Systémy pro podporu rozhodování. Datový management

Rozměr: px
Začít zobrazení ze stránky:

Download "Systémy pro podporu rozhodování. Datový management"

Transkript

1 Systémy pro podporu rozhodování Datový management 1

2 Připomenutí obsahu minulé přednášky Systémy pro podporu rozhodování - hlubší pohled Konfigurace DSS Definice DSS Charakterizace a možnosti DSS Komponenty DSS (sybsystém datového, modelového a znalostního managementu, subsystém uživatelského rozhraní+uživatel) Hardware pro DSS 2

3 4. Datový management: sklady, přístup a vizualizace Principy MSS Nové koncepce Objektové databáze Inteligentní databáze Datové sklady On-line analytické zpracování (OLAP) Multidimensionalita Dolování v datech (Data mining) Internet / Intranet / Web 3

4 4.1 Motivační příklad: Datové sklady a DSS ve velké organizaci 2-3 miliony datových záznamů zpracováno měsíčně Jak to zvládnout a zorganizovat? Jak je využít pro podporu rozhodování? Jak nezvyšovat náklady? Jak zefektivnit službu zákazníkům? Jak efektivně využívat zdroje? Jak zvýšit celkovou kvalitu služeb? Odpověď Vytvořit obsažnou databázi (datový sklad) a použít DSS Velmi efektivní 4

5 4.2 Datové sklady, přístup, analýza a vizualizace Co dělat se všemi daty, která organizace sbírají, uchovávají a využívají (ve stále větším měřítku)? Současně narůstá počet uživatelů těchto dat (síťový přístup, nízká cena zpracování dat ) - - > Informační zahlcení! viz: Datové sklady Přístup k datům Dolování v datech (Data mining) Řešení On-line analytical processing (OLAP) Vizualizace dat = hlavní problémy při správě IT 6

6 4.3 Povaha a zdroje dat Data: Nezpracovaná, bez specifického významu (alfanumerická, obrázky, zvuky,...) Informace: Data organizovaná tak, aby vyjadřovala určitý význam pro příjemce Znalost: Datové položky organizované a zpracované tak, aby vyjadřovaly porozumění, zkušenost, nashromážděné učení a expertízu vzhledem k danému problému nebo činnosti DSS databáze mohou obsahovat jak data, tak informace nebo znalosti Datové položky v DSS mohou mít formu dokumentu, obrázku, mapy, zvuku, animace, nebo videa 7

7 Zdroje dat Interní Externí Personální 8

8 4.4 Sběr dat a související problémy Potřeba získávání dat z více interních a externích zdrojů Sběr dat v terénu Získávání dat od lidských respondentů Nutnost ověřování a filtrace dat Kvalita a integrita dat Data nejsou správná nejsou k dispozici včas nejsou správně indexována neexistují 9

9 Metody sběru zdrojových dat Ručně nebo pomocí přístrojů a senzorů Reprezentativní metody Časové studie Průzkumy Pozorování Dotazování expertů Systémy pro automatickou detekci a korekci chyb v sebraných datech 10

10 4.5 Internet a komerční databázové služby Pro externí data: Internet: hlavní dodavatel externích dat Komerční databanky : prodávají přístup ke specializovaným databázím Mohou přidávat externí data k MSS v pravý čas a s vynaložením rozumných nákladů 11

11 Některé zdroje externích dat Existuje mnoho zdrojů veřejně dostupných dat, přičemž ke mnoha z nich je přístup přes Internet. Např. základní zdroje v USA: Federální publikace Survey of Current Business (Department of Commerce) (continues Business Conditions Digest in short form)--měsíčně, obecné obchodní podmínky Monthly Labor Review (Department of Labor) měsíční statistika zaměstnanosti (časopis obsahující články) Employment and Earnings (Department of Labor)--měsíčně, podrobnější než Monthly Labor Review Jiné zdroje International Monetary Fund zprávy IMF, včetně měnových kurzů, pro podílející se země Moody's periodické manuály obsahující hutnou informaci o většině velikých amerických korporací, určeno pro investory Standard & Poor's pravidelně doplňovaná zpráva o finanční stabilitě většiny amerických korporací Advertising Age--marketingový časopis, s vysokým podílem údajů o marketingu

12 Reprezentativní komerční databanky (U.S.A.) Compustat Dow Jones Information Service Interactive Data Corporation Lockheed Information Systems Mead Data Central - Lexis a Nexis ALACRA KnowledgeExpress Albertina icome 13

13 Internet/Web a podnikové databáze a systémy Použití Webovských prohlížečů k přístupu k informacím důležitým pro zaměstnance a zákazníky implementaci exekutivních informačních systémů implementaci systémů pro podporu skupinového rozhodování (GSS) Některé systémy řízení databáze poskytují data ve formátu HTML 14

14 4.6 Systémy pro řízení databází v DSS SŘBD (DBMS): Program pro zabezpečení práce s databází: vstup (nebo přidání) informací, aktualizace, mazání, manipulace, uchovávání a výběr informací SŘBD v kombinaci s jazykem pro modelování tvoří typickou dvojici vývojových prostředků využívanou při konstrukci DSS nebo MSS SŘBD jsou navrženy tak, aby zvládaly práci s velkým množstvím informací 15

15 4.7 Organizace a struktura databází Relační databáze Hierarchické databáze Síťové databáze Objektové databáze Multimediální databáze 16

16 4.8 Datové sklady Fyzická separace operačního prostředí a prostředí na podporu rozhodování Účel: vytvořit úložiště dat umožňující přístup k operačním datům Transformace operačních dat do relačního tvaru Z TPS přicházejí pouze data potřebná pro podporu rozhodování Data jsou transformována a integrována do konzistentní struktury Datové skladování (nebo skladování informací): řešení problému přístupu k datům Koncoví uživatelé provádějí ad hoc dotazování, analýzu reportů a vizualizaci dat 17

