METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1"

Transkript

1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

2 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ VE VELKÝCH OBJEMECH DAT SLOUŽÍCÍ K ODHALENÍ DŘÍVE NEZNÁMÝCH VZTAHŮ MEZI DATY ZA ÚČELEM ZÍSKÁNÍ OBCHODNÍ VÝHODY VSTUPNÍ DATA JSOU ZÍSKÁVÁNA Z DATOVÝCH SKLADŮ V PROCESU DOLOVÁNÍ JE VELMI DŮLEŽITÁ KVALITA VSTUPNÍCH DAT ČIŠTĚNÍ OD CHYB, SJEDNOCENÍ FORMÁTŮ, AKTUALIZACE DAT

3 OBECNÉ METODY DOLOVÁNÍ DAT PREDIKTIVNÍ MODELOVÁNÍ NA ZÁKLADĚ ZNÁMÉ MNOŽINY VSTUPNÍCH HODNOT A TOMU ODPOVÍDAJÍCÍCH ZNÁMÝCH HODNOT VÝSTUPNÍCH SE HLEDÁ NEJPRAVDĚPODOBNĚJŠÍ HODNOTA VÝSTUPU PRO PŘEDEM NEZNÁMÉ KOMBINACE VSTUPNÍCH HODNOT KLASIFIKACE METODA ROZDĚLOVÁNÍ DAT DO SKUPIN DLE JISTÝCH KRITÉRIÍ. DĚLÍME JI NA ŘÍZENOU (ALESPOŇ PRO VZOREK DAT JSOU KRITÉRIA ZNÁMÁ) A NEŘÍZENOU (KRITÉRIA NEJSOU PŘEDEM ZNÁMÁ A ÚLOHOU KLASIFIKACE JE JEJICH NALEZENÍ)

4 OBECNÉ METODY DOLOVÁNÍ DAT ANALÝZA ASOCIACÍ NEJČASTĚJŠÍM PŘÍKLADEM ANALÝZY ASOCIACÍ JE ANALÝZA NÁKUPNÍHO KOŠÍKU ZABÝVAJÍCÍ SE HLEDÁNÍM KOMBINACÍ PRODUKTŮ, KTERÉ SE VE VSTUPNÍCH DATECH (KOŠÍKU) VYSKYTUJÍ VÝZNAMNĚ ČASTĚJI SPOLU. CÍLEM JE NALÉZT PRAVIDLA TYPU: PŘI NÁKUPU ZBOŽÍ A A C SPOTŘEBITELÉ VÝRAZNĚ ČASTĚJI NAKUPUJÍ I ZBOŽÍ D A B

5 OBECNÉ METODY DOLOVÁNÍ DAT VZORKOVÁNÍ VÝBĚR OMEZENÉ MNOŽINY DAT ZE ZÁKLADNÍHO SOUBORU. NEJJEDNODUŠŠÍM VZORKOVÁNÍM JE NÁHODNÝ VÝBĚR (SLOUŽÍ KE ZMENŠENÍ OBJEMU ZPRACOVÁVANÝCH DAT). SLOŽITĚJŠÍ METODOU JE NAPŘ. VÝBĚR STEJNÉHO POČTU ZÁZNAMŮ DANÉHO TYPU (REDUKCE MNOŽSTVÍ ZPRACOVÁVANÝCH DAT PŘI SOUČASNÉ ZÁRUCE POŽADOVANÉ PŘESNOSTI VÝSLEDKU

