Business Intelligence. Adam Trčka

Rozměr: px
Začít zobrazení ze stránky:

Download "Business Intelligence. Adam Trčka"

Transkript

1

2 Business Intelligence Adam Trčka

3 09:00 11:30: BI v kostce Navrhněme si sklad Ukázka BI Datamining 12:30 14:30: Pokračování kurzu 14:30 15:00: Q&A Agenda

4 Co se dnes dovíme? Data informace znalost Business intelligence overview Proces BI Základy modelování Dolování dat

5 DATA INFORMACE - ZNALOSTI

6 Data Popis nebo vyjádření skutečnosti Zachycený obraz světa okolo nás Zachycení: Nominální, Ordinální, Kardinální,

7 DBMS/ SŘBD Database management systém (systém řízení báze dat) Nástroje (sw) pro ukládání a správu dat Používají se relační vazby Typický zástupci: MSSQL / Oracle DB MySQL, MS Access,

8 Uložení dat v DBMS Zákazník Jméno Sídlo 1 Microsoft Redmond 2 Apple Cupertino 3 Facebook SFO Objednávka Popis Zákazník 1 Konzultace 1 2 Školení 1 3 Školení 3

9 Uložení dat v DBMS #2 Zákazník Jméno Sídlo 1 Microsoft Redmond 2 Apple Cupertino 3 Facebook SFO ID Typ služby 1 Konzultace 2 Školení Objednávka Popis Zákazník

10 Informace Data, kterým byl dán význam Informace je to co si bereme z dat

11 Znalost Organizovaná (utříděná) informace určená k řešení problémů a rozhodování Vazba na konkrétního jednotlivce

12 Data informace - znalosti Význam Znalost Smysl Informace Data

13 Moudrost Schopnost aplikace znalostí v širším kontextu Abstrakce a generalizace znalostí Širší záběr (celá společnost)

14 Meta Předpona meta označuje přesah, něco za, Metadata: popis určitého objektu Slouží k rychlejšímu vyhledávání, kategorizaci, strukturovatelnosti, Příklad knížka v knihovně: Metadata: autor, počet stran, žánr,

15 Data ve společnosti V současné době jsme v tvz. Informačním věku => část ekonomiky tvoří právě obchod s informacemi, Na základě, některých výzkumů každé dva dny vytvoříme tolik dat co od začátku civilizace do roku 2003, Toto číslo se každý rok zdvojnásobí

16 Data v organizaci Mnoho navzájem nepropojených systémů ERP, CRM, SCM, Web, Wiki, Facebook Data vznikají neustále Nové objednávky, nové faktury, noví zákaznící Mnoho lidí je tzv. přehlceno daty

17 Problémy s daty Data jsou: Neúplná, Nepřesná, Nekonzistentní, V nevhodný čas, V nevhodné podobě, V nevhodné agregaci, V nevhodných rukou => Datová kvalita

18 Kontrolní otázky Co jsou to data? Co je to informace? K čemu slouží metadata? Jaké základní problémy s daty znáte?

19 Řešení? BUSINESS INTELLIGENCE

20 Definice Business intelligence (BI) jsou dovednosti, znalosti, technologie, aplikace, kvalita, rizika, bezpečnostní otázky a postupy používané v podnikání pro získání lepšího pochopení chování na trhu a obchodních souvislostech. Za tímto účelem provádí sběr, integraci, analýzu, interpretaci a prezentaci obchodních informací. Mohou zahrnovat samotné shromážděné informace nebo explicitní znalosti získané z informací. [Wikipedia]

21 Definice Business intelligence (BI) jsou dovednosti, znalosti, technologie, aplikace, kvalita, rizika, bezpečnostní otázky a postupy používané v podnikání pro získání lepšího pochopení chování na trhu a obchodních souvislostech. Za tímto účelem provádí sběr, integraci, analýzu, interpretaci a prezentaci obchodních informací. Mohou zahrnovat samotné shromážděné informace nebo explicitní znalosti získané z informací. [Wikipedia]

22 Definice Business intelligence (BI) jsou dovednosti, znalosti, technologie, aplikace, kvalita, rizika, bezpečnostní otázky a postupy používané v podnikání pro získání lepšího pochopení chování na trhu a obchodních souvislostech. Za tímto účelem provádí sběr, integraci, analýzu, interpretaci a prezentaci obchodních informací. Mohou zahrnovat samotné shromážděné informace nebo explicitní znalosti získané z informací. [Wikipedia]

23 Jinak tedy: BI je souhrn postupů a přístupů, nikoli jedna aplikace, Cílem BI je jednoduše zpřístupnit informace důležité pro rozhodování.

24 px?guest=true DEMO

25 Samostatné cvičení BUSINESS CASE

26 Supermarket Albert Navrhněte základní reporty, které by vás zajímaly pro rozhodnutí o: 1. Umístění produktů v provozovně, 2. Reklamnímu cílení na zákazníky,

27 PROCESS BUSINESS INTELLIGENCE

28 High level pohled ERP CRM Web ETL DataWareHouse DWH DM 1 DM 2 Marketing Sales Reporting

29 Slovníček DWH: DataWareHouse ETL: Extract Transform LOAD DM: Data Mart OLTP: online transaction processing OLAP: online analytical processing

30 Zdroje dat Rozdílné systémy (ERP, CRM, HR, WEB), Nesourodé datové základny Rozdílné identifikátory (RČ, IČO, ), Rozdílná časová souslednost vzniku dat Některé systémy poskytují data online, jiná v dávkách Možnost vzniků nových zdrojů dat

31 Extract Transform Load Proces slouží k vyzvednutí dat, jejich modifikaci a uložení do cílového systému. E: T: L: Vytažení dat z různorodých systémů, Transformace dat na požadované struktury, Čistění dat, Uložení do DWH

