY Téma těhotenských testů vysvětluje princip stanovení gravidity v domácím prostředí. Podává informace k jednotlivým druhům těhotenských testů, jejich citlivosti, včetně popisu návodu pro

Více

27/2016 Sb. VYHLÁŠKA ČÁST PRVNÍ ÚVODNÍ USTANOVENÍ ČÁST DRUHÁ

27/2016 Sb. VYHLÁŠKA ČÁST PRVNÍ ÚVODNÍ USTANOVENÍ ČÁST DRUHÁ Systém ASPI - stav k 24.4.2016 do částky 48/2016 Sb. a 9/2016 Sb.m.s. - RA852 27/2016 Sb. - vzdělávání žáků se speciálními vzdělávacími potřebami - poslední stav textu 27/2016 Sb. VYHLÁŠKA ze dne 21. ledna

Více

Orientační průvodce mateřstvím a rodičovstvím v zadávacích dokumentacích poskytovatele

Orientační průvodce mateřstvím a rodičovstvím v zadávacích dokumentacích poskytovatele Orientační průvodce mateřstvím a rodičovstvím v zadávacích dokumentacích poskytovatele Z důvodu ulehčení, snazší orientace, poskytnutí jednoznačných a široce komunikovatelných pravidel v otázkách mateřství

Více

Česká zemědělská univerzita v Praze Fakulta provozně ekonomická. Obor veřejná správa a regionální rozvoj. Diplomová práce

Česká zemědělská univerzita v Praze Fakulta provozně ekonomická. Obor veřejná správa a regionální rozvoj. Diplomová práce Česká zemědělská univerzita v Praze Fakulta provozně ekonomická Obor veřejná správa a regionální rozvoj Diplomová práce Problémy obce při zpracování rozpočtu obce TEZE Diplomant: Vedoucí diplomové práce:

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.2.3. Valivá ložiska Ložiska slouží k otočnému nebo posuvnému uložení strojních součástí a k přenosu působících

Více

Smluvní podmínky (KTv)

Smluvní podmínky (KTv) Smluvní podmínky (KTv) Čl. 1 - Předmět smlouvy 1.1. Dodavatel se zavazuje poskytovat Uživateli časově a datově neomezený přístup k síti Internet a jejím službám (dále jen Služby) prostřednictvím pevného

Více

Instrukce Měření umělého osvětlení

Instrukce Měření umělého osvětlení Instrukce Měření umělého osvětlení Označení: Poskytovatel programu PT: Název: Koordinátor: Zástupce koordinátora: Místo konání: PT1 UO-15 Zdravotní ústav se sídlem v Ostravě, Centrum hygienických laboratoří

Více

Daňová partie. Aktuality z oblasti řešení daňových sporů. 5. května 2011. 1. Finanční úřady nově jen v krajských městech

Daňová partie. Aktuality z oblasti řešení daňových sporů. 5. května 2011. 1. Finanční úřady nově jen v krajských městech www.pwc.cz/danovespory Aktuality z oblasti řešení daňových sporů 5. května 2011 Témata tohoto vydání: 1. Finanční úřady nově jen v krajských městech 2. Příjmy z absolutně neplatných smluv v daňovém přiznání

Více

Ú Z E M N Í R O Z H O D N U T Í

Ú Z E M N Í R O Z H O D N U T Í Městský úřad Králíky Č.J.: 4904/2011/ÚPSÚ/DN - 7/DN/328.3/ZMUS/Rozh ODBOR ÚZEMNÍHO PLÁNOVÁNÍ EV. ČÍSLO: A STAVEBNÍ ÚŘAD VAŠE ZN./ZE DNE: SPISOVÝ ZNAK: 328.3 SK. ZNAK/ LHŮTA: A/5 ADRESÁT: LISTŮ DOKUMENTU:

Více

Stanovisko právní komise SOVAK. 3 odst. 8 zákona o vodovodech a kanalizacích. I. Komentovaný text zákona

Stanovisko právní komise SOVAK. 3 odst. 8 zákona o vodovodech a kanalizacích. I. Komentovaný text zákona Stanovisko právní komise SOVAK 3 odst. 8 zákona o vodovodech a kanalizacích I. Komentovaný text zákona Komentovaný text 3 odst. 8 zákona č. 274/2001 Sb., o vodovodech a kanalizacích pro veřejnou potřebu

Více

MLADINOVÝ KONCENTRÁT VÚPS

MLADINOVÝ KONCENTRÁT VÚPS MLADINOVÝ KONCENTRÁT VÚPS NÁVOD K VÝROBĚ PIVA Z V DOMÁCÍCH PODMÍNKÁCH Vážení, dostává se Vám do rukou originální český výrobek, který představuje spojení staletých tradic zručnosti a zkušeností českých

Více