Základní informace o co se jedná a k čemu to slouží

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Základní informace o co se jedná a k čemu to slouží"

Transkript

1 Základní informace o co se jedná a k čemu to slouží

2 založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové systémy) proto se OLTP systémy, ve vztahu k OLAP systémům, chápou jako primární, zdrojové nebo produkční v běžném provozu probíhají desítky až statisíce transakcí za minutu (INSERT, UPDATE a DELETE. Obvykle mnoha uživateli zároveň) systémy jsou zatěžovány kontinuálně a jsou optimalizovány zejména na sběr dat a zobrazování jednotlivých dat OLTP systémy obsahují vysoké množství dat (GB, TB, PT) a provádění analýz nad těmito daty kolikrát znamená neúnosné zatížení celého systému, které má za následek prodloužení času odezvy respektive nedostupnost OLTP systémů pro jejich primární určení (pořizování, ukládání a zobrazování dat) OLTP systémy nejsou vhodné pro analýzy (i přesto, že je možné nad OLTP systémy vybudovat analytické aplikace) nejen proto byly k analytickým účelům vyvinuty OLAP systémy - 1 -

3 informační technologie založená na koncepci multidimenzionálních databází hlavním principem je několikadimenzionální tabulka (tzv. datová kostka) základní vlastností OLAP je tedy schopnost uživatelů analyzovat data z jakéhokoliv pohledu (tzv. multidimenzionalita), který si přejí a tudíž nejsou nuceni spoléhat na pohledy, které vytvořil někdo jiný (tvorba Adhoc uživatelských sestav koncovými uživateli) OLAP systémy jsou primárně určeny pro analýzu velkého množství údajů (podpora dotazování) OLAP systémy v drtivé většině aktualizují svá data periodicky (nejběžněji v denních a měsíčních intervalech. Lze i aktualizace dat v reálném čase, avšak jedná se o výjimečné případy) OLAP systémy využívají primární data vytvořená v OLTP systémech

4 stejně jako jsou v relačních databázích data ukládána v tabulkách, v OLAP databázích se k tomuto účelu používají datové kostky datové kostky jsou tedy vícerozměrným (vícedimenzionálním) rozšířením databázových tabulek (2-dimenzionální, 3-dimenzionální a více dimenzionální datové kostky. Počet dimenzí může být teoreticky nekonečně mnoho, vždy však záleží na konkrétní implementaci) Důležité pojmy: viz. dimenze datové kostky elementy dimenze hierarchie dimenzí multidimenzionalita řídkost dat datové kostky - 3 -

5 - 2-dimenzionální dat. kostka může být například list v MS Excel (dimenzemi jsou sloupce a řádky). Viz. jedna tabulka na obrázku níže kde ve sloupcích je dimenze geografického umístění prodejen a v řádcích je dimenze produktů - 3-dimenzionální dat. kostka může být například soubor v MS Excel (dimenzemi jsou sloupce, řádky a listy) Viz. obrázek níže kde ve sloupcích je dimenze geografického umístění prodejen, v řádcích je dimenze produktů a v listech je dimenze času Jelikož je nejpohodlnější se na vše dívat dvourozměrně (sloupce a řádky), tak musíme využít tzv. řezy, které nám ulehčují pohled na další dimenze datové kostky

6 Datová kostka složená z 5 dimenzí: 1) Dimenze výrobku 2) Dimenze verze výpočtu 3) Dimenze požadované doby výpočtu 4) Dimenze nákladů 5) Dimenze hodnot Příklad jednoho možného zobrazení vícedimenzionální datové kostky v technologii IBM Cognos TM1-5 -

7 dimenze reprezentuje určitou kategorii pro analýzu dat (například dimenze času, dimenze geografického umístění poboček, ) dimenze = soubor souvisejících objektů, nazývaných elementy dimenze Elementy dimenze: o typickými elementy v dimenzi výrobek může být například název výrobku, velikost výrobku, prodejní cena výrobku, náklady na výrobu, atd

8 Elementy dimenze mohou být uspořádány v hierarchické struktuře, tzn. že se rozdělují na skupiny elementů, podskupiny až na jednotlivé elementy v dimenzi je možné vytvořit více hierarchií umožnění uživateli pohybovat se pružně po požadovaných úrovních agregace, aniž by bylo nutné vždy znovu požadované agregace počítat tento princip se označuje: Drill-down - zpřístupnění dat od nejvyšší úrovně agregace až po nejnižší úroveň (např. v časové dimenzi rozpad od dat za celý rok až po data za jednotlivé dny) Drill-up - zpřístupnění dat od nejnižší úrovně agregace až po nejvyšší úroveň (např. v časové dimenzi od data za jednotlivé dny až po data za celý rok) - 7 -

9 Příklady hierarchické struktury dimenze: geografické umístění prodejen: o EU CZ Praha Brno DE Berlin Stuttgart dimenze času: o rok pololetí kvartál měsíc týden - 8 -

10 - 9 -

11 multidimensionální uložení dat v datové kostce umožňuje uživateli pružně realizovat různé pohledy (řezy) na data v datové kostce (analýza údajů podle určitých kritérií) tj. možnost pohlížet na realitu z několika možných úhlů (jiné pohledy na data mohou změnit celkový pohled nad daným problém) A - Analýza údajů podle geografických kritérií B - Analýza údajů podle produktu C - Analýza údajů podle časových kritérií Řezy kostkou podle časové, regionální a produktové dimenze