32 Datový sklad Komplexní databáze, Slouží k ukládání analytických dat, Obsahuje vyčištěná a kategorizovaná data ve tvaru pro potřeby organizace, Data jsou agregována a předpočítána pro potřeby rozhodovacích procesů

33 Datamart Část DWH pro specifické potřeby Pro konkrétní oddělení, část zákaznického segmentu Může být vytvořen samostatně, nebo jako součást DWH

34 Hlavní výhody DWH Možnost provádění analýz, Sloučený pohled na data (one truth), Jednoduší přístup k datům, Přehledy z více systémů na jednom místě, Usnadnění rozhodování, Lepší adresace potřeb zákazníků (interních i externích), Výhody v konkurenčním prostředí

35 Budování datových skladů Inmnonův model: Shora-dolů, Buduje se jedno centrální tržiště (EDW). Kimballův model: zdola nahoru, Budují se postupně jednotlivé DM.

36 Inmonův přístup Budování jednoho skladu od začátku Centrální projekt Větší pozornost společnosti Finanční i časová náročnost Obtížnější získání business case

37 Kimballův přístup Budování perpartes Rychlejší výsledky Možnost lokálních DM Synchronizace napříč organizací Návrh může být uzpůsoben jednomu oddělení (DM)

38 Reporting Definovaný výstup (report) Často má grafickou podobu, Snadno se jím prochází na nižší úrovně / mění se pohled na data Čistě uživatelský přístup pro procházení daty Není nutný zásah administrátorů pro reporting Možnost vytažení základních statistik na tzv. dashboard.

39 DEMO DASHBOARD

40 Základní kroky pro implementaci BI Definice požadavků na reporty: Jak často, jaká data, jak kvalitní, jak agregovaná, Identifikace zdrojových systémů, Výběr vhodného SW a následně HW Vytvoření datového modelu, Nastavení ETL procesu, Definice reportů.

41 High level pohled ERP CRM Web ETL DataWareHouse DWH DM 1 DM 2 Marketing Sales Reporting

42 Kontrolní otázky Popište základní prvky BI procesů Definujte základní role na BI projektu Definujte základní přístupy k tvorbě DWH Rozdíl DWH a DM

43 DATOVÉ MODELOVÁNÍ

44 Proč datové modelování Základem je pochopit z jakých dat se report připravuje, Je nutné definovat jeho strukturu a možnosti.

45 Uložení dat OLTP: Klasické databáze Data jsou uložena způsobem, který akcentuje jejich rychlé vložení, nalezení, smazání. Nikoli jejich agregaci a zobrazení napříč více pohledy na tato data. Základní operace: select, insert, update, delete.

46 Uložení dat #2 OLAP: Uložení dat je uzpůsobeno reportingovým potřebám, Dle nastavení může být část dat (jejich detail) dokonce odstraněn. Základní operace: slice, dice, drill down, drill up, Data jsou ukládána v tzv. kostkách

47 *OLAP MOLAP (Multidimensional OLAP) - specielní uložení dat v multidimenzionálních binárních OLAP kostkách, ROLAP (Relational OLAP) - řeší multidimenzionalitu uložením dat v relační databázi, HOLAP (Hybrid OLAP) - kombinace předchozích přístupů - detailní data v relační databázi a agregace v OLAP kostkách, DOLAP (Desktop OLAP) - umožňuje připojit se k centrálním úložišti OLAP dat a stáhnout si podmnožinu kostky na lokální počítač. Analytické operace - prováděny nad lokální kostkou - výhodné pro mobilní aplikace a podporu mobilních uživatelů WOLAP (WEB based OLAP) kombinace OLAP a web technologií.

48 další dimenze tabulky Kostka závod 1 organizační jednotky ukazatelé (např. prodej určité komodity, stav zaměstnanců, dosažené tržby) např čas PRVEK TABULKY vyjadřuje hodnotu stav zaměstnanců k v závodě 1 Novotný, O., Pour, J. (KIT VŠE), Slánský, D. (Adastra Corp.)

49 Slice / Dice

50 DEMO KOSTKA

51 Datový model Tabulky faktů Údaje v numerickém či symbolickém vyjádření, Odráží pozorování (reálného) světa. Tabulky dimenzí Obsahuje dimenze na základě, kterých jsou data v tabulce faktů agregována / sumarizována

52 Schéma star Centrální tabulka faktů (1) Obklopena tabulkami dimenzí (n) Nejjednodušší a nejběžnější přístup k budování DWH

53 Schéma star Dimenze: Čas Dimenze: Produkt Tabulka faktů: Objednávky Dimenze: Město Dimenze: Objednatel

54 Schéma snowflake Centrální tabulka faktů (1) Obklopena tabulkami dimenzí (n) Tabulky dimenzí se dále rozpadají do vzájemný vazeb Tzv. normalizace

55 Schéma star Tabulka faktů: Objednávky Dimenze: Stát Dimenze: Město Dimenze: Adresa Dimenze: Čtvrť Dimenze: Kontinent

56 Samostatný příklad Navrhněte základní datový model pro příklad reportů z předchozího příkladu Pokuste se o snowflake přístup

57 Kontrolní otázky OLAP vs. OLTP? Snowflake vs. star? Základní operace s kostkou?

58 DATAMINING

59 Definice dolování dat Označení procesu vyhledávání znalostí skrytých v rozsáhlých objemech dat popisující velká množství konkrétních jednotlivých pozorování. Metoda založená na statistice a průzkumu velkého množství dat

60 Co nám datamining umožnuje? Objevovat skryté vazby mezi různorodými veličinami, Generovat obecné poznatky na základě těchto zjištění, Zvýšení obratu / loajality zákazníků, Kreditní scoring, Odhalování podezřelého chování,