6 METODY DOLOVÁNÍ DAT V GIS SHLUKOVÁ ANALÝZA UMĚLÉ NEURONOVÉ SÍTĚ GENETICKÉ ALGORITMY

7 SHLUKOVÁ ANALÝZA ROZDĚLENÍ VSTUPNÍ MNOŽINY DAT DO NĚKOLIKA STEJNORODÝCH NAVZÁJEM DISJUNKTNÍCH SHLUKŮ SNAHOU JE, ABY OBJEKTY UVNITŘ JEDNOHO SHLUKU SI BYLY CO NEJVÍCE PODOBNÉ A ZÁROVEŇ SE CO MOŽNÁ NEJVÍCE ODLIŠOVALY OD OBJEKTŮ JINÝCH SHLUKŮ POČET SHLUKŮ JE, ČI NENÍ ZADÁN POUŽÍVANÉ ALGORITMY: AGLOMERATIVNÍ POSTUP - VYCHÁZÍ Z N SHLUKŮ, KDY KAŽDÝ OBSAHUJE POUZE JEDEN OBJEKT, V KAŽDÉM KROKU SE SHLUKY SPOJUJÍ VE SHLUKY VYŠŠÍ ÚROVNĚ NA ZÁKLADĚ VZDÁLENOSTI ČI PODOBNOSTI OBJEKTŮ

8 SHLUKOVÁ ANALÝZA DIVIZNÍ POSTUP - VYCHÁZÍ Z JEDNOHO SHLUKU, KTERÝ JE KAŽDÉM DALŠÍM KROKU ROZŠTĚPEN NA DVA, NA KONCI PROCESU OBDRŽÍME N SHLUKŮ UMĚLÉ NEURONOVÉ SÍTĚ (UNS) CÍLEM JE SNAHA PŘIBLÍŽIT SE V TECHNICKÉ PRAXI ŽIVÝM ORGANISMŮM, VYCHÁZEJÍ Z ANALOGIE S LIDSKÝM MOZKEM PODOBNĚ JAKO MOZEK JSOU TVOŘENY MNOŽSTVÍM NAVZÁJEM PROPOJENÝCH ELEMENTŮ (NEURONŮ)

9 UMĚLÉ NEURONOVÉ SÍTĚ (UNS) V UNS JE NEURON CHÁPÁN JAKO BUŇKA, KTERÁ PŘIJÍMÁ PODNĚTY OD JINÝCH NEURONŮ, KTERÉ JSOU K NÍ PŘIPOJENY NA VSTUPU. POKUD SOUHRNNÝ ÚČINEK TĚCHTO VSTUPNÍCH PODNĚTŮ PŘEKROČÍ URČITÝ PRÁH, NEURON SE AKTIVUJE A SÁM ZAČNE SVÝM VÝSTUPEM PŮSOBIT NA DALŠÍ NEURONY DŮLEŽITÁ JE SCHOPNOST TĚCHTO MODELŮ UČIT SE Z PŘÍKLADŮ

10 UMĚLÉ NEURONOVÉ SÍTĚ (UNS) Schopnost učit se Zvýšení spolehlivosti (při poruše mohou funkční bloky nahradit funkci bloků poškozených) Schopnost generalizace Obtížná identifikace procesů v UNS Příliš velký počet stupňů volnosti Velký počet variant uspořádání UNS

11 GENETICKÉ ALGORITMY PŘEDSTAVUJÍ PRAVDĚPODOBNOSTNÍ PROHLEDÁVACÍ METODU, KTERÁ JE ZALOŽENA NA PŘÍRODNÍM VÝBĚRU (SELEKCI) A JE INSPIROVÁNA PŘÍRODNÍMI GENETICKÝMI PRINCIPY (DĚDIČNOST, MUTACE, KŘÍŽENÍ) OBECNÉ SCHÉMA ALGORITMU: Vytvoření nulté populace Výběr zdatných jedinců Z vybraných jedinců vygeneruj nové (křížení, reprodukce) Výpočet zdatnosti nových jedinců Konec cyklu (není-li splněna zastavovací podmínka) Konec algoritmu Výstupem je jedinec s nejvyšší zdatností

12 GENETICKÉ ALGORITMY Nevyžadují znalosti o cílové funkci Odolné proti sklouznutí do lokálního optima Využití při optimalizaci Problémy s nalezením přesného optima Implementace není vždy přímočará

13 VYUŽITÍ TECHNIK DOLOVÁNÍ DAT ANALÝZA ÚVĚROVÉHO RIZIKA VYHODNOCENÍ MARKETINGOVÝCH KAMPANÍ SEGMENTACE ZÁKAZNÍKŮ DETEKCE PODVODŮ ANALÝZA PRODUKTŮ ANALÝZA CHOVÁNÍ ZÁKAZNÍKŮ