12 Příklad změny pohledu jednoduchou záměnou dimenze času za dimenzi umístění prodejny. Přechod z analýzy podle časových kritérií na analýzu podle geografických kritérií

13 s narůstajícím počtem dimenzí kostky (se zvětšující se kostkou) je mnoho buněk (představujících specifické kombinace atributů) prázdných (viz. níže uvedený obrázek + popis) neefektivní využití kapacity uložiště není vhodné za každou cenu vytvářet jednu kostku o vysokém počtu dimenzí, ale spíše více kostek o menším počtu dimenzí Popis: Jednotlivé produkty v určitém čase nejsou prodávány ve všech prodejnách (např. produkt je určen jen pro určitý trh a nelze ho beze změn prodávat na jiném trhu). Tudíž vzniká mnoho buněk prázdných (z určitého důvodu je nelze vyplnit daty)

14 Výhody + Rychlý komplexní přístup k velkému objemu údajů + Možnost komplexních analýz + Silné schopnosti pro modelování a prognózy Nevýhody - Vyšší nároky na kapacitu uložiště - Flexibilita Rozšiřování datových kostek je obtížné Vhodné spíše tam, kde jsou věci statického charakteru Pro věci dynamického charakteru je vhodnější spíše relační databáze Při spojování více kostek se objevuje problém podle čeho kostky spojit

15 [1] NOVOTNÝ, Ota; POUR, Jan; SLÁNSKÝ, David. Business Intelliegence : Jak využít bohatství ve vašich datech. Praha : Grada Publishing, a.s., s. ISBN [2] LACKO, Luboslav. Databáze: datové sklady, OLAP a dolování dat s příklady v Microsoft SQL Serveru a Oracle. Brno : Computer Press, a.s., s. ISBN [3] Computer Science 831: Knowledge Discovery in Databases [online] [cit ]. Introduction to Data Cubes. Dostupné z WWW: <http://www2.cs.uregina.ca/~hamilton/courses/831/notes/dcubes/dcubes. html>. [4] VLÁŠKOVÁ, Markéta. Návrh hybridního úložiště dat [online]. Plzeň, s. Diplomová práce. Západočeská univerzita v Plzni. Dostupné z WWW: <http://zcu.arcao.com/kiv/db2/zkouska/_zvesela/db2%20- %20Kupka/DP_Marketa_Vlaskova_2006.pdf>

Základy business intelligence. Jaroslav Šmarda

Základy business intelligence. Jaroslav Šmarda Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování

Více

TM1 vs Planning & Reporting

TM1 vs Planning & Reporting R TM1 vs Planning & Reporting AUDITOVATELNOST? ZABEZPEČENÍ? SDÍLENÍ? KONSOLIDACE? PROPOJITELNOST???? TM1?? COGNOS PLANNING IBM COGNOS 8 PLANNING Cognos Planning Podpora plánovacího cyklu Jednoduchá tvorba

Více

Dotazovací jazyky I. Datová krychle. Soběslav Benda

Dotazovací jazyky I. Datová krychle. Soběslav Benda Dotazovací jazyky I Datová krychle Soběslav Benda Obsah Úvod do problematiky Varianty přístupu uživatelů ke zdrojům dat OLTP vs. OLAP Datová analýza Motivace Vytvoření křížové tabulky Datová krychle Teorie

Více

POKROČILÉ POUŽITÍ DATABÁZÍ

POKROČILÉ POUŽITÍ DATABÁZÍ POKROČILÉ POUŽITÍ DATABÁZÍ Barbora Tesařová Cíle kurzu Po ukončení tohoto kurzu budete schopni pochopit podstatu koncepce databází, navrhnout relační databázi s využitím pokročilých metod, navrhovat a

Více

Ing. Roman Danel, Ph.D. 2010

Ing. Roman Danel, Ph.D. 2010 Datový sklad Ing. Roman Danel, Ph.D. 2010 Co je to datový sklad a kdy se používá? Pojmem datový sklad (anglicky Data Warehouse) označujeme zvláštní typ databáze, určený primárně pro analýzy dat v rámci

Více

Business Intelligence

Business Intelligence Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma

Více

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Zdroje Studijní materiály Heleny Palovské

Více

Distanční opora předmětu: Databázové systémy Tématický blok č. 3: OLAP, operátory CUBE a ROLLUP Autor: RNDr. Jan Lánský, Ph.D.