61 Využití Pojišťovnictví, Medicína, Automobilismus, Bankovnictví, Turismus, Reklama, TV, Facebook

62 Využití dataminingu (e)shop: Doporučování ( mohlo by se vám líbit / kupované spolu ), List přání (wish-list), Upsell (slevy, doporučení, sleva pokud, ), Cílená reklama, Kategorizace zákazníků / typických košů

63 Základní vzory Asociace vazby Predikce Předpověď dalšího kroku Shluky kategorizace Sekvenční vztahy Vztahy v čase

64 Proces CRISP - DM

65 Co je potřeba 1. Mít data (ideálně v DWH) 2. Znát svá data 3. Mít představu o tom co v datech hledm 4. Vědět jak výsledky využít

66 CO JSME SE DNES NAUČILI?

67 Otázky Co je to BI? Co je to informace? Jaké problémy mohou být s daty? Základní komponenty BI? Datamart vs DWH Přístupy k návrhu Star vs. Snowflake Datamining

68 Nárožní 2600/9a,158 00, PRAHA 5 tel

Podnikové informační systémy Jan Smolík

Podnikové informační systémy Jan Smolík Podnikové informační systémy Jan Smolík Zobecněné schéma aplikační architektury Vlastníci, management Aplikační architektura podnikové informatiky Business Intelligence, manažerské aplikace Obchodní partneři

Více

Datový sklad. Datový sklad

Datový sklad. Datový sklad Datový sklad Postavení v rámci IS/ICT Specifika návrhu Modelování Datový sklad POSTAVENÍ NÁVRH Postavení datového skladu (DW) v IS/ICT z hlediska aplikací jako součást Business Intelligence z hlediska

Více

DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS

DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS DATABÁZOVÉ SYSTÉMY Současné aplikace IS/ICT Informační systémy a databázové systémy Databázová technologie Informační systémy Aplikační architektura Vlastníci, management Business Intelligence, manažerské

Více

Dobývání znalostí z databází. Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek

Dobývání znalostí z databází. Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek Databáze datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek 980103 Jan Novak Dlouha 5 Praha 1 9945371 100.00 100.00 980105 Jan Novak Dlouha 5 Praha 1 9945371 1500.00 1600.00 980106

Více

QAD Business Intelligence

QAD Business Intelligence QAD Business Intelligence Vladimír Bartoš, Pavel Němec Konzultanti 13.6.2012 Komponenty QAD BI Analytické tabule pro podporu rozhodování Spolupráce uživatelů nad analyzovanými daty Reporty Generátor analytických

Více

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Aplikace IS, outsourcing, systémová integrace Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Kontext Dodavatelé Strategická Zákazníci ERP Taktická Operativní Kategorie ERP - zaměřeno na

Více

Využití moderní self-service BI technologie v praxi

Využití moderní self-service BI technologie v praxi Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Katedra informačních technologií Studijní program: Aplikovaná informatika Obor: Informační systémy a technologie Využití moderní self-service

Více

Základy business intelligence. Jaroslav Šmarda

Základy business intelligence. Jaroslav Šmarda Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování

Více

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Aplikace IS, outsourcing, systémová integrace Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Kontext Dodavatelé Strategická Zákazníci ERP Taktická Operativní Kategorie ERP - zaměřeno na

Více

PostgreSQL jako platforma pro datové sklady

PostgreSQL jako platforma pro datové sklady PostgreSQL jako platforma pro datové sklady Vratislav Beneš benes@optisolutions.cz 1. Co to jsou datové sklady? 2. Požadavky na datový sklady 3. Technické řešení datového skladu 4. PostgreSQL a datové

Více

BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu

BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu BI v rámci IS/ICT komponenty BI architektura Charakteristika dat a procesů v IS/ICT Datové sklady ukládání dat návrh datového skladu BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních

Více

Nová dimenze rozhodovacího procesu

Nová dimenze rozhodovacího procesu Nová dimenze rozhodovacího procesu Marek Matoušek Pavel Mašek Data, nebo INFORMACE Využití dostupných firemních dat Několik systémů, mnoho různých dat Různé divize, různé potřeby Potřeba integrace dat

Více

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Zdroje Studijní materiály Heleny Palovské

Více

Obsah Úvod 11 Jak být úspěšný Základy IT

Obsah Úvod 11 Jak být úspěšný Základy IT Obsah Úvod 11 Jak být úspěšný 13 Krok 0: Než začneme 13 Krok 1: Vybrat si dobře placenou oblast 14 Krok 2: Vytvořit si plán osobního rozvoje 15 Krok 3: Naplnit osobní rozvoj 16 Krok 4: Osvojit si důležité

Více

T T. Think Together 2012. Martin Závodný THINK TOGETHER. Business Intelligence systémy Business Intelligence systems

T T. Think Together 2012. Martin Závodný THINK TOGETHER. Business Intelligence systémy Business Intelligence systems Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Doktorská vědecká konference 6. února 2012 T T THINK TOGETHER Think Together 2012 Business Intelligence systémy Business Intelligence systems

Více

Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat

Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Vladimíra Zádová BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních operací

Více

Databázové systémy I. 1. přednáška

Databázové systémy I. 1. přednáška Databázové systémy I. 1. přednáška Vyučující a cvičení St 13:00 15:50 Q09 Pavel Turčínek St 16:00 18:50 Q09 Oldřich Faldík Čt 10:00 12:50 Q09 Jan Turčínek Pá 7:00 9:50 Q08 Pavel Turčínek Pá 10:00 12:50

Více

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 2. a 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká: 2. soustředění 16.1.2009

Více

Datové sklady. Ing. Jan Přichystal, Ph.D. 1. listopadu 2011. PEF MZLU v Brně

Datové sklady. Ing. Jan Přichystal, Ph.D. 1. listopadu 2011. PEF MZLU v Brně PEF MZLU v Brně 1. listopadu 2011 Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské spousty nejrůznějších údajů. Příkladem mohou být informace z obchodování s cennými papíry