17 Výhody datových skladů Zvýšení produktivity znalostních pracovníků Podporují všechny požadavky rozhodovatelů na data Zabezpečují okamžitý přístup ke kritickým datům Izolují operační databáze od ad hoc zpracování dat Dávají souhrnné informace na vysoké úrovni Zabezpečují možnosti detailních pohledů 18

18 Výhody datových skladů Datové sklady poskytují: Zvýšenou podnikovou inteligenci (business intelligence) Konkurenční výhodu Zlepšené služby zákazníkům a jejich spokojenost Možnost tvorby rozhodnutí Pomoc při usměrňování podnikových procesů 19

19 Architektury datových skladů Dvojúrovňová (two-tier) architektura Tříúrovňová (three-tier) architektura 20

20 Dvouúrovňová architektura datového skladu (Petr Vršek, SOFTMODEL)

21 Repositář Interní zdroje Externí zdroje SW pro akvizici dat DB server EIS/DSS server EIS klient DSS klient EIS klient Datový sklad Multidim. Databáze Tříúrovňová architektura datového skladu

22 Složky datového skladu Velká fyzická databáze Logický datový sklad Datový trh (data mart) a aplikace: Systémy pro podporu rozhodování (DSS) a exekutivní informační systémy (EIS) 23

23 Vhodnost použití datových skladů Pro organizace, ve kterých Data se nacházejí v různých systémech Management využívá řídící přístupy založené na informacích (information-based) Velká báze zákazníků různého typu Některá data mají různou reprezentaci v různých systémech Data jsou ukládána ve vysoce technické a těžko dekódovatelné formě 24

24 Charakterizace datového skladování Data jsou organizována dle konkrétního typu subjektu a obsahují pouze informace relevantní konkrétní podpoře rozhodování (např. zákazník, obor činnosti apod.) Data jsou integrovaná z různých formátů v různých zdrojích do konzistentního tvaru Časově proměnná data za období 5-10 let Po vstupu do skladu se data už nemění ani neaktualizují 25

25 Výhody struktury datových skladů Integrita dat Konzistence v časových dimenzích Vysoká efektivnost Nízké provozní náklady Lze uchovávat data na různých úrovních sumarizace Poskytuje zákazníkům rychlý přehled 26

26 4.9 Vizualizace dat a multidimensionalita Digitální obrázky Technologie pro vizualizaci dat Geografické informační systémy Grafická uživatelská rozhraní Multidimenzionální prezentace Tabulky a grafy Virtuální realita Prezentace Animace 27

27 Multidimenzionalita 3-D + tabulky Data mohou být organizována způsobem, jakým je chtějí vidět spíše manažeři než systémoví analytici Lze lehce a rychle dosáhnout různých způsobů prezentace stejných dat Dimenze: výrobky, prodejci, segmenty trhu, obchodní jednotky, geografické lokality, distribuční kanály, země, průmysl Jednotky: peníze, objemy prodeje, propočty na hlavu, majetkový profit, aktuální versus předpověděné Čas: denně, týdně, měsíčně, čtvrtletně nebo ročně 28

28 Omezení multidimenzionality Až o 40% více paměti počítače než odpovídající relační databáze Vyšší cena až o 50% Navýšení spotřeby systémových prostředků a času Složitější rozhraní a údržba Multidimenzionalita je obzvláště populární u exekutivních informačních a podpůrných systémů 29

29 4.10 OLAP: Přístup k datům, dolování, dotazování a analýza Online Analytical processing (OLAP) DSS a EIS výpočty prováděné koncovými uživateli pomocí online systémů V protikladu je online zpracování transakcí (online transaction processing OLTP) Generování dotazů Aktivity OLAP Požadování ad hoc reportů Provádění statistických analýz Konstrukce multimediálních aplikací 30

30 OLAP využívá datový sklad a soubor nástrojů Nástroje pro dotazování Tabulky Nástroje pro dolování v datech Nástroje pro vizualizaci dat 31

31 Data Sou rc e s Busin ess Com m unica tion Qu erying Internal Da ta Sou rces Extern al Da ta Sou rces Da ta Acquisition, Extraction, Deliver y Tra nsformation Da ta Wa rehou se Repor t Gen era tion Sprea dsheet Forecastin g Analysis Modelin g Da ta Presen ta tion a nd Visualiza tion Mu ltim edia EIS, Others On line Analytica l Processin g FIGURE 4.1 Data Warehousing and Online Analytical Processing (OLAP).

32 Architektura multidimenzionálního OLAP (MD-OLAP)

33 Architektura relačního OLAP (ROLAP)

34 OLAP Packages DSS Web (MicroStrategy, Inc.) Oracle Express Server (Oracle Corp.) DataFountain (Dimensional Insight Inc.) Pilot Internet Publisher (Pilot Software, Inc.) WebOLAP (Information Advantage Inc.) Focus Fusion (Information Builders, Inc.) Business Objects Inc. (Business Objects) InfoBeaconWeb (Platinum Technology, Inc.) BrioQuery (Brio Technology Inc.) Data multidimensionality - In Touch/ Pilot personal cubes 35

35 Data Mining - dolování v datech Pojem pokrývající odkrývání znalostí v databázích extrakci znalostí datová archeologie explorativní analýza dat zpracování obrazců dat bagrování v datech rozsáhlý sběr informací ( žně ) 36