Distanční opora předmětu: Databázové systémy Tématický blok č. 3: OLAP, operátory CUBE a ROLLUP Autor: RNDr. Jan Lánský, Ph.D. Distanční opora předmětu: Databázové systémy Tématický blok č. 3: OLAP, operátory CUBE a ROLLUP Autor: RNDr. Jan Lánský, Ph.D. Obsah kapitoly 1 OLTP a OLAP 1.1 Datový sklad 1.2 Datová kostka 2 OLAP dotazy

Více

Analýza dat skoro zadarmo možnosti rozborů pro malé organizace

Analýza dat skoro zadarmo možnosti rozborů pro malé organizace Analýza dat skoro zadarmo možnosti rozborů pro malé organizace Martin Hess Microsoft Office Specialist Master Certification katedra informačních technologií VŠE Praha hess@vse.cz Abstrakt Článek se zabývá

Více

kapitola 2 Datové sklady, OLAP

kapitola 2 Datové sklady, OLAP Tomáš Burger, burger@fit.vutbr.cz kapitola 2 Datové sklady, OLAP Získávání znalostí z databází IT-DR-3 / ZZD Co je to datový sklad A data warehouse is a subjectoriented, integrated, time-variant and nonvolatile

Více

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19 3 Obsah Novinky v tomto vydání 10 Význam základních principů 11 Výuka principů nezávisle na databázových produktech 12 Klíčové pojmy, kontrolní otázky, cvičení, případové studie a projekty 12 Software,

Více

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP Petr Jaša Obsah Úvod do problematiky Data vs. informace Operační vs. analytická databáze Relační vs. multidimenzionální model Datový sklad Důvody pro budování datových skladů Definice, znaky Schéma vazeb

Více

NÁSTROJE BUSINESS INTELLIGENCE

NÁSTROJE BUSINESS INTELLIGENCE NÁSTROJE BUSINESS INTELLIGENCE Milena Tvrdíková VŠB Technická univerzita Ostrava, Ekonomická fakulta, Katedra informatiky v ekonomice, Sokolská 33, 701021 Ostrava1, ČR, milena.tvrdikova@vsb.cz Abstrakt

Více

Stručný obsah. K2118.indd 3 19.6.2013 9:15:27

Stručný obsah. K2118.indd 3 19.6.2013 9:15:27 Stručný obsah 1. Stručný obsah 3 2. Úvod 11 3. Seznamy a databáze v Excelu 13 4. Excel a externí data 45 5. Vytvoření kontingenční tabulky 65 6. Využití kontingenčních tabulek 81 7. Kontingenční grafy

Více

SEMINÁŘ MANAŢERSKÉ SYSTÉMY

SEMINÁŘ MANAŢERSKÉ SYSTÉMY 22.10.2008 SEMINÁŘ MANAŢERSKÉ SYSTÉMY S PŘÍVLASKEM Prezentace zajímavých projektů BUSINESS INTELLIGENCE 16.10.2008 Ing. Jan Klimeš, ORTEX 1 & Hyman K*A*P*L*A*N Mapa semináře (aneb co Vám chci říci ) Obsah

Více

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1 Informační

Více

Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat

Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Vladimíra Zádová BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních operací

Více

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1 Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové

Více

Business Intelligence a datové sklady

Business Intelligence a datové sklady Business Intelligence a datové sklady Ing Jan Přichystal, PhD Mendelova univerzita v Brně 2 prosince 2014 Ing Jan Přichystal, PhD Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské

Více

Modelování a návrh datových skladů

Modelování a návrh datových skladů Modelování a návrh datových skladů Doc. Ing. B. Miniberger, CSc. BIVŠ Obsah 1. Přednáška I. Základy modelování datových skladů (DW) 2. Přednáška II. ETL procesy III. Data Mining IV. Kvalita dat a BI Literatura

Více

T T. Think Together 2012. Martin Závodný THINK TOGETHER. Business Intelligence systémy Business Intelligence systems

T T. Think Together 2012. Martin Závodný THINK TOGETHER. Business Intelligence systémy Business Intelligence systems Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Doktorská vědecká konference 6. února 2012 T T THINK TOGETHER Think Together 2012 Business Intelligence systémy Business Intelligence systems

Více

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný CPM/BI a jeho návaznost na podnikové informační systémy Martin Závodný Agenda Význam CPM/BI Aplikace CPM/BI Projekty CPM/BI Kritické body CPM/BI projektů Trendy v oblasti CPM/BI Diskuse Manažerské rozhodování

Více

Novinky SQL Serveru 2005 v oblasti Business Intelligence

Novinky SQL Serveru 2005 v oblasti Business Intelligence Novinky SQL Serveru 2005 v oblasti Business Intelligence Seminární práce na předmět Business Intelligence (4IT435) Vypracoval Borek Bernard, leden 2006 1 Abstrakt Microsoft SQL Server 2005 je po mnoha

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více

8.2 Používání a tvorba databází

8.2 Používání a tvorba databází 8.2 Používání a tvorba databází Slide 1 8.2.1 Základní pojmy z oblasti relačních databází Slide 2 Databáze ~ Evidence lidí peněz věcí... výběry, výpisy, početní úkony Slide 3 Pojmy tabulka, pole, záznam

Více

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

Databáze v MS ACCESS

Databáze v MS ACCESS 1 z 14 19.1.2014 18:43 Databáze v MS ACCESS Úvod do databází, návrh databáze, formuláře, dotazy, relace 1. Pojem databáze Informací se data a vztahy mezi nimi stávají vhodnou interpretací pro uživatele,

Více

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ Podle toho, zda informační systém funguje na operativní, taktické nebo strategické řídicí úrovni, můžeme systémy rozdělit do skupin. Tuto pyramidu

Více

KAPITOLA 2. Architektura, modelování a implementace Business Intelligence procesů v SQL Serveru 2008. V této kapitole:

KAPITOLA 2. Architektura, modelování a implementace Business Intelligence procesů v SQL Serveru 2008. V této kapitole: KAPITOLA 2 Architektura, modelování a implementace Business Intelligence procesů v SQL Serveru 2008 V této kapitole: Architektura Business Intelligence na platformě SQL Serveru 2008 Modelování procesů