Více

Návrh ROLAP databáze v zemědělském podniku: Transformace ekonometrického modelu do konceptuálního modelu dat

Návrh ROLAP databáze v zemědělském podniku: Transformace ekonometrického modelu do konceptuálního modelu dat Návrh ROLAP databáze v zemědělském podniku: Transformace ekonometrického modelu do konceptuálního modelu dat Tyrychtr Jan 1, Buchtela David 2, Havlíček Zdeněk 3 Česká zemědělská univerzita, Provozně ekonomická

Více

10. Datové sklady (Data Warehouses) Datový sklad

10. Datové sklady (Data Warehouses) Datový sklad 10. Datové sklady (Data Warehouses) Datový sklad komplexní data uložená ve struktuře, která umožňuje efektivní analýzu a dotazování data čerpána z primárních informačních systémů a dalších zdrojů OLAP

Více

Výuka integrovaných IS firem a institucí na vysokých školách (zkušenosti, nové příležitosti, omezení)

Výuka integrovaných IS firem a institucí na vysokých školách (zkušenosti, nové příležitosti, omezení) Výuka integrovaných IS firem a institucí na vysokých školách (zkušenosti, nové příležitosti, omezení) Milena Tvrdíková Katedra aplikované informatiky Ekonomická fakulta VŠB Technická univerzita Ostrava

Více

Kvalita dat v datovém skladu nezbytný předpoklad reportingu

Kvalita dat v datovém skladu nezbytný předpoklad reportingu Bankovní institut vysoká škola Praha Katedra matematiky, statistiky a informačních technologií Kvalita dat v datovém skladu nezbytný předpoklad reportingu Diplomová práce Autor: Vedoucí práce: Bc. Jana

Více

kapitola 2 Datové sklady, OLAP

kapitola 2 Datové sklady, OLAP Tomáš Burger, burger@fit.vutbr.cz kapitola 2 Datové sklady, OLAP Získávání znalostí z databází IT-DR-3 / ZZD Co je to datový sklad A data warehouse is a subjectoriented, integrated, time-variant and nonvolatile

Více

Přehled systému Microsoft SQL Server. Komu je kniha určena Struktura knihy Nejvhodnější výchozí bod pro čtení knihy Konvence a struktura knihy

Přehled systému Microsoft SQL Server. Komu je kniha určena Struktura knihy Nejvhodnější výchozí bod pro čtení knihy Konvence a struktura knihy Komu je kniha určena Struktura knihy Nejvhodnější výchozí bod pro čtení knihy Konvence a struktura knihy Konvence Další prvky Požadavky na systém Ukázkové databáze Ukázky kódu Použití ukázek kódu Další

Více

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP Petr Jaša Obsah Úvod do problematiky Data vs. informace Operační vs. analytická databáze Relační vs. multidimenzionální model Datový sklad Důvody pro budování datových skladů Definice, znaky Schéma vazeb

Více

Data v informačních systémech

Data v informačních systémech Data v informačních systémech Vladimíra Zádová, KIN 6. 5. 2015 Obsah přednášky informační systémy (IS) vztah dat a informačních systémů databáze, databázový systém základní dělení IS, trendy pojmy (terminologie)

Více

Institut biostatistiky a analýz MU. Zkušenosti s vyhodnocováním telemedicínských technologií

Institut biostatistiky a analýz MU. Zkušenosti s vyhodnocováním telemedicínských technologií Institut biostatistiky a analýz MU Zkušenosti s vyhodnocováním telemedicínských technologií 1 O IBA hlavní oblasti zájmu Faculty of Science, Masaryk University Faculty of Medicine, Masaryk University Analýza

Více

GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o.

GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. GIS jako důležitá součást BI Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. ARCDATA PRAHA, s.r.o. THE GEOGRAPHIC ADVANTAGE Motto Sladit operační taktiku s organizační strategií Strategie bez taktiky je

Více

Základní informace o co se jedná a k čemu to slouží

Základní informace o co se jedná a k čemu to slouží Základní informace o co se jedná a k čemu to slouží založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové

Více

Mgr. Jan Folbrecht Senior softwarový inženýr, softwarový architekt, manažer

Mgr. Jan Folbrecht Senior softwarový inženýr, softwarový architekt, manažer Mgr. Jan Folbrecht Senior softwarový inženýr, softwarový architekt, manažer SPECIALIZACE Konzultace a školení v oblastech softwarového inženýrství Zavádění vývojových metodik do projektů a vývojových týmů

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více

NÁSTROJE BUSINESS INTELLIGENCE

NÁSTROJE BUSINESS INTELLIGENCE NÁSTROJE BUSINESS INTELLIGENCE Milena Tvrdíková VŠB Technická univerzita Ostrava, Ekonomická fakulta, Katedra informatiky v ekonomice, Sokolská 33, 701021 Ostrava1, ČR, milena.tvrdikova@vsb.cz Abstrakt

Více

Business Intelligence a datové sklady

Business Intelligence a datové sklady Business Intelligence a datové sklady Ing Jan Přichystal, PhD Mendelova univerzita v Brně 2 prosince 2014 Ing Jan Přichystal, PhD Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské

Více

Moderní metody automatizace a hodnocení marketingových kampaní

Moderní metody automatizace a hodnocení marketingových kampaní Moderní metody automatizace a hodnocení marketingových kampaní SAS CI Roadshow 2014 24/09/2014 Vít Stinka Agenda Představení společnosti Unicorn Systems Aliance Unicorn Systems a SAS Celkový koncept Customer