36 Hlavní charakteristiky a cíle dolování v datech Data jsou často hluboko zahrabána Architektura klient/server Účinné nové nástroje -- zahrnují pokročilé vizualizační nástroje -- pomáhají odstranit nánosy na informacích Úprava a synchronizace dat Užitečnost měkkých dat (obvykle textové soubory) Koncový uživatel, provádějící dolování, mívá k dispozici nástroje pro detailizaci pohledů na data (data drills) a jiné mocné dotazovací nástroje bez potřeby znalostí programování Často zahrnuje nálezy neočekávaných výsledků Nástroje jsou často kombinovány s tabulkovými procesory atd. Paralelní zpracování pro dolování v datech 37

37 Aplikační oblasti pro dolování v datech Marketing Bankovnictví Prodej Výroba Obchodování na burze Pojišťovnictví Počítačový hardware a software Vláda a obrana Letectví Péče o zdraví Rozhlasové a televizní vysílání Kriminalistika 38

38 4.11 Inteligentní databáze a dolování v datech Vývoj aplikací pro MSS vyžaduje přístup do databází AI technologie (ES, ANN) pomáhají při řízení databáze Propojení ES s velkými databázemi Příklad: optimalizace dotazů Rozhraní v přirozeném jazyce 39

39 Inteligentní dolování v datech Použití inteligentního prohledávání k nalézání informací v datových skladech, které dotazy a reporty nejsou schopny efektivně objevit Nalézání obrazců v datech a na jejich základě odvozování pravidel Použití obrazců a pravidel k návodům při rozhodování a předpovědích Dolováním v datech lze získat pět obecných typů informací: 1) asociace, 2) posloupnosti, 3) klasifikace, 4) shluky a 5) předpovědi 40

40 Hlavní nástroje používané v inteligentním dolování v datech Případové uvažování (Case-based Reasoning) Neurální výpočty (Neural Computing) Inteligentní agenti (Intelligent Agents) Jiné nástroje rozhodovací stromy indukce pravidel vizualizace dat 41

41 Inteligentní databáze jako integrace ES a databáze

42 4.12 Souhrn Data pro rozhodování přicházejí z interních a externích zdrojů Systém pro řízení báze dat (SŘBD) je jednou z hlavních složek většiny systémů na podporu managementu Znalost nejnovějšího pokroku v této oblasti je velmi důležitá Data jsou zlatým dolem informací, pokud je dokážeme vydolovat Organizace skladují data a dolují v nich Nástroje pro multidimenzionální analýzu a nové podnikové architektury systémů jsou velmi užitečné Užitečné jsou rovněž nástroje OLAP 43

43 Souhrn (pokrač.) Objektový přístup k analýze systémů, k jejich návrhu a implementaci může být velmi vhodný Nové formáty dat pro multimediální SŘBD Internet a intranety použitím Webovských prohlížečů pro přístup SŘBD Zabudované metody umělé inteligence v SŘBD 44

44 Literatura L. Lacko: Databáze: datové sklady, OLAP a dolování dat. ComputerPress,

45 Konec 46

Systémy pro podporu rozhodování. Datové sklady, OLAP

Systémy pro podporu rozhodování. Datové sklady, OLAP Systémy pro podporu rozhodování Datové sklady, OLAP 1 4. Datový management: sklady, přístup a vizualizace Principy MSS Nové koncepce Objektové databáze Inteligentní databáze Datové sklady On-line analytické

Více

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování 1 Systémy pro podporu rozhodování 2. Úvod do problematiky systémů pro podporu rozhodování 2 Připomenutí obsahu minulé přednášky Rozhodování a jeho počítačová podpora Manažeři a rozhodování K čemu počítačová

Více

Základy business intelligence. Jaroslav Šmarda

Základy business intelligence. Jaroslav Šmarda Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování

Více

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1 Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové

Více

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ Podle toho, zda informační systém funguje na operativní, taktické nebo strategické řídicí úrovni, můžeme systémy rozdělit do skupin. Tuto pyramidu

Více

Business Intelligence

Business Intelligence Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o.

GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. GIS jako důležitá součást BI Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. ARCDATA PRAHA, s.r.o. THE GEOGRAPHIC ADVANTAGE Motto Sladit operační taktiku s organizační strategií Strategie bez taktiky je

Více

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

Business Intelligence. Adam Trčka

Business Intelligence. Adam Trčka Business Intelligence Adam Trčka 09:00 11:30: BI v kostce Navrhněme si sklad Ukázka BI Datamining 12:30 14:30: Pokračování kurzu 14:30 15:00: Q&A Agenda Co se dnes dovíme? Data informace znalost Business

Více

3 zdroje dat. Relační databáze EIS OLAP

3 zdroje dat. Relační databáze EIS OLAP Zdroje dat 3 zdroje dat Relační databáze EIS OLAP Relační databáze plochá dvourozměrná tabulková data OLTP (Online Transaction Processing) operace selekce projekce spojení průnik, sjednocení, rozdíl dotazování

Více

KIS A JEJICH BEZPEČNOST-I

KIS A JEJICH BEZPEČNOST-I KIS A JEJICH BEZPEČNOST-I INFORMAČNÍ SYSTÉMY POUŽÍVANÉ V MANAŽERSKÉ PRAXI pplk. Ing. Petr HRŮZA, Ph.D. Univerzita obrany, Fakulta ekonomiky a managementu Katedra vojenského managementu a taktiky E-mail.:

Více

10. Datové sklady (Data Warehouses) Datový sklad

10. Datové sklady (Data Warehouses) Datový sklad 10. Datové sklady (Data Warehouses) Datový sklad komplexní data uložená ve struktuře, která umožňuje efektivní analýzu a dotazování data čerpána z primárních informačních systémů a dalších zdrojů OLAP

Více

Základní informace o co se jedná a k čemu to slouží

Základní informace o co se jedná a k čemu to slouží Základní informace o co se jedná a k čemu to slouží založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové

Více

Systémy pro podporu rozhodování. Modelování a analýza

Systémy pro podporu rozhodování. Modelování a analýza Systémy pro podporu rozhodování Modelování a analýza 1 Připomenutí obsahu minulé přednášky Datové sklady, přístup, analýza a vizualizace Povaha a zdroje dat (data, informace, znalosti a interní, externí,

Více

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Zdroje Studijní materiály Heleny Palovské

Více

Manažerský informační systém na MPSV. Mgr. Karel Lux, vedoucí oddělení koncepce informatiky MPSV

Manažerský informační systém na MPSV. Mgr. Karel Lux, vedoucí oddělení koncepce informatiky MPSV Manažerský informační systém na MPSV Mgr. Karel Lux, vedoucí oddělení koncepce informatiky MPSV Konference ISSS-2009 Hradec Králové Aldis 6. dubna 2009 MIS na MPSV časové údaje projektu Vytvoření MIS MPSV

Více

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?