14 DATOVÉ SKLADY (DATA WAREHOUSE) Jsou zdrojem dat pro proces dolování dat DATA ULOŽENÁ VE STRUKTUŘE UMOŽŇUJÍCÍ EFEKTIVNÍ ANALÝZU A DOTAZOVÁNÍ DATA JSOU DO SKLADŮ ČERPÁNA Z PRIMÁRNÍCH INFORMAČNÍCH ZDROJŮ SKLÁDÁ SE ZE TŘÍ VRSTEV: SPODNÍ (DATOVÝ SKLAD S RELAČNÍ DB) PROSTŘEDNÍ (OLAP) VRCHNÍ (=KLIENT)

15 DATOVÉ SKLADY (DATA WAREHOUSE) OLTP (ON-LINE TRANSACTION PROCESSING, VÝROBA DAT ) PERIODICKÁ AGREGACE (SUMARIZACE) DAT A JEJICH NÁSLEDNÉ ULOŽENÍ DO SKLADU OLAP (ON-LINE ANALYTICAL PROCESSING, PREZENTACE, PRODEJ DAT ) OKAMŽITÉ ZPRACOVÁNÍ DAT, CO NEJRYCHLEJŠÍ POSKYTNUTÍ POŽADOVANÝCH AGREGOVANÝCH DAT ZE SKLADU UŽIVATELI

16 DĚKUJI ZA POZORNOST

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Získávání znalostí z databází. Alois Kužela

Získávání znalostí z databází. Alois Kužela Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního

Více

Základy business intelligence. Jaroslav Šmarda

Základy business intelligence. Jaroslav Šmarda Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování

Více

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Zdroje Studijní materiály Heleny Palovské

Více

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1 Informační

Více

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ Podle toho, zda informační systém funguje na operativní, taktické nebo strategické řídicí úrovni, můžeme systémy rozdělit do skupin. Tuto pyramidu

Více

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1 Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové

Více

Základní informace o co se jedná a k čemu to slouží

Základní informace o co se jedná a k čemu to slouží Základní informace o co se jedná a k čemu to slouží založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové

Více

PowerOPTI Řízení účinnosti tepelného cyklu

PowerOPTI Řízení účinnosti tepelného cyklu PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP Petr Jaša Obsah Úvod do problematiky Data vs. informace Operační vs. analytická databáze Relační vs. multidimenzionální model Datový sklad Důvody pro budování datových skladů Definice, znaky Schéma vazeb

Více

NÁSTROJE BUSINESS INTELLIGENCE

NÁSTROJE BUSINESS INTELLIGENCE NÁSTROJE BUSINESS INTELLIGENCE Milena Tvrdíková VŠB Technická univerzita Ostrava, Ekonomická fakulta, Katedra informatiky v ekonomice, Sokolská 33, 701021 Ostrava1, ČR, milena.tvrdikova@vsb.cz Abstrakt

Více

kapitola 2 Datové sklady, OLAP

kapitola 2 Datové sklady, OLAP Tomáš Burger, burger@fit.vutbr.cz kapitola 2 Datové sklady, OLAP Získávání znalostí z databází IT-DR-3 / ZZD Co je to datový sklad A data warehouse is a subjectoriented, integrated, time-variant and nonvolatile

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

StatSoft Úvod do data miningu

StatSoft Úvod do data miningu StatSoft Úvod do data miningu Tento článek je úvodním povídáním o data miningu, jeho vzniku, účelu a využití. Historie data miningu Rozvoj počítačů, výpočetní techniky a zavedení elektronického sběru dat

Více

Business Intelligence

Business Intelligence Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma

Více

VYUŽITÍ PROGRAMU DATA MINING V ANALÝZE NÁKUPNÍHO CHOVÁNÍ

VYUŽITÍ PROGRAMU DATA MINING V ANALÝZE NÁKUPNÍHO CHOVÁNÍ VYUŽITÍ PROGRAMU DATA MINING V ANALÝZE NÁKUPNÍHO CHOVÁNÍ Petra Hloušková Stanislava Grosová Definice funkčních potravin: Funkční potraviny jsou potraviny, které se podobají běžným konvenčním potravinám