Více

KIV/SI. Přednáška č.8. Jan Valdman, Ph.D. jvaldman@dns.cz

KIV/SI. Přednáška č.8. Jan Valdman, Ph.D. jvaldman@dns.cz KIV/SI Přednáška č.8 Jan Valdman, Ph.D. jvaldman@dns.cz 19.4.2011 Business Intelligence (BI) The Top Challenges of Midsize Companies Improve efficiency, reduce costs Strengthen customer relationships,

Více

Databázové systémy trocha teorie

Databázové systémy trocha teorie Databázové systémy trocha teorie Základní pojmy Historie vývoje zpracování dat: 50. Léta vše v programu nevýhody poměrně jasné Aplikace1 alg.1 Aplikace2 alg.2 typy1 data1 typy2 data2 vytvoření systémů

Více

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný CPM/BI a jeho návaznost na podnikové informační systémy Martin Závodný Agenda Význam CPM/BI Aplikace CPM/BI Projekty CPM/BI Kritické body CPM/BI projektů Trendy v oblasti CPM/BI Diskuse Manažerské rozhodování

Více

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1 Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové

Více

Aplikace moderních informaèních technologií v øízení firmy Nástroje ke zvyšování kvality informaèních systémù

Aplikace moderních informaèních technologií v øízení firmy Nástroje ke zvyšování kvality informaèních systémù Edice Management v informaèní spoleènosti Edièní rada: Prof. Ing. Josef Basl, CSc. Vysoká škola ekonomická v Praze pøedseda Ing. Kateøina Drongová Grada Publishing, a.s. místopøedseda Prof. Ing. Jan Ehleman,

Více

2013 IBM Corporation

2013 IBM Corporation 2013 IBM Corporation Connections v praxi Jak vypadá nasazení Social software v praxi MICHAL HOLOUBEK Social Business konzultant, oxy Online, s.r.o. 2013 IBM Corporation Agenda Úvod Zadání a specifikace

Více

Aplikace pro podporou manažerského rozhodování

Aplikace pro podporou manažerského rozhodování Mendelova univerzita v Brně Provozně ekonomická fakulta Aplikace pro podporou manažerského rozhodování Diplomová práce Vedoucí práce: Ing. Pavel Turčínek, Ph.D. Bc. Jiří Nevídal Brno 2015 Rád bych tímto

Více

Modelování a návrh datových skladů

Modelování a návrh datových skladů Modelování a návrh datových skladů Doc. Ing. B. Miniberger, CSc. BIVŠ Obsah 1. Přednáška I. Základy modelování datových skladů (DW) 2. Přednáška II. ETL procesy III. Data Mining IV. Kvalita dat a BI Literatura

Více

Řešení IS/IT - produkty a služby. ERP systém

Řešení IS/IT - produkty a služby. ERP systém Struktura IS podniku Řešení IS/IT - produkty a služby Internet klient CRM Integrace dokumentů Databáze ERP systém E/Business Groupware Datové Sklady ; Speciální ng SW aplikace MS Exch Lotus N Doc Čáro

Více

Reportingová platforma v České spořitelně

Reportingová platforma v České spořitelně Reportingová platforma v České spořitelně Agenda Implementované prostředí Cognos 8 v ČS Marek Varga, Česká spořitelna, a.s. Využití platformy Cognos z pohledu businessu Petr Kozák, Česká spořitelna, a.s.

Více

Business Intelligence - principy, efekty, předpoklady. OKsystem, 26/11/2009

Business Intelligence - principy, efekty, předpoklady. OKsystem, 26/11/2009 Business Intelligence - principy, efekty, předpklady OKsystem, 26/11/2009 Jan Pur katedra IT, VŠE / ITG, s.r.. (pur@vse.cz, pur@itg.cz ) Snímek 1 Agenda 1. Prč Business Intelligence? 2. Základní principy

Více

TM1 vs Planning & Reporting

TM1 vs Planning & Reporting R TM1 vs Planning & Reporting AUDITOVATELNOST? ZABEZPEČENÍ? SDÍLENÍ? KONSOLIDACE? PROPOJITELNOST???? TM1?? COGNOS PLANNING IBM COGNOS 8 PLANNING Cognos Planning Podpora plánovacího cyklu Jednoduchá tvorba

Více

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1 Informační

Více

3 zdroje dat. Relační databáze EIS OLAP

3 zdroje dat. Relační databáze EIS OLAP Zdroje dat 3 zdroje dat Relační databáze EIS OLAP Relační databáze plochá dvourozměrná tabulková data OLTP (Online Transaction Processing) operace selekce projekce spojení průnik, sjednocení, rozdíl dotazování

Více

Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1. Your Organization (Line #1)

Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1. Your Organization (Line #1) Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1 2005-12-31 1.12.2009 Your Daniel Name Vojtek Jakub Your Valčík Title Your Organization (Line #1) Your Organization Query Languages (Line #2) I Agenda

Více

KIV/SI. Rozílová témata. Jan Valdman, Ph.D. jvaldman@dns.cz

KIV/SI. Rozílová témata. Jan Valdman, Ph.D. jvaldman@dns.cz KIV/SI Rozílová témata Jan Valdman, Ph.D. jvaldman@dns.cz 13.6.2011 Integrace Datová vrsta Přesouvání informací mezi DB Databová pumpa, SQL procedura... Problém: pouze relační integrita, záruka za aplikaci

Více

Nasazení CA Role & Compliance Manager

Nasazení CA Role & Compliance Manager Nasazení CA Role & Compliance Manager Michal Opatřil Junior Solution Architect Agenda Popis typické situace v rozsáhlých organizacích Řešení Identity Lifecycle Management Úrovně vyspělosti integrace ILM