Více

DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS

DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS DATABÁZOVÉ SYSTÉMY Současné aplikace IS/ICT Informační systémy a databázové systémy Databázová technologie Informační systémy Aplikační architektura Vlastníci, management Business Intelligence, manažerské

Více

DI3MK_EPP2 Ekonomika Ekono a řízení mika průmyslových podn průmyslových iků podn iků

DI3MK_EPP2 Ekonomika Ekono a řízení mika průmyslových podn průmyslových iků podn iků DI3MK_EPP2 Ekonomika a řízení jaro 2014 Harmonogram předmětu sobota 01. 03. 2014 / 16:40 19:15 / učebna 51 Organizační pokyny Strategický management sobota 15. 03. 2014 / 10:15 12:50 / učebna 51 Provozní

Více

Úvodní přednáška. Význam a historie PIS

Úvodní přednáška. Význam a historie PIS Úvodní přednáška Význam a historie PIS Systémy na podporu rozhodování Manažerský informační systém Manažerské rozhodování Srovnávání, vyhodnocování, kontrola INFORMACE ROZHODOVÁNÍ organizace Rozhodovacích

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více

MBI - technologická realizace modelu

MBI - technologická realizace modelu MBI - technologická realizace modelu 22.1.2015 MBI, Management byznys informatiky Snímek 1 Agenda Technická realizace portálu MBI. Cíle a principy technického řešení. 1.Obsah portálu - objekty v hierarchiích,

Více

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP Petr Jaša Obsah Úvod do problematiky Data vs. informace Operační vs. analytická databáze Relační vs. multidimenzionální model Datový sklad Důvody pro budování datových skladů Definice, znaky Schéma vazeb

Více

NÁSTROJE BUSINESS INTELLIGENCE

NÁSTROJE BUSINESS INTELLIGENCE NÁSTROJE BUSINESS INTELLIGENCE Milena Tvrdíková VŠB Technická univerzita Ostrava, Ekonomická fakulta, Katedra informatiky v ekonomice, Sokolská 33, 701021 Ostrava1, ČR, milena.tvrdikova@vsb.cz Abstrakt

Více

Úvod do informačních a řídicích systémů. lení

Úvod do informačních a řídicích systémů. lení Úvod do informačních a řídicích systémů Základní pojmy a rozdělen lení Informace Pojem vysoce abstraktní Skutečné informace musí být pravdivé, včasné, jednoznačné a relevantní (atributy informace) Základní

Více

Databáze II. 1. přednáška. Helena Palovská palovska@vse.cz

Databáze II. 1. přednáška. Helena Palovská palovska@vse.cz Databáze II 1. přednáška Helena Palovská palovska@vse.cz Program přednášky Úvod Třívrstvá architektura a O-R mapování Zabezpečení dat Role a přístupová práva Úvod Co je databáze Mnoho dat Organizovaných

Více

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 2. a 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká: 2. soustředění 16.1.2009

Více

GIS a Business Intelligence

GIS a Business Intelligence GIS pre územnú samosprávu GIS a Business Intelligence (pohled ze strany GIS) Rudolf Richter, BERIT services s.r.o. 1 Východiska pro rozhodování Data existují, ale jsou fragmentována v různorodých produkčních

Více

Databáze v MS ACCESS

Databáze v MS ACCESS 1 z 14 19.1.2014 18:43 Databáze v MS ACCESS Úvod do databází, návrh databáze, formuláře, dotazy, relace 1. Pojem databáze Informací se data a vztahy mezi nimi stávají vhodnou interpretací pro uživatele,

Více

Na co se můžete s Oracle BI těšit

<Insert Picture Here> Na co se můžete s Oracle BI těšit Na co se můžete s Oracle BI těšit Tomáš Pospíšil, Oracle Czech Olomouc, 6.3.2014 Oracle BI Ukázka Oracle BI Možnosti platformy Oracle Business

Více

Datové sklady. Ing. Jan Přichystal, Ph.D. 1. listopadu 2011. PEF MZLU v Brně

Datové sklady. Ing. Jan Přichystal, Ph.D. 1. listopadu 2011. PEF MZLU v Brně PEF MZLU v Brně 1. listopadu 2011 Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské spousty nejrůznějších údajů. Příkladem mohou být informace z obchodování s cennými papíry

Více

Uživatelská podpora v prostředí WWW

Uživatelská podpora v prostředí WWW Uživatelská podpora v prostředí WWW Jiří Jelínek Katedra managementu informací Fakulta managementu Jindřichův Hradec Vysoká škola ekonomická Praha Úvod WWW obsáhlost obsahová i formátová pestrost dokumenty,

Více

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19 3 Obsah Novinky v tomto vydání 10 Význam základních principů 11 Výuka principů nezávisle na databázových produktech 12 Klíčové pojmy, kontrolní otázky, cvičení, případové studie a projekty 12 Software,