Více

Modelování a návrh datových skladů

Modelování a návrh datových skladů Modelování a návrh datových skladů Doc. Ing. B. Miniberger, CSc. BIVŠ Obsah 1. Přednáška I. Základy modelování datových skladů (DW) 2. Přednáška II. ETL procesy III. Data Mining IV. Kvalita dat a BI Literatura

Více

Novinky SQL Serveru 2005 v oblasti Business Intelligence

Novinky SQL Serveru 2005 v oblasti Business Intelligence Novinky SQL Serveru 2005 v oblasti Business Intelligence Seminární práce na předmět Business Intelligence (4IT435) Vypracoval Borek Bernard, leden 2006 1 Abstrakt Microsoft SQL Server 2005 je po mnoha

Více

Distanční opora předmětu: Databázové systémy Tématický blok č. 3: OLAP, operátory CUBE a ROLLUP Autor: RNDr. Jan Lánský, Ph.D.

Distanční opora předmětu: Databázové systémy Tématický blok č. 3: OLAP, operátory CUBE a ROLLUP Autor: RNDr. Jan Lánský, Ph.D. Distanční opora předmětu: Databázové systémy Tématický blok č. 3: OLAP, operátory CUBE a ROLLUP Autor: RNDr. Jan Lánský, Ph.D. Obsah kapitoly 1 OLTP a OLAP 1.1 Datový sklad 1.2 Datová kostka 2 OLAP dotazy

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat

Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Vladimíra Zádová BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních operací

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19 3 Obsah Novinky v tomto vydání 10 Význam základních principů 11 Výuka principů nezávisle na databázových produktech 12 Klíčové pojmy, kontrolní otázky, cvičení, případové studie a projekty 12 Software,

Více

Webové stránky. 16. Obrázky na webových stránkách, optimalizace GIF. Datum vytvoření: 12. 1. 2013. str ánk y. Vytvořil: Petr Lerch. www.isspolygr.

Webové stránky. 16. Obrázky na webových stránkách, optimalizace GIF. Datum vytvoření: 12. 1. 2013. str ánk y. Vytvořil: Petr Lerch. www.isspolygr. Webové stránky 16. Vytvořil: Petr Lerch www.isspolygr.cz Datum vytvoření: 12. 1. 2013 Webové Strana: 1/6 Škola Ročník Název projektu Číslo projektu Číslo a název šablony Autor Tématická oblast Název DUM

Více

NÁKUP SKUPINY RWE ČESKÁ REPUBLIKA A.S. Den Dodavatelů, 7. 3. 2014, Praha

NÁKUP SKUPINY RWE ČESKÁ REPUBLIKA A.S. Den Dodavatelů, 7. 3. 2014, Praha NÁKUP SKUPINY RWE ČESKÁ REPUBLIKA A.S. Den Dodavatelů, 7. 3. 2014, Praha RWE 3/17/2014 Strana 1 DEN DODAVATELŮ PROČ PRÁVĚ VY? více než 3 000 aktivních dodavatelů ve skupině RWE Roční výdaje = 5 500 000

Více

Big Data a oficiální statistika. Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc.

Big Data a oficiální statistika. Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc. Big Data a oficiální statistika Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc. Obsah příspěvku Charakteristiky Big Data Výzvy a úskalí z perspektivy statistiky Výzvy z perspektivy computing

Více

PLM řešení pro průmysl výroby strojů a strojního zařízení

PLM řešení pro průmysl výroby strojů a strojního zařízení PLM řešení pro průmysl výroby strojů a strojního zařízení Silní v době krize investují a v současné době je vhodná doba na to, aby se firma věnovala optimalizaci vnitřních procesů a činností s cílem posílit

Více

Příprava dat v softwaru Statistica

Příprava dat v softwaru Statistica Příprava dat v softwaru Statistica Software Statistica obsahuje pokročilé nástroje pro přípravu dat a tvorbu nových proměnných. Tyto funkcionality přinášejí značnou úsporu času při přípravě datového souboru,

Více

26 Otázek ESOMARu. 26 Otázek ESOMARu pomáhá zadavatelům výzkumů vybrat vhodného dodavatele on-line výzkumů pro své projekty