Více

FINANČNÍ KONSOLIDACE TEORIE A PRAKTICKÁ REALIZACE PROSTŘEDNICTVÍM INFORMAČNÍCH SYSTÉMŮ

FINANČNÍ KONSOLIDACE TEORIE A PRAKTICKÁ REALIZACE PROSTŘEDNICTVÍM INFORMAČNÍCH SYSTÉMŮ FINANČNÍ KONSOLIDACE TEORIE A PRAKTICKÁ REALIZACE PROSTŘEDNICTVÍM INFORMAČNÍCH SYSTÉMŮ Ing. Milan Bartoš Capgemini Sophia s.r.o. member of the Capgemini Group Abstrakt Cílem článku je představit teoreticky

Více

ŘÍZENÍ OBCHODU (N_ROb)

ŘÍZENÍ OBCHODU (N_ROb) Katedra řízení podniku ŘÍZENÍ OBCHODU (N_ROb) Pavla Břečková pavla.breckova@vsfs.cz Vedoucí Katedry řízení podniku Fakulta ekonomických studií ŘÍZENÍ OBCHODU struktura 5 řízených konzultací 1. Podnik a

Více

HR reporting aneb kouzla s daty. 24.3.2015 Jan Pavelka

HR reporting aneb kouzla s daty. 24.3.2015 Jan Pavelka HR reporting aneb kouzla s daty 24.3.2015 Jan Pavelka HR snídaně vážně i s humorem 2 Agenda 1. Historie 2. Metody 3. Projekt 4. Nástroje 3 Hodnota pro business Analýza HR dat 4. Prediktivní analýza 2.

Více

ÚVOD DO DATABÁZÍ. Metodické listy pro předmět

ÚVOD DO DATABÁZÍ. Metodické listy pro předmět Metodické listy pro předmět ÚVOD DO DATABÁZÍ Cíl: Cílem tohoto předmětu je získat základní znalosti v oblasti databází, naučit se dotazovací jazyk SQL a naučit se zásady dobrého navrhování databází. Převážná

Více

Efekty a rizika Business Intelligence

Efekty a rizika Business Intelligence Jan Pour Katedra informačních technologií VŠE pour@vsecz David Slánský Adastra Corporation DavidSlansky@AdastraCorpcom Abstrakt: Tento článek analyzuje nejdůležitější efekty užití aplikací Business Intelligence

Více

RELAČNÍ DATABÁZOVÉ SYSTÉMY

RELAČNÍ DATABÁZOVÉ SYSTÉMY RELAČNÍ DATABÁZOVÉ SYSTÉMY VÝPIS KONTROLNÍCH OTÁZEK S ODPOVĚDMI: Základní pojmy databázové technologie: 1. Uveďte základní aspekty pro vymezení jednotlivých přístupů ke zpracování hromadných dat: Pro vymezení

Více

Řízení správy rolí v rozsáhlých organizacích. Michal Opatřil Corinex Group

Řízení správy rolí v rozsáhlých organizacích. Michal Opatřil Corinex Group Řízení správy rolí v rozsáhlých organizacích Michal Opatřil Corinex Group Agenda Popis typické situace v rozsáhlých organizacích Řešení Identity Lifecycle Management Úrovně vyspělosti integrace ILM Požadavky

Více

Integrace podnikových Open Source aplikací v praxi. RNDr. Petr Novák, Open Source Conference Praha, 19. duben 2011

Integrace podnikových Open Source aplikací v praxi. RNDr. Petr Novák, Open Source Conference Praha, 19. duben 2011 Integrace podnikových Open Source aplikací v praxi RNDr. Petr Novák, Open Source Conference Praha, 19. duben 2011 Partneři řešení Business Systems, a.s. www.bsys.cz MULTIMAGE, s.r.o. www.multimageweb.com

Více

1.1. Správa a provozní podpora APV ROS, HW ROS a základního SW

1.1. Správa a provozní podpora APV ROS, HW ROS a základního SW Příloha č. 4 - Specifikace a informace o předmětu veřejné zakázky Předmětem veřejné zakázky je řízení projektu, správa a údržba programového vybavení pro informační systém Základní Registr osob (dále rovněž

Více

Datové sklady a využití datové struktury typu hvězda pro prostorová data

Datové sklady a využití datové struktury typu hvězda pro prostorová data Datové sklady a využití datové struktury typu hvězda pro prostorová data Jiří Horák 1, Bronislava Horáková 2 1 Institut geoinformatiky, HGF, VŠB-TU Ostrava, 17.listopadu 15, 70833, Ostrava-Poruba, ČR jiri.horak@vsb.cz

Více

Systémy pro podporu rozhodování. Datové sklady, OLAP

Systémy pro podporu rozhodování. Datové sklady, OLAP Systémy pro podporu rozhodování Datové sklady, OLAP 1 4. Datový management: sklady, přístup a vizualizace Principy MSS Nové koncepce Objektové databáze Inteligentní databáze Datové sklady On-line analytické

Více

Business Intelligence

Business Intelligence Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma

Více

Business Intelligence 2015. Hlavní témata, která budou v roce 2015 určovat vývoj business intelligence řešení a služeb.