Více

Maturitní témata Školní rok: 2015/2016

Maturitní témata Školní rok: 2015/2016 Maturitní témata Školní rok: 2015/2016 Ředitel školy: Předmětová komise: Předseda předmětové komise: Předmět: PhDr. Karel Goš Informatika a výpočetní technika Mgr. Ivan Studnička Informatika a výpočetní

Více

13. blok Práce s XML dokumenty v databázi Oracle

13. blok Práce s XML dokumenty v databázi Oracle 13. blok Práce s XML dokumenty v databázi Oracle Studijní cíl Tento blok je věnován práci s XML dokumenty, možnostmi jejich uložení a práce s nimi v databázi Oracle a datovému typu XMLType. Doba nutná

Více

Analýza a návrh datového skladu pro telekomunikační společnost. Bc. Josef Jurák

Analýza a návrh datového skladu pro telekomunikační společnost. Bc. Josef Jurák Analýza a návrh datového skladu pro telekomunikační společnost Bc. Josef Jurák Diplomová práce 2006 ABSTRAKT Business Intelligence a Data warehouse jsou základní prostředky pro podporu rozhodování, které

Více

GIS a Business Intelligence

GIS a Business Intelligence GIS pre územnú samosprávu GIS a Business Intelligence (pohled ze strany GIS) Rudolf Richter, BERIT services s.r.o. 1 Východiska pro rozhodování Data existují, ale jsou fragmentována v různorodých produkčních

Více

Reportingová platforma v České spořitelně

Reportingová platforma v České spořitelně Reportingová platforma v České spořitelně Agenda Implementované prostředí Cognos 8 v ČS Marek Varga, Česká spořitelna, a.s. Využití platformy Cognos z pohledu businessu Petr Kozák, Česká spořitelna, a.s.

Více

SAP Business One Analytics powered by SAP HANA: Analytic Content and Enterprise Search

SAP Business One Analytics powered by SAP HANA: Analytic Content and Enterprise Search SAP Business One Analytics powered by SAP HANA: Analytic Content and Enterprise Search Agenda SAP Business One Analytics Powered by SAP HANA (B1A) Analytic Content and Enterprise Search Přehled Dashboardy

Více

Střední odborná škola a Střední odborné učiliště, Hořovice

Střední odborná škola a Střední odborné učiliště, Hořovice Kód DUM : VY_32_INOVACE_DYN.1.20 Název materiálu: Anotace Autor Jazyk Očekávaný výstup 20 PHP- Základy práce s databází PHP 3. část MySQL (výběrové dotazy) DUM je žákům průvodcem v základech tvorby výpisů

Více

Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1. Your Organization (Line #1)

Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1. Your Organization (Line #1) Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1 2005-12-31 1.12.2009 Your Daniel Name Vojtek Jakub Your Valčík Title Your Organization (Line #1) Your Organization Query Languages (Line #2) I Agenda

Více

Ing. Jaroslav Kačmařík, Ing. Břetislav Nesvadba Využití GIS v oblasti železniční infrastruktury

Ing. Jaroslav Kačmařík, Ing. Břetislav Nesvadba Využití GIS v oblasti železniční infrastruktury Ing. Jaroslav Kačmařík, Ing. Břetislav Nesvadba Využití GIS v oblasti železniční infrastruktury ČD - Telematika a.s., Pernerova 2819/2a, 130 00 Praha 3 Úvod Základní odvětví železniční infrastruktury Odvětví

Více

Okruhy k absolutoriu specializace Podniková informatika

Okruhy k absolutoriu specializace Podniková informatika Okruhy k absolutoriu specializace Podniková informatika 1. Data informace znalosti Definice a vzájemné vztahy pojmů data informace znalosti Jednotky informace (bit, byte), dvojková soustava Vysvětlete

Více

Srovnání SQL serverů. Škálovatelnost a výkon. Express Workgroup Standard Enterprise Poznámky. Počet CPU 1 2 4 bez limitu Obsahuje podporu

Srovnání SQL serverů. Škálovatelnost a výkon. Express Workgroup Standard Enterprise Poznámky. Počet CPU 1 2 4 bez limitu Obsahuje podporu Srovnání SQL serverů Škálovatelnost a výkon Počet CPU 1 2 4 bez limitu Obsahuje podporu RAM 1 GB 3 GB bez limitu bez limitu vícejádrových (multicore) procesorů 64-bit podpora Windows on Windows (WOW) WOW

Více

powerful SAP-Solutions

powerful SAP-Solutions We deliver powerful SAP-Solutions to the World! Praktický průvodce novými SAP technologiemi Září 2015 Martin Chmelař itelligence, a.s. Milníky: 2002: založení společnosti 2008: společnost členem itelligence

Více

Vývoj moderních technologií při vyhledávání. Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz

Vývoj moderních technologií při vyhledávání. Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz Vývoj moderních technologií při vyhledávání Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz INFORUM 2007: 13. konference o profesionálních informačních zdrojích Praha, 22. - 24.5. 2007 Abstrakt Vzhledem

Více

Možnosti vzdáleného řízení a správy lékárenského mikrořetězce. Ing. Filip Debef Cyrmex, s.r.o.