Více

Software pro analýzu energetických dat W1000

Software pro analýzu energetických dat W1000 Software pro analýzu energetických dat W1000 Data pro snadný život vašich zákazníků Manage energy better Mít správné informace ve správný čas je základem úspěchu každého snažení, tedy i řízení spotřeby

Více

Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce

Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra mikroelektroniky Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce Zadání Stávající

Více

Administrační systém ústředen MD-110

Administrační systém ústředen MD-110 SAS MD-110 Administrační systém ústředen MD-110 SAS MD-110 Administrační systém ústředen MD-110 Efektivní systém administrace poboček a parametrů ústředen Ericsson MD110 s přímou vazbou na telefonní seznam

Více

Oracle Sales Cloud. moderní řízení obchodu

Oracle Sales Cloud. moderní řízení obchodu Oracle Sales Cloud moderní řízení obchodu Úvod Oracle Sales Cloud je nástroj moderního obchodování, který lze snadno nasadit a rychle užívat. Je to zcela mobilní řešení s analytickou výbavou, stavěné pro

Více

Business Intelligence a datové sklady

Business Intelligence a datové sklady Business Intelligence a datové sklady Ing Jan Přichystal, PhD Mendelova univerzita v Brně 2 prosince 2014 Ing Jan Přichystal, PhD Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské

Více

Datové sklady ve školství

Datové sklady ve školství Datové sklady ve školství aneb evaluace procesu výuky jinak Jana Šarmanová Obsah Business Intelligence a školní výuka Databáze a datové sklady Analýza datového skladu Studie DS pro studijní agendu VŠ Studie

Více

Vývoj moderních technologií při vyhledávání. Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz

Vývoj moderních technologií při vyhledávání. Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz Vývoj moderních technologií při vyhledávání Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz INFORUM 2007: 13. konference o profesionálních informačních zdrojích Praha, 22. - 24.5. 2007 Abstrakt Vzhledem

Více

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Databázové systémy Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Vývoj databázových systémů Ukládání dat Aktualizace dat Vyhledávání dat Třídění dat Výpočty a agregace 60.-70. léta Program Komunikace Výpočty

Více

Management informačních systémů. Název Information systems management Způsob ukončení * přednášek týdně

Management informačních systémů. Název Information systems management Způsob ukončení * přednášek týdně Identifikační karta modulu v. 4 Kód modulu Typ modulu profilující Jazyk výuky čeština v jazyce výuky Management informačních systémů česky Management informačních systémů anglicky Information systems management

Více

Systémy pro podporu managementu 1

Systémy pro podporu managementu 1 Systémy pro podporu managementu 1 Přednášky pro im2, im3, im5, ai2, ai3 Ing. Karel Mls, Ph.D. 1 2 Základní literatura EFRAIM TURBAN, JAY E. ARONSON: DECISION SUPPORT SYSTEMS AND INTELLIGENT SYSTEMS. PRENTICE

Více

Manuscriptorium jako základ pro virtuální badatelské prostředí

Manuscriptorium jako základ pro virtuální badatelské prostředí Manuscriptorium jako základ pro virtuální badatelské prostředí Obsahová dimenze versus technické moduly Jindřich Marek Zdeněk Uhlíř Národní knihovna ČR Definice pojmů virtuální badatelské prostředí množina

Více

Ing. Jiří Fejfar, Ph.D. Geo-informační systémy

Ing. Jiří Fejfar, Ph.D. Geo-informační systémy Ing. Jiří Fejfar, Ph.D. Geo-informační systémy Definice, budování a život GIS Kapitola 1: Vztahy strana 2 Data, informace, IS, GIS Kapitola 1: Vztahy strana 3 Rozhodnutí Znalosti Znalostní systémy. Informace

Více

Znalostní systém nad ontologií ve formátu Topic Maps

Znalostní systém nad ontologií ve formátu Topic Maps Znalostní systém nad ontologií ve formátu Topic Maps Ladislav Buřita, Petr Do ladislav.burita@unob.cz; petr.do@unob.cz Univerzita obrany, Fakulta vojenských technologií Kounicova 65, 662 10 Brno Abstrakt:

Více

Databázové systémy úvod

Databázové systémy úvod Databázové systémy úvod Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze c Michal Valenta, 2012 BI-DBS, ZS 2012/13 https://edux.fit.cvut.cz/courses/bi-dbs/ Michal

Více

Vývoj informačních systémů. Obecně o IS

Vývoj informačních systémů. Obecně o IS Vývoj informačních systémů Obecně o IS Informační systém Informační systém je propojení informačních technologií a lidských aktivit směřující k zajištění podpory procesů v organizaci. V širším slova smyslu

Více

WORKFLOW. Procesní přístup. Základ perspektivního úspěšného podnikového řízení. Funkčnířízení založené na dělbě práce

WORKFLOW. Procesní přístup. Základ perspektivního úspěšného podnikového řízení. Funkčnířízení založené na dělbě práce WORKFLOW Procesní přístup Základ perspektivního úspěšného podnikového řízení Funkčnířízení založené na dělbě práce Procesní řízení princip integrace činností do ucelených procesů 1 Funkční řízení Dělba

Více

Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace. Maturitní otázky z předmětu INFORMATIKA A VÝPOČETNÍ TECHNIKA

Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace. Maturitní otázky z předmětu INFORMATIKA A VÝPOČETNÍ TECHNIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu INFORMATIKA A VÝPOČETNÍ TECHNIKA 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu

Více

Ukládání a vyhledávání XML dat

Ukládání a vyhledávání XML dat XML teorie a praxe značkovacích jazyků (4IZ238) Jirka Kosek Poslední modifikace: $Date: 2014/12/04 19:41:24 $ Obsah Ukládání XML dokumentů... 3 Ukládání XML do souborů... 4 Nativní XML databáze... 5 Ukládání