26 Otázek ESOMARu. 26 Otázek ESOMARu pomáhá zadavatelům výzkumů vybrat vhodného dodavatele on-line výzkumů pro své projekty 26 Otázek ESOMARu 26 Otázek ESOMARu pomáhá zadavatelům výzkumů vybrat vhodného dodavatele on-line výzkumů pro své projekty Data Collect s.r.o. Geologická 575/2, 152 00 Praha 5 tel. +420 225 020 010 www.datacollect.cz

Více

Úvod do informačních a řídicích systémů. lení

Úvod do informačních a řídicích systémů. lení Úvod do informačních a řídicích systémů Základní pojmy a rozdělen lení Informace Pojem vysoce abstraktní Skutečné informace musí být pravdivé, včasné, jednoznačné a relevantní (atributy informace) Základní

Více

Manažerský informační systém pro podporu ekonomického řízení laboratoří

Manažerský informační systém pro podporu ekonomického řízení laboratoří Manažerský informační systém pro podporu ekonomického řízení laboratoří FONS, 20.9.2010, Pardubice Bc. Pavel Jezdinský www.medila.cz medila@medila.cz Obsah Co potřebujeme řídit Řízení laboratoří MIS? Řízení

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný CPM/BI a jeho návaznost na podnikové informační systémy Martin Závodný Agenda Význam CPM/BI Aplikace CPM/BI Projekty CPM/BI Kritické body CPM/BI projektů Trendy v oblasti CPM/BI Diskuse Manažerské rozhodování

Více

Fyziologický vývoj mozku v dětském věku

Fyziologický vývoj mozku v dětském věku Fyziologický vývoj mozku v dětském věku MUDr. Zuzana Ludvíková Konference Mensa ČR 19.11.2014 Lidský mozek Obsahuje přes 1000 miliard nervových buněk Pokud pracuje naplno odčerpávají neurony 20% z celkové

Více

Sdílení a poskytování dat KN. Jiří Poláček

Sdílení a poskytování dat KN. Jiří Poláček Sdílení a poskytování dat KN Jiří Poláček Přehled služeb Datové služby Výměnný formát (SPI, SGI) Skenované katastrální mapy Aplikace a webové služby Dálkový přístup do KN (včetně webových služeb) Nahlížení

Více

Geoinformační technologie

Geoinformační technologie Geoinformační technologie Geografické informační systémy (GIS) Výukový materiál l pro gymnázia a ostatní středn ední školy Gymnázium, Praha 6, Nad Alejí 1952 Vytvořeno v rámci projektu SIPVZ 1357P2006

Více

Jak získat nové a čerstvé adresy? Ing. Miroslav Červenka, Schober Information Group CZ a.s.

Jak získat nové a čerstvé adresy? Ing. Miroslav Červenka, Schober Information Group CZ a.s. Jak získat nové a čerstvé adresy? Ing. Miroslav Červenka, Schober Information Group CZ a.s. Obsah 1 Nové technologie pro získávání adres 2 Listbroking 3 Výběr cílové skupiny - příklad Seite 2 Nové technologie

Více

Systémy pro podporu rozhodování. Modelování a analýza

Systémy pro podporu rozhodování. Modelování a analýza Systémy pro podporu rozhodování Modelování a analýza 1 Připomenutí obsahu minulé přednášky Datové sklady, přístup, analýza a vizualizace Povaha a zdroje dat (data, informace, znalosti a interní, externí,

Více

Jak si udržet zákazníky a nabídnout jim co nejvíce?

Jak si udržet zákazníky a nabídnout jim co nejvíce? Jak si udržet zákazníky a nabídnout jim co nejvíce? 16. dubna 2010 Presentation title to go here Name of presenter Tradiční produktově orientovaný prodej 1. Produkt 2. Komu ho prodat? 3. Jak? 4. Koupě

Více

8.2 Používání a tvorba databází

8.2 Používání a tvorba databází 8.2 Používání a tvorba databází Slide 1 8.2.1 Základní pojmy z oblasti relačních databází Slide 2 Databáze ~ Evidence lidí peněz věcí... výběry, výpisy, početní úkony Slide 3 Pojmy tabulka, pole, záznam

Více

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování 1 Systémy pro podporu rozhodování 2. Úvod do problematiky systémů pro podporu rozhodování 2 Připomenutí obsahu minulé přednášky Rozhodování a jeho počítačová podpora Manažeři a rozhodování K čemu počítačová

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

Aplikovaná informatika Možnosti analýzy validity a prezentace získaných dat z informačních databází. ZEMÁNEK, Z. - PLUSKAL, D. - ŠUBRT, Z.