Možnosti vzdáleného řízení a správy lékárenského mikrořetězce. Ing. Filip Debef Cyrmex, s.r.o. Možnosti vzdáleného řízení a správy lékárenského mikrořetězce Ing. Filip Debef Cyrmex, s.r.o. Jaké řízení by měla mít každá firma Odborný management Vzhledem k oboru ve kterém působí Vinař, pekař, strojní

Více

DELTA - STŘEDNÍ ŠKOLA INFORMATIKY A EKONOMIE, s.r.o. Obor informační technologie AJAX ESHOP. Maturitní projekt. Třída:

DELTA - STŘEDNÍ ŠKOLA INFORMATIKY A EKONOMIE, s.r.o. Obor informační technologie AJAX ESHOP. Maturitní projekt. Třída: DELTA - STŘEDNÍ ŠKOLA INFORMATIKY A EKONOMIE, s.r.o. Obor informační technologie AJAX ESHOP Maturitní projekt Vypracoval: Denis Ptáček Třída: 4B Rok: 2014/2015 Obsah 1. Použité nástroje... 3 1.1 NetBeans

Více

7. Geografické informační systémy.

7. Geografické informační systémy. 7. Geografické informační systémy. 154GEY2 Geodézie 2 7.1 Definice 7.2 Komponenty GIS 7.3 Možnosti GIS 7.4 Datové modely GIS 7.5 Přístup k prostorovým datům 7.6 Topologie 7.7 Vektorové datové modely 7.8

Více

Efektívne riadenie financií v ISS Facility Services Prípadová štúdia BI

Efektívne riadenie financií v ISS Facility Services Prípadová štúdia BI Efektívne riadenie financií v ISS Facility Services Prípadová štúdia BI Logo partnera Efektívne riadenie financií v ISS Facility Services Prípadová štúdia BI Agenda Ciele prezentácie prípadovej štúdie

Více

Publikujeme web. "Kam s ním?!"

Publikujeme web. Kam s ním?! Publikujeme web "Kam s ním?!" Publikujeme web Publikujeme web Máme webové stránky, hrajeme si s nimi doma, ale chceme je ukázat světu. Jak na to? 1. Vlastní server 2. Hosting (prostor na cizím serveru)

Více

Použití databází na Webu

Použití databází na Webu 4IZ228 tvorba webových stránek a aplikací Jirka Kosek Poslední modifikace: $Date: 2010/11/18 11:33:52 $ Obsah Co nás čeká... 3 Architektura webových databázových aplikací... 4 K čemu se používají databázové

Více

PRVNÍ ELASTICKÝ INFORMAČNÍ SYSTÉM : QI

PRVNÍ ELASTICKÝ INFORMAČNÍ SYSTÉM : QI PRVNÍ ELASTICKÝ INFORMAČNÍ SYSTÉM : QI Cyril Klimeš a) Jan Melzer b) a) Ostravská univerzita, katedra informatiky a počítačů, 30. dubna 22, 701 03 Ostrava, ČR E-mail: cyril.klimes@osu.cz b) DC Concept

Více

Úvod do databází. Modelování v řízení. Ing. Petr Kalčev

Úvod do databází. Modelování v řízení. Ing. Petr Kalčev Úvod do databází Modelování v řízení Ing. Petr Kalčev Co je databáze? Množina záznamů a souborů, které jsou organizovány za určitým účelem. Jaké má mít přínosy? Rychlost Spolehlivost Přesnost Bezpečnost

Více

IBM Cognos Express. Hlavní přínosy. IBM Cognos Express. IBM Software. Business Analytics

IBM Cognos Express. Hlavní přínosy. IBM Cognos Express. IBM Software. Business Analytics IBM Cognos Express IBM Software je Business Inteligence (BI) řešení pro reporting a plánování, charakteristické rychlým nasazením a snadným ovládáním. Organizacím a pracovním týmům poskytuje vše, co potřebují

Více

Úvod. Boj se zavlečeným impedančním nesouladem na úrovni databáze

Úvod. Boj se zavlečeným impedančním nesouladem na úrovni databáze Boj se zavlečeným impedančním nesouladem na úrovni databáze ABSTRACT: Impedanční nesoulad může být zmírněn správnou volbou databázové technologie. Článek vysvětluje, co to impedanční nesoulad je a uvádí

Více

INOVACE PŘEDMĚTŮ ICT. MODUL 11: PROGRAMOVÁNÍ WEBOVÝCH APLIKLACÍ Metodika

INOVACE PŘEDMĚTŮ ICT. MODUL 11: PROGRAMOVÁNÍ WEBOVÝCH APLIKLACÍ Metodika Vyšší odborná škola ekonomická a zdravotnická a Střední škola, Boskovice INOVACE PŘEDMĚTŮ ICT MODUL 11: PROGRAMOVÁNÍ WEBOVÝCH APLIKLACÍ Metodika Zpracoval: Jaroslav Kotlán srpen 2009s Úvod Modul Programování

Více

Databázové a informační systémy Jana Šarmanová

Databázové a informační systémy Jana Šarmanová Databázové a informační systémy Jana Šarmanová Obsah Úloha evidence údajů, způsoby evidování Databázové technologie datové modely, dotazovací jazyky. Informační systémy Datové sklady Metody analýzy dat