Business Intelligence 2015. Hlavní témata, která budou v roce 2015 určovat vývoj business intelligence řešení a služeb. Business Intelligence 2015 Hlavní témata, která budou v roce 2015 určovat vývoj business intelligence řešení a služeb. Leden 2015 Téma č. 1: Cloudové služby budou využívat lokální data V roce 2015 se zvýší

Více

Aktuální otázky provozu datových skladů PAVEL HNÍK

Aktuální otázky provozu datových skladů PAVEL HNÍK Aktuální otázky provozu datových skladů PAVEL HNÍK K čemu slouží datové sklady IT podporuje business podniků S velikostí podniku se zvyšuje náročnost zpracování dat DWH = unifikovaná datová základna pro

Více

Produkty třídy BYZNYS

Produkty třídy BYZNYS Produkty třídy BYZNYS - jistota, spolehlivost a dynamika ve Vašich datech Jiří Rákosník, obchodní ředitel ing. Vlastimil Fousek, vedoucí analytického a vývojového oddělení Produkty třídy BYZNYS informační

Více

Business Intelligence nástroje a plánování

Business Intelligence nástroje a plánování Business Intelligence nástroje a plánování pro snadné reportování a vizualizaci Petr Mlejnský Business Intelligence pro reporting, analýzy a vizualizaci Business Intelligence eporting Dashboardy a vizualizace

Více

Executive DBA - Marketing Doctor of Business Administration

Executive DBA - Marketing Doctor of Business Administration Executive DBA - Marketing Doctor of Business Administration Garant: prof. Ing. O. Kratochvíl, PhD, CSc., MBA, Dr.h.c. Komu určeno: Studium je určeno všem podnikatelům, manažerům, vedoucím pracovníkům všech

Více

Ing. Roman Danel, Ph.D. 2010

Ing. Roman Danel, Ph.D. 2010 Datový sklad Ing. Roman Danel, Ph.D. 2010 Co je to datový sklad a kdy se používá? Pojmem datový sklad (anglicky Data Warehouse) označujeme zvláštní typ databáze, určený primárně pro analýzy dat v rámci

Více

Datové sklady ve školství

Datové sklady ve školství Datové sklady ve školství aneb evaluace procesu výuky jinak Jana Šarmanová Obsah Business Intelligence a školní výuka Databáze a datové sklady Analýza datového skladu Studie DS pro studijní agendu VŠ Studie

Více

Získávání znalostí z dat

Získávání znalostí z dat Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace

Více

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?

Více

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

GIS a Business Intelligence

GIS a Business Intelligence GIS pre územnú samosprávu GIS a Business Intelligence (pohled ze strany GIS) Rudolf Richter, BERIT services s.r.o. 1 Východiska pro rozhodování Data existují, ale jsou fragmentována v různorodých produkčních

Více

STÁTNÍ POKLADNA. Integrovaný informační systém Státní pokladny (IISSP)

STÁTNÍ POKLADNA. Integrovaný informační systém Státní pokladny (IISSP) POKLADNA Integrovaný informační systém Státní pokladny (IISSP) Ing. Miroslav Kalousek ministr financí Praha 17.12.2012 Page 1 Integrovaný informační systém Státní pokladny (IISSP) Centrální systém účetních

Více

Sybase IQ: Honza Válek Anywhere s.r.o. jan.valek@anywhere.cz

Sybase IQ: Honza Válek Anywhere s.r.o. jan.valek@anywhere.cz Sybase IQ: Analytický svět o 90 lépe Honza Válek Anywhere s.r.o. jan.valek@anywhere.cz Agenda 1 2 3 4 BI refresh Symptomy skomírající BI infrastruktury Sybase IQ Vysoký výkon + Nízké TCO 5 Potřeby business

Více

Projekt Business Intelligence pro společnost Nutricia, a.s.

Projekt Business Intelligence pro společnost Nutricia, a.s. Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze Student : Karel Hrubý Vedoucí bakalářské práce : PhDr. Kateřina Julišová TÉMA BAKALÁŘSKÉ

Více

Návrh a analýza požadavků na výběr manažerského informačního systému

Návrh a analýza požadavků na výběr manažerského informačního systému Návrh a analýza požadavků na výběr manažerského informačního systému The Design and Analysis of Requirements for the Selection of Business Information Systems Jaroslav Hanák Bakalářská práce 2015 ABSTRAKT

Více

Simatic PCS 7 V8.0 Novinky v software Operační systém Novinky Web klient Simatic PDM Asset management Procesní historian Virtualizace HW IEC 61850

Simatic PCS 7 V8.0 Novinky v software Operační systém Novinky Web klient Simatic PDM Asset management Procesní historian Virtualizace HW IEC 61850 Simatic PCS 7 V8.0 Novinky v software Operační systém Novinky Simatic PDM Procesní historian HW Jan Kváč Siemens, s.r.o. jan.kvac@siemens.com tel: 2 3303 2462 Podporované operační systémy Funkce pro ES,

Více

Vysoká škola báňská Technická univerzita Ostrava METODY ANALÝZY DAT. Učební text. Jana Šarmanová

Vysoká škola báňská Technická univerzita Ostrava METODY ANALÝZY DAT. Učební text. Jana Šarmanová Vysoká škola báňská Technická univerzita Ostrava METODY ANALÝZY DAT Učební text Jana Šarmanová Ostrava 2012 Recenze: prof. RNDr. Alena Lukasová, CSc. Název: Metody analýzy dat Autor: Jana Šarmanová Vydání:

Více

METODY A PROST EDKY PRO SNÍŽENÍ NÁKLAD A ZVÝŠENÍ VÝKONU

METODY A PROST EDKY PRO SNÍŽENÍ NÁKLAD A ZVÝŠENÍ VÝKONU METODY A PROST EDKY PRO SNÍŽENÍ NÁKLAD A ZVÝŠENÍ VÝKONU DATA SHOW 2014 9:30 Registrace 10:00 Úvod 10:10 ATTEYA Reporty a BI v reálném ase 10:30 VISITECH Management projektových firem 11:00 TAGIT RFID identifikace

Více

Analýza a návrh datového skladu pro telekomunikační společnost. Bc. Josef Jurák

Analýza a návrh datového skladu pro telekomunikační společnost. Bc. Josef Jurák Analýza a návrh datového skladu pro telekomunikační společnost Bc. Josef Jurák Diplomová práce 2006 ABSTRAKT Business Intelligence a Data warehouse jsou základní prostředky pro podporu rozhodování, které