Více

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný CPM/BI a jeho návaznost na podnikové informační systémy Martin Závodný Agenda Význam CPM/BI Aplikace CPM/BI Projekty CPM/BI Kritické body CPM/BI projektů Trendy v oblasti CPM/BI Diskuse Manažerské rozhodování

Více

SW pro správu a řízení bezpečnosti

SW pro správu a řízení bezpečnosti Integrační bezpečnostní SW pro správu a řízení bezpečnosti Systém je vlastním produktem společnosti Integoo. Trvalý vývoj produktu reflektuje požadavky trhu a zákazníků. Ať už je velikost vaší organizace

Více

Wonderware Information Server 4.0 Co je nového

Wonderware Information Server 4.0 Co je nového Wonderware Information Server 4.0 Co je nového Pavel Průša Pantek (CS) s.r.o. Strana 2 Úvod Wonderware Information Server je výrobní analytický a reportní informační portál pro publikaci výrobních dat

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

HEIS VÚV V ROCE 2006 Jiří Picek Klíčová slova Hydroekologický informační systém VÚV T.G.M. (HEIS VÚV) je centrálním informačním systémem odborných sekcí ústavu. Jeho hlavním posláním je zajištění zpracování,

Více

Nová dimenze rozhodovacího procesu

Nová dimenze rozhodovacího procesu Nová dimenze rozhodovacího procesu Marek Matoušek Pavel Mašek Data, nebo INFORMACE Využití dostupných firemních dat Několik systémů, mnoho různých dat Různé divize, různé potřeby Potřeba integrace dat

Více

Datový sklad KGI/APGPS. RNDr. Vilém Pechanec, Ph.D. Univerzita Palackého v Olomouci

Datový sklad KGI/APGPS. RNDr. Vilém Pechanec, Ph.D. Univerzita Palackého v Olomouci Datový sklad KGI/APGPS RNDr. Vilém Pechanec, Ph.D. Univerzita Palackého v Olomouci Univerzita Palackého v Olomouci INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Environmentální vzdělávání rozvíjející uplatnění v praxi

Více

Bc. David Gešvindr MSP MCSA MCTS MCITP MCPD

Bc. David Gešvindr MSP MCSA MCTS MCITP MCPD Bc. David Gešvindr MSP MCSA MCTS MCITP MCPD 1. Příprava k instalaci SQL Serveru 2. Instalace SQL Serveru 3. Základní konfigurace SQL Serveru Vychází ze Sybase SQL Server Verze Rok Název Codename 7.0 1998

Více

Platforma ArcGIS. Platforma ArcGIS se skládá ze čtyř komponent: dat, zdrojů, portálu a aplikací.

Platforma ArcGIS. Platforma ArcGIS se skládá ze čtyř komponent: dat, zdrojů, portálu a aplikací. Platforma ArcGIS Platforma ArcGIS Platforma ArcGIS je tvořena datovým obsahem, službami a softwarovými produkty, které spolu vzájemně komunikují. Je určena každému, kdo chce snadno a rychle sdělit informaci

Více

DIGITÁLNÍ MAPY. Přednáška z předmětu KMA/TKA. Otakar ČERBA Západočeská univerzita v Plzni

DIGITÁLNÍ MAPY. Přednáška z předmětu KMA/TKA. Otakar ČERBA Západočeská univerzita v Plzni DIGITÁLNÍ MAPY Přednáška z předmětu KMA/TKA Otakar ČERBA Západočeská univerzita v Plzni 16.12.2008 Konec 20. století je charakterizován jako období informatiky. Mapa, jako výsledek geodetických měření

Více

Chytrá systémová architektura jako základ Smart Administration

Chytrá systémová architektura jako základ Smart Administration Chytrá systémová architektura jako základ Smart Administration Ing. Petr Škvařil, Pardubický kraj Dipl. Ing.Zdeněk Havelka PhD. A-21 s.r.o. 1 Nepříjemné dotazy Jsme efektivní v provozování veřejné správy?

Více

Richard Bébr Petr Doucek PRO PODPORU MANAZERSKE PRÁCE

Richard Bébr Petr Doucek PRO PODPORU MANAZERSKE PRÁCE . Richard Bébr Petr Doucek INFORMAČNÍ SYSTÉMY v, PRO PODPORU MANAZERSKE PRÁCE PROFESSIONAL PUBLISHING . 5 Obsah SLOVO AUTORÚ... 11 - CÁST l. VÝCHODISKA 15 1.1 Historické souvislosti 16 ÚVODEM...... 16

Více

EMBARCADERO TECHNOLOGIES. Jak na BYOD chytře? Možnosti zapojování různých mobilních zařízení do podnikových informačních systémů.

EMBARCADERO TECHNOLOGIES. Jak na BYOD chytře? Možnosti zapojování různých mobilních zařízení do podnikových informačních systémů. Jak na BYOD chytře? Možnosti zapojování různých mobilních zařízení do podnikových informačních systémů. Trendy a móda EMBARCADERO TECHNOLOGIES Popularita a prodej mobilních zařízení roste Skoro každý má

Více

Geografické informační systémy GIS

Geografické informační systémy GIS Geografické informační systémy GIS Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským

Více

7. Geografické informační systémy.

7. Geografické informační systémy. 7. Geografické informační systémy. 154GEY2 Geodézie 2 7.1 Definice 7.2 Komponenty GIS 7.3 Možnosti GIS 7.4 Datové modely GIS 7.5 Přístup k prostorovým datům 7.6 Topologie 7.7 Vektorové datové modely 7.8