Více

Obsah. Předmluva...19. KAPITOLA 1 Úvod do programu Microsoft Dynamics NAV...23. KAPITOLA 2 Základy ovládání...33

Obsah. Předmluva...19. KAPITOLA 1 Úvod do programu Microsoft Dynamics NAV...23. KAPITOLA 2 Základy ovládání...33 Obsah Předmluva...19 Stručný úvod... 19 Cílová skupina... 20 Cvičení a řešení... 20 Poděkování... 21 Zpětná vazba od čtenářů... 21 Errata... 21 KAPITOLA 1 Úvod do programu Microsoft Dynamics NAV...23 Co

Více

Y16INS INFORMAČNÍ SYSTÉMY. Přednáška č. 1 Ing. Pavel Náplava naplava@fel.cvut.cz Katedra ekonomiky,manažerství a humanitních věd, K13116

Y16INS INFORMAČNÍ SYSTÉMY. Přednáška č. 1 Ing. Pavel Náplava naplava@fel.cvut.cz Katedra ekonomiky,manažerství a humanitních věd, K13116 Y16INS INFORMAČNÍ SYSTÉMY Přednáška č. 1 Ing. Pavel Náplava naplava@fel.cvut.cz Katedra ekonomiky,manažerství a humanitních věd, K13116 Agenda O čem je tento předmět Harmonogram přednášek a cvičení Hodnocení

Více

Bibliografických manažerů je celá řada. Tento materiál popisuje práci s nástrojem zvaným EndNote Basic.

Bibliografických manažerů je celá řada. Tento materiál popisuje práci s nástrojem zvaným EndNote Basic. ENDNOTE BASIC Bibliografické, nazývané také citační nebo referenční, manažery jsou užitečné nástroje sloužící k vytváření osobních bibliografií, a to především pomocí jednoduchého stažení vybraných záznamů

Více

Hierarchický databázový model

Hierarchický databázový model 12. Základy relačních databází Když před desítkami let doktor E. F. Codd zavedl pojem relační databáze, pohlíželo se na tabulky jako na relace, se kterými se daly provádět různé operace. Z matematického

Více

Manažerský informační systém na MPSV. Mgr. Karel Lux, vedoucí oddělení koncepce informatiky MPSV

Manažerský informační systém na MPSV. Mgr. Karel Lux, vedoucí oddělení koncepce informatiky MPSV Manažerský informační systém na MPSV Mgr. Karel Lux, vedoucí oddělení koncepce informatiky MPSV Konference ISSS-2009 Hradec Králové Aldis 6. dubna 2009 MIS na MPSV časové údaje projektu Vytvoření MIS MPSV

Více

Management informačních systémů. Název Information systems management Způsob ukončení * přednášek týdně

Management informačních systémů. Název Information systems management Způsob ukončení * přednášek týdně Identifikační karta modulu v. 4 Kód modulu Typ modulu profilující Jazyk výuky čeština v jazyce výuky Management informačních systémů česky Management informačních systémů anglicky Information systems management

Více

Jádrem systému je modul GSFrameWork, který je poskytovatelem zejména těchto služeb:

Jádrem systému je modul GSFrameWork, který je poskytovatelem zejména těchto služeb: Technologie Marushka Základním konceptem technologie Marushka je použití jádra, které poskytuje přístup a jednotnou grafickou prezentaci geografických dat. Jádro je vyvíjeno na komponentním objektovém

Více

In orma I a. O nl Dva. Počítačové aplikace v podnikové a mezipodnikové praxi Technologie informačních systému R1zení a rozvoj podnikové informatiky

In orma I a. O nl Dva. Počítačové aplikace v podnikové a mezipodnikové praxi Technologie informačních systému R1zení a rozvoj podnikové informatiky I Libor Gála Jan Pour Prokop Toman., O nl Dva.. In orma I a Počítačové aplikace v podnikové a mezipodnikové praxi Technologie informačních systému R1zení a rozvoj podnikové informatiky Českó společnost

Více

Ukládání a vyhledávání XML dat

Ukládání a vyhledávání XML dat XML teorie a praxe značkovacích jazyků (4IZ238) Jirka Kosek Poslední modifikace: $Date: 2014/12/04 19:41:24 $ Obsah Ukládání XML dokumentů... 3 Ukládání XML do souborů... 4 Nativní XML databáze... 5 Ukládání

Více

Geoinformační technologie

Geoinformační technologie Geoinformační technologie Geografické informační systémy (GIS) Výukový materiál l pro gymnázia a ostatní středn ední školy Gymnázium, Praha 6, Nad Alejí 1952 Vytvořeno v rámci projektu SIPVZ 1357P2006

Více

12. blok Fyzický návrh databáze

12. blok Fyzický návrh databáze 12. blok Fyzický návrh databáze Studijní cíl Tento studijní blok se zabývá metodologií fyzického návrhu databáze. Především se zabývá fází převodu logického modelu na model fyzický. Bude vysvětlen účel

Více

Mapový server Marushka. Technický profil

Mapový server Marushka. Technický profil Technický profil Úvodní informace Mapový aplikační server Marushka představuje novou generaci prostředků pro publikaci a využívání dat GIS v prostředí Internetu a intranetu. Je postaven na komponentové