Aplikovaná informatika Možnosti analýzy validity a prezentace získaných dat z informačních databází. ZEMÁNEK, Z. - PLUSKAL, D. - ŠUBRT, Z. Aplikovaná informatika Možnosti analýzy validity a prezentace získaných dat z informačních databází. ZEMÁNEK, Z. - PLUSKAL, D. - ŠUBRT, Z. Operační program Vzdělávání pro konkurenceschopnost Název projektu:

Více

Jak učit o změnách klimatu: Průzkum stavu výuky na českých gymnáziích

Jak učit o změnách klimatu: Průzkum stavu výuky na českých gymnáziích Jak učit o změnách klimatu: Průzkum stavu výuky na českých gymnáziích Srpen 2011 1 Projekt byl podpořen Ministerstvem životního prostředí, projekt nemusí vyjadřovat stanoviska MŽP. Shrnutí Předkládaná

Více

Informační systémy. Jaroslav Žáček jaroslav.zacek@osu.cz

Informační systémy. Jaroslav Žáček jaroslav.zacek@osu.cz Informační systémy Jaroslav Žáček jaroslav.zacek@osu.cz Úvod - co možná umíte z předmětu SWENG Rozdělení IT Architektura IS Klíčový prvek řízení IS z něj vycházejí detailní analytické i plánovací charakteristiky

Více

Databázové patterny. MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu

Databázové patterny. MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu Databázové patterny MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu Obsah o Co je databázový pattern o Pattern: Přiřazení rolí o Pattern: Klasifikace Databázové patterny o Odzkoušené a doporučené

Více

Vykazování dat o poskytovaných sociálních službách

Vykazování dat o poskytovaných sociálních službách Vykazování dat o poskytovaných sociálních službách (verze dokumentu 1.4) Odpovědná osoba: Ing. Radomír Martinka V Praze dne: 24.4.2014 Klasifikace: CHRÁNĚNÉ OKsystem s.r.o. Na Pankráci 125, 140 21 Praha

Více

Nábor studentů výsledky a plány středních škol

Nábor studentů výsledky a plány středních škol Nábor studentů výsledky a plány středních škol Studie občanského sdružení Než zazvoní 31. března 2014 Průzkum středních škol Tento dokument shrnuje, jak probíhal nábor studentů na střední školy po celé

Více

(aneb Jaké informace manažeři potřebují?) "Vzdělání je schopnost porozumět druhým. J. W. Goethe

(aneb Jaké informace manažeři potřebují?) Vzdělání je schopnost porozumět druhým. J. W. Goethe VŠSS HAVÍŘOV (aneb Jaké informace manažeři potřebují?) "Vzdělání je schopnost porozumět druhým. J. W. Goethe Co se změnilo v podnikovém řízení? Co se změnilo v podnikovém řízení? Jsou úspory nejlepším

Více

Legislativní předpisy vztahující se k reprodukčnímu materiálu lesních dřevin. Ing. Krnáčová Lada

Legislativní předpisy vztahující se k reprodukčnímu materiálu lesních dřevin. Ing. Krnáčová Lada Legislativní předpisy vztahující se k reprodukčnímu materiálu lesních dřevin Ing. Krnáčová Lada Vstup ČR do Evropské unie 1. května 2004. Vstupem ČR do Evropského společenství jsme byli povinni přijmout

Více

Systémy pro podporu rozhodování. Datový management

Systémy pro podporu rozhodování. Datový management Systémy pro podporu rozhodování Datový management 1 Připomenutí obsahu minulé přednášky Systémy pro podporu rozhodování - hlubší pohled Konfigurace DSS Definice DSS Charakterizace a možnosti DSS