Více

Obsah ČÁST I JAK SE UCHÁZET O ZÁKAZNÍKY NA WEBU KAPITOLA 1

Obsah ČÁST I JAK SE UCHÁZET O ZÁKAZNÍKY NA WEBU KAPITOLA 1 Obsah O autorech 11 Poděkování 13 Předmluva 15 Úvod 17 Proč byste se měli přečíst tuto knihu 17 Co tato kniha obsahuje 18 Jak používat tuto knihu 19 Zpětná vazba od čtenářů 20 Errata 20 ČÁST I JAK SE UCHÁZET

Více

Mgr. Jan Folbrecht Senior softwarový inženýr, softwarový architekt, manažer

Mgr. Jan Folbrecht Senior softwarový inženýr, softwarový architekt, manažer Mgr. Jan Folbrecht Senior softwarový inženýr, softwarový architekt, manažer SPECIALIZACE Konzultace a školení v oblastech softwarového inženýrství Zavádění vývojových metodik do projektů a vývojových týmů

Více

INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005

INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005 INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005 AGENDA definice IS, zavedení pojmů možnosti a rozdělení typická struktura technologie nasazení praktická ukázka

Více

Marketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph)

Marketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) Marketingová komunikace Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) 2. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Minulé soustředění úvod

Více

předměty: ukončení: Zápočet + Zkouška / 5kb např. jméno, název, destinace, město např. student Jan Novák, narozen 18.5.1974

předměty: ukončení: Zápočet + Zkouška / 5kb např. jméno, název, destinace, město např. student Jan Novák, narozen 18.5.1974 základní informace Databázové systémy Úvodní přednáška předměty: KI/DSY (B1801 Informatika - dvouoborová) KI/P502 (B1802 Aplikovaná informatika) ukončení: Zápočet + Zkouška / 5kb ki.ujep.cz termínovník,

Více

Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek

Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek Databáze datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek 980103 Jan Novak Dlouha 5 Praha 1 9945371 100.00 100.00 980105 Jan Novak Dlouha 5 Praha 1 9945371 1500.00 1600.00 980106

Více

KYBERPSYCHO 2015 Tomáš Poláček HAIDY a.s.

KYBERPSYCHO 2015 Tomáš Poláček HAIDY a.s. KYBERPSYCHO 2015 Tomáš Poláček HAIDY a.s. Internet věcí přínosy versus rizika Aktuální stav internetu věcí (z pohledu uživatelů, z pohledu technologie) Možnosti dalšího vývoje v oblasti internetu věcí

Více

Řešení Vašeho nástrojového managementu

Řešení Vašeho nástrojového managementu Řešení Vašeho nástrojového managementu TDM Systems komp TDM Systems profesionálové pro správu nástrojových dat Již více než 20 let vyvíjí a prodává společnost TDM Systems GmbH software pro organizaci nástrojů

Více

3. Očekávání a efektivnost aplikací

3. Očekávání a efektivnost aplikací VYUŽÍVANÍ INFORMAČNÍCH SYSTÉMŮ V ŘÍZENÍ FIREM Ota Formánek 1 1. Úvod Informační systémy (IS) jsou v současnosti naprosto nezbytné pro úspěšné řízení firem. Informačním ním systémem rozumíme ucelené softwarové

Více

Aplikace je program určený pro uživatele. Aplikaci je možné rozdělit na části:

Aplikace je program určený pro uživatele. Aplikaci je možné rozdělit na části: Aplikace Aplikace je program určený pro uživatele. Aplikaci je možné rozdělit na části: prezentační vrstva vstup dat, zobrazení výsledků, uživatelské rozhraní, logika uživatelského rozhraní aplikační vrstva

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

Databázové systémy trocha teorie

Databázové systémy trocha teorie Databázové systémy trocha teorie Základní pojmy Historie vývoje zpracování dat: 50. Léta vše v programu nevýhody poměrně jasné Aplikace1 alg.1 Aplikace2 alg.2 typy1 data1 typy2 data2 vytvoření systémů

Více

Microsoft SharePoint Portal Server 2003. Zvýšená týmová produktivita a úspora času při správě dokumentů ve společnosti Makro Cash & Carry ČR

Microsoft SharePoint Portal Server 2003. Zvýšená týmová produktivita a úspora času při správě dokumentů ve společnosti Makro Cash & Carry ČR Microsoft SharePoint Portal Server 2003 Zvýšená týmová produktivita a úspora času při správě dokumentů ve společnosti Makro Cash & Carry ČR Přehled Země: Česká republika Odvětví: Velkoobchod Profil zákazníka

Více

PowerOPTI Řízení účinnosti tepelného cyklu

PowerOPTI Řízení účinnosti tepelného cyklu PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika

Více

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1 Informační

Více

MANAŽERSKÉ INFORMAČNÍ SYSTÉMY

MANAŽERSKÉ INFORMAČNÍ SYSTÉMY metodický list č. 1 Úvodem: Protože předmětu manažerské informační systémy (MIS) je vyhrazeno ve studijním plánu kombinovaného studia pouze 10 prezenční hodin (5 dvouhodinových bloků), je nezbytné, abyste

Více

Připravte se na konjunkturu se systémem řízení údržby SGM. SGM moderní nástroj pro řízení údržby nejen výrobních zařízení

Připravte se na konjunkturu se systémem řízení údržby SGM. SGM moderní nástroj pro řízení údržby nejen výrobních zařízení Připravte se na konjunkturu se systémem řízení údržby SGM SGM moderní nástroj pro řízení údržby nejen výrobních zařízení 30.3.2010 konference EAM, Brno Boris Soukeník ředitel Synergit s.r.o. Agenda prezentace

Více

POKROČILÉ POUŽITÍ DATABÁZÍ

POKROČILÉ POUŽITÍ DATABÁZÍ POKROČILÉ POUŽITÍ DATABÁZÍ Barbora Tesařová Cíle kurzu Po ukončení tohoto kurzu budete schopni pochopit podstatu koncepce databází, navrhnout relační databázi s využitím pokročilých metod, navrhovat a