Více

Počítačové kurzy buildit

Počítačové kurzy buildit Počítačové kurzy buildit Kurz MS Windows - základy 1 590 Kč principy systému Windows, ovládání systému, práce s aplikacemi a okny, správa souborů a složek, multitasking, práce se schránkou Uživatelům,

Více

Vypracoval: Ing. Antonín POPELKA. Datum: 30. června 2005. Revize 01

Vypracoval: Ing. Antonín POPELKA. Datum: 30. června 2005. Revize 01 Popis systému Revize 01 Založeno 1990 Vypracoval: Ing. Antonín POPELKA Datum: 30. června 2005 SYSTÉM FÁZOROVÝCH MĚŘENÍ FOTEL Systém FOTEL byl vyvinut pro zjišťování fázových poměrů mezi libovolnými body

Více

Business Intelligence 2015. Hlavní témata, která budou v roce 2015 určovat vývoj business intelligence řešení a služeb.

Business Intelligence 2015. Hlavní témata, která budou v roce 2015 určovat vývoj business intelligence řešení a služeb. Business Intelligence 2015 Hlavní témata, která budou v roce 2015 určovat vývoj business intelligence řešení a služeb. Leden 2015 Téma č. 1: Cloudové služby budou využívat lokální data V roce 2015 se zvýší

Více

Vědecký tutoriál, část I. A Tutorial. Vilém Vychodil (Univerzita Palackého v Olomouci)

Vědecký tutoriál, část I. A Tutorial. Vilém Vychodil (Univerzita Palackého v Olomouci) ..! POSSIBILISTIC Laboratoř pro analýzu INFORMATION: a modelování dat Vědecký tutoriál, část I A Tutorial Vilém Vychodil (Univerzita Palackého v Olomouci) George J. Klir State University of New York (SUNY)

Více

RELAČNÍ DATABÁZE ACCESS

RELAČNÍ DATABÁZE ACCESS RELAČNÍ DATABÁZE ACCESS 1. Úvod... 2 2. Základní pojmy... 3 3. Vytvoření databáze... 5 4. Základní objekty databáze... 6 5. Návrhové zobrazení tabulky... 7 6. Vytváření tabulek... 7 6.1. Vytvoření tabulky

Více

Střední odborná škola a Střední odborné učiliště, Hořovice

Střední odborná škola a Střední odborné učiliště, Hořovice Kód DUM : VY_32_INOVACE_DYN.1.16 Název materiálu: Anotace Autor Jazyk Očekávaný výstup 16 PHP- komplexní úloha Jednoduchá kniha návštěv webové stránky DUM prohloubí a zvnitřní u žáků zásady psaní kódu,

Více

Nová dimenze rozhodovacího procesu

Nová dimenze rozhodovacího procesu Nová dimenze rozhodovacího procesu Marek Matoušek Pavel Mašek Data, nebo INFORMACE Využití dostupných firemních dat Několik systémů, mnoho různých dat Různé divize, různé potřeby Potřeba integrace dat

Více

CZ.1.07/1.5.00/34.0527

CZ.1.07/1.5.00/34.0527 Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

Střední odborná škola a Střední odborné učiliště, Hořovice

Střední odborná škola a Střední odborné učiliště, Hořovice Kód DUM : VY_32_INOVACE_DYN.1.18 Název materiálu: Anotace Autor Jazyk Očekávaný výstup 18 PHP- Základy práce s databází PHP - MySQL DUM naučí žáky postupu při vytvoření, připojení databáze a vytvoření

Více

Datové sklady a možnosti analýzy a reportování dat ve výuce

Datové sklady a možnosti analýzy a reportování dat ve výuce Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze Datové sklady a možnosti analýzy a reportování dat ve výuce Autor bakalářské práce: David

Více

Vyšší odborná škola a Střední škola,varnsdorf, příspěvková organizace. Šablona 4 VY 32 INOVACE 0101 0304

Vyšší odborná škola a Střední škola,varnsdorf, příspěvková organizace. Šablona 4 VY 32 INOVACE 0101 0304 Vyšší odborná škola a Střední škola,varnsdorf, příspěvková organizace Šablona 4 VY 32 INOVACE 0101 0304 VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor

Více

MIS. Manažerský informační systém. pro. Ekonomický informační systém EIS JASU CS. Dodavatel: MÚZO Praha s.r.o. Politických vězňů 15 110 00 Praha 1

MIS. Manažerský informační systém. pro. Ekonomický informační systém EIS JASU CS. Dodavatel: MÚZO Praha s.r.o. Politických vězňů 15 110 00 Praha 1 MIS Manažerský informační systém pro Ekonomický informační systém EIS JASU CS Dodavatel: MÚZO Praha s.r.o. Politických vězňů 15 110 00 Praha 1 Poslední aktualizace dne 5.8.2014 MÚZO Praha s.r.o. je certifikováno

Více

vysvětlit základní pojmy z oblasti databázových systémů; objasnit charakteristické znaky jednotlivých architektur databází, uspořádání modelů dat;

vysvětlit základní pojmy z oblasti databázových systémů; objasnit charakteristické znaky jednotlivých architektur databází, uspořádání modelů dat; 8 Informační a rezervační systémy v letecké dopravě 1 2 Databázové systémy V této kapitole se dozvíte: Historii vývoje databázových systémů a jejich použití při zpracování údajů. Popisy struktur a charakteristiky

Více

01. Kdy se začala formovat koncept relačních databází (Vznik relačního modelu, první definice SQL)? a) 1950 b) 1960 c) 1970 d) 1980

01. Kdy se začala formovat koncept relačních databází (Vznik relačního modelu, první definice SQL)? a) 1950 b) 1960 c) 1970 d) 1980 01. Kdy se začala formovat koncept relačních databází (Vznik relačního modelu, první definice SQL)? a) 1950 b) 1960 c) 1970 d) 1980 02. Kdy přibližně vznikly první komerční relační databázové servery?