Více

Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek

Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek Databáze datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek 980103 Jan Novak Dlouha 5 Praha 1 9945371 100.00 100.00 980105 Jan Novak Dlouha 5 Praha 1 9945371 1500.00 1600.00 980106

Více

Hyperion a vazba na reportovací nástroje

<Insert Picture Here> Hyperion a vazba na reportovací nástroje Hyperion a vazba na reportovací nástroje Martin Grof Senior Konzultant, Oracle Czech Agenda Enterprise Performance management Představení funkčních oblastí realizace úspor Priority

Více

Možnosti reportingu v produktech řady EPM

Možnosti reportingu v produktech řady EPM Možnosti reportingu v produktech řady EPM Martin Répal Senior konzultant/manager EPM MCITP, MCP, MOS, MCTS, vtsp, Prince II martin.repal@autocont.cz 1 Jak je to s reportingem? Má SW produkt reporty? Tak

Více

Jan Váša TGB Sales Representative, Oracle Czech 10. června 2011 MRI Kladno

Jan Váša TGB Sales Representative, Oracle Czech 10. června 2011 MRI Kladno Jan Váša TGB Sales Representative, Oracle Czech 10. června 2011 MRI Kladno Oracle a veřejná správa Oracle a veřejná správa Oracle není jen databáze Oracle a veřejná správa Oracle

Více

Dimenzionální modelování. 2014 Profinit. All rights reserved.

Dimenzionální modelování. 2014 Profinit. All rights reserved. Dimenzinální mdelvání RNDr. Ondřej Zýka ndrej.zyka@prfinit.eu 2014 Prfinit. All rights reserved. Dimenzinální mdelvání Ralph Kimball (1997) Primárně mdely pr datvé sklady a analýzy Silně denrmalizvaný

Více

Databázové systémy, MS Access. Autor: Ing. Jan Nožička SOŠ a SOU Česká Lípa VY_32_INOVACE_1130_Databázové systémy, MS Access_PWP

Databázové systémy, MS Access. Autor: Ing. Jan Nožička SOŠ a SOU Česká Lípa VY_32_INOVACE_1130_Databázové systémy, MS Access_PWP Databázové systémy, MS Access Autor: Ing. Jan Nožička SOŠ a SOU Česká Lípa VY_32_INOVACE_1130_Databázové systémy, MS Access_PWP Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity:

Více

v praxi Rizika a přínosy zavádění BI jako nástroje pro řízení podnikání

v praxi Rizika a přínosy zavádění BI jako nástroje pro řízení podnikání Podpora rozhodování v praxi Rizika a přínosy zavádění BI jako nástroje pro řízení podnikání HanušRais Business DevelopmentManager SAS Institute ČR s.r.o. Agenda Úvod - Profil SAS Institute Pojem Business

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA EKONOMICKÁ Bakalářská práce Popis principů Business Intelligence a výzkum použití v oblasti malých a středních podniků Description of Principles of Business Intelligence

Více

Efektivní řízení pomocí Business Intelligence. Ján Zajíc (Clever Decision) Robert Havránek (Microsoft)

Efektivní řízení pomocí Business Intelligence. Ján Zajíc (Clever Decision) Robert Havránek (Microsoft) Efektivní řízení pomocí Business Intelligence Ján Zajíc (Clever Decision) Robert Havránek (Microsoft) Kde najdete nejefektivnějšího manažera? Hierarchie řízení a informační potřeby High level, agregované

Více

Importy dat z relační databáze do OLAP datových kostek

Importy dat z relační databáze do OLAP datových kostek Masarykova univerzita Fakulta informatiky Importy dat z relační databáze do OLAP datových kostek Bakalářská práce Brno 2012 Zdeněk Laštůvka Prohlášení Prohlašuji, že tato práce je mým původním autorským

Více

NÁVRH ŘEŠENÍ BUSINESS INTELLIGENCE PRO PERSONÁLNÍ AGENTURU

NÁVRH ŘEŠENÍ BUSINESS INTELLIGENCE PRO PERSONÁLNÍ AGENTURU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS NÁVRH ŘEŠENÍ BUSINESS INTELLIGENCE PRO PERSONÁLNÍ

Více

IBM Komplexní reporting - case study POC pro sázkovou kancelář

IBM Komplexní reporting - case study POC pro sázkovou kancelář Ondřej Bothe Cognos Technical Professional, Martin Pavlík - IM Technical Professional 09/02/2010 IBM Komplexní reporting - case study POC pro sázkovou kancelář Definice Case Study Cíl: vytvoření dvou ukázkových

Více

POSOUZENÍ INFORMAČNÍHO SYSTÉMU SPOLEČNOSTI GASCO S. R. O. A NÁVRH ZMĚN ASSESSMENT OF THE INFORMATION SYSTEM AND DESIGN CHANGES

POSOUZENÍ INFORMAČNÍHO SYSTÉMU SPOLEČNOSTI GASCO S. R. O. A NÁVRH ZMĚN ASSESSMENT OF THE INFORMATION SYSTEM AND DESIGN CHANGES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS POSOUZENÍ INFORMAČNÍHO SYSTÉMU SPOLEČNOSTI

Více

UNICORN COLLEGE. Bakalářská práce

UNICORN COLLEGE. Bakalářská práce UNICORN COLLEGE Katedra informačních technologií Bakalářská práce Master Data Management - Teorie unifikace dat Autor BP: Rostislav Česnek Vedoucí BP: Ing. Miroslav Žďárský 2014 Praha Čestné prohlášeni

Více

Hlava v oblacích s nohama na zemi

Hlava v oblacích s nohama na zemi smooth business flow Hlava v oblacích s nohama na zemi con4pas, a.s. Novodvorská 1010/14A, 140 00 Praha 4 tel.: +420 261 393 211, fax: +420 261 393 212 www.con4pas.cz SAP Cloud for Customer 2 Mapa řešení

Více