Více

v praxi Rizika a přínosy zavádění BI jako nástroje pro řízení podnikání

v praxi Rizika a přínosy zavádění BI jako nástroje pro řízení podnikání Podpora rozhodování v praxi Rizika a přínosy zavádění BI jako nástroje pro řízení podnikání HanušRais Business DevelopmentManager SAS Institute ČR s.r.o. Agenda Úvod - Profil SAS Institute Pojem Business

Více

QAD Business Intelligence

QAD Business Intelligence QAD Business Intelligence Vladimír Bartoš, Pavel Němec Konzultanti 13.6.2012 Komponenty QAD BI Analytické tabule pro podporu rozhodování Spolupráce uživatelů nad analyzovanými daty Reporty Generátor analytických

Více

Aplikace na čipových kartách

Aplikace na čipových kartách Aplikace na čipových kartách Systémy dodávané pro veřejnou a státní zprávu ISSS 2007 Hradec Králové, 2. dubna 2007 Jiří Hrdina ISCRD Informační systém centrálního registru dopravců (ISCRD) Aplikace na

Více

Ing. Jaroslav Kačmařík, Ing. Břetislav Nesvadba Využití GIS v oblasti železniční infrastruktury

Ing. Jaroslav Kačmařík, Ing. Břetislav Nesvadba Využití GIS v oblasti železniční infrastruktury Ing. Jaroslav Kačmařík, Ing. Břetislav Nesvadba Využití GIS v oblasti železniční infrastruktury ČD - Telematika a.s., Pernerova 2819/2a, 130 00 Praha 3 Úvod Základní odvětví železniční infrastruktury Odvětví

Více

EKONOMICKÝ A LOGISTICKÝ SOFTWARE. Luhačovice 24.10.2013

EKONOMICKÝ A LOGISTICKÝ SOFTWARE. Luhačovice 24.10.2013 EKONOMICKÝ A LOGISTICKÝ SOFTWARE Luhačovice 24.10.2013 CRM řízení vztahů se zákazníky CRM - je zkratka z anglického Customer Relationship Management a označují se tak systémy pro řízení vztahů se zákazníky.crm

Více

Informační systémy. Jaroslav Žáček jaroslav.zacek@osu.cz

Informační systémy. Jaroslav Žáček jaroslav.zacek@osu.cz Informační systémy Jaroslav Žáček jaroslav.zacek@osu.cz Úvod - co možná umíte z předmětu SWENG Rozdělení IT Architektura IS Klíčový prvek řízení IS z něj vycházejí detailní analytické i plánovací charakteristiky

Více

Microsoft.NET. AppTima Feedback Solution - komplexní systém pro zjišťování a vyhodnocování spokojenosti zákazníků

Microsoft.NET. AppTima Feedback Solution - komplexní systém pro zjišťování a vyhodnocování spokojenosti zákazníků Microsoft.NET AppTima Feedback Solution - komplexní systém pro zjišťování a vyhodnocování spokojenosti zákazníků Přehled Země: Velká Británie Odvětví: Informační technologie Profil zákazníka Pantek Ltd.

Více

kapitola 2 Datové sklady, OLAP

kapitola 2 Datové sklady, OLAP Tomáš Burger, burger@fit.vutbr.cz kapitola 2 Datové sklady, OLAP Získávání znalostí z databází IT-DR-3 / ZZD Co je to datový sklad A data warehouse is a subjectoriented, integrated, time-variant and nonvolatile

Více

5.3.1. Informatika pro 2. stupeň

5.3.1. Informatika pro 2. stupeň 5.3.1. Informatika pro 2. stupeň Charakteristika vzdělávací oblasti Vzdělávací oblast Informační a komunikační technologie umožňuje všem žákům dosáhnout základní úrovně informační gramotnosti - získat

Více

Jádrem systému je modul GSFrameWork, který je poskytovatelem zejména těchto služeb:

Jádrem systému je modul GSFrameWork, který je poskytovatelem zejména těchto služeb: Technologie Marushka Základním konceptem technologie Marushka je použití jádra, které poskytuje přístup a jednotnou grafickou prezentaci geografických dat. Jádro je vyvíjeno na komponentním objektovém

Více

DATOVÝ SKLAD TECHNOLOGICKÝCH DAT

DATOVÝ SKLAD TECHNOLOGICKÝCH DAT R. T. S. cs, spol. s r. o. Novinářská 1113/3 709 00 Ostrava IČO: 18051367 DIČ: CZ18051367 Tel.: +420 59 7450 219 Fax: +420 59 7450 247 E-mail: info@rtscs.cz URL: www.rtscs.cz Společnost je zapsána v OR

Více

IT Outsourcing COMPLUS CZ a.s. Petr Taševský 21. 10. 2011

IT Outsourcing COMPLUS CZ a.s. Petr Taševský 21. 10. 2011 IT Outsourcing COMPLUS CZ a.s. Petr Taševský 21. 10. 2011 Definice - outsourcing Outside resource using Termín outsourcing se všeobecně používá pro dlouhodobé převedení určité oblasti služeb na poskytovatele

Více

BEZPEČNÁ SPRÁVA KLÍČŮ POMOCÍ HSM. Petr Dolejší Senior Solution Consultant

BEZPEČNÁ SPRÁVA KLÍČŮ POMOCÍ HSM. Petr Dolejší Senior Solution Consultant BEZPEČNÁ SPRÁVA KLÍČŮ POMOCÍ HSM Petr Dolejší Senior Solution Consultant OCHRANA KLÍČŮ A ZOKB Hlavní termín kryptografické prostředky Vyhláška 316/2014Sb. o kybernetické bezpečnosti zmiňuje: v 17 nástroj

Více