Více

Databázové patterny. MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu

Databázové patterny. MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu Databázové patterny MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu Obsah o Co je databázový pattern o Pattern: Přiřazení rolí o Pattern: Klasifikace Databázové patterny o Odzkoušené a doporučené

Více

Marketingová komunikace. 1. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)

Marketingová komunikace. 1. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 1. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká I. Úvod do teorie DB systémů

Více

Obr. 1 Plochý soubor s daty

Obr. 1 Plochý soubor s daty 2. Databáze 2.1 Relační databáze V prehistorii databází byla data ukládána v jednom velkém plochém souboru (tzv. flat file) ke kterému se přistupovalo indexsekvenčními metodami (ISAM). Soubor byl indexován

Více

V čem nám pomáhá datový sklad. Ing. Dana Buřičová Odbor analýz a podpory řízení KrÚ Kraje Vysočina

V čem nám pomáhá datový sklad. Ing. Dana Buřičová Odbor analýz a podpory řízení KrÚ Kraje Vysočina V čem nám pomáhá datový sklad Ing. Dana Buřičová Odbor analýz a podpory řízení KrÚ Kraje Vysočina Obsah prezentace Odpovědi na otázky k tématu proč to všechno děláme a čemu nám to je? jak to děláme? co

Více

FORMÁTOVÁNÍ 3. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika

FORMÁTOVÁNÍ 3. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika Autor: Mgr. Dana Kaprálová FORMÁTOVÁNÍ 3 Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Tvorba webových stránek

Tvorba webových stránek Tvorba webových stránek Kaskádové styly Úprava vzhledu webové stránky pomocí atributů má několik nevýhod a úskalí. Atributy nabízejí málo možností úprav. Obtížně se sjednocují změny na různých částech

Více

Trendy: Růst významu analytického reportingu. Tomáš Pospíšil, Oracle Czech Olomouc, 6.3.2014

Trendy: Růst významu analytického reportingu. Tomáš Pospíšil, Oracle Czech Olomouc, 6.3.2014 Trendy: Růst významu analytického reportingu Tomáš Pospíšil, Oracle Czech Olomouc, 6.3.2014 Témata Údaje, informace, poznání Analytický reporting opravdu to někdo potřebuje? Aktivní

Více

Projekty Plzeňského kraje v oblasti (G)IS

Projekty Plzeňského kraje v oblasti (G)IS Projekty Plzeňského kraje v oblasti (G)IS Geoinformace ve veřejné správě 2013 Praha 27. 28. 5. 2013 Krajský úřad Plzeňského kraje Odbor informatiky Projekt - Digitální mapa veřejné správy Plzeňského kraje

Více

Vysoká škola ekonomická v Praze

Vysoká škola ekonomická v Praze Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Katedra informačních technologií Studijní program: Aplikovaná informatika Obor: Informační systémy a technologie Diplomant: Bc. Ondřej Novák

Více

Získávání znalostí z databází. Alois Kužela

Získávání znalostí z databází. Alois Kužela Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního

Více

Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu:

Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_01_ACCESS_P2 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

CZ.1.07/1.5.00/34.0527

CZ.1.07/1.5.00/34.0527 Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

Správa dat v podniku. MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu

Správa dat v podniku. MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu Správa dat v podniku MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu Obsah o Důležité oblasti pro správu, uchovávání a využívání dat v podniku Něco z historie Řízení dat na úrovni podniku Data

Více

Řízení agendy pojišťovacích makléřů

Řízení agendy pojišťovacích makléřů Řízení agendy pojišťovacích makléřů Produkt Makléř je určen pro samostatné pojišťovací makléře i větší makléřské kanceláře k vedení evidencí spojených se správou pojistných smluv klientů. Základní charakteristika

Více

Od klasického reportingu k SAP BO Design studio na BW power by HANA Pavel Strnad

Od klasického reportingu k SAP BO Design studio na BW power by HANA Pavel Strnad Od klasického reportingu k SAP BO Design studio na BW power by HANA Pavel Strnad CIO PIA5 NSC Prague Obsah Představení firmy Migrace BW to HANA BI architektura ve Wincor Nixdorf Migrační varianty z BW

Více

Analýza a modelování dat 3. přednáška. Helena Palovská

Analýza a modelování dat 3. přednáška. Helena Palovská Analýza a modelování dat 3. přednáška Helena Palovská Historie databázových modelů Relační model dat Codd, E.F. (1970). "A Relational Model of Data for Large Shared Data Banks". Communications of the ACM

Více

Zpracování informací

Zpracování informací Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Přednáška č. 6 z předmětu Zpracování informací Ing. Radek Poliščuk, Ph.D. Tato publikace vznikla jako součást

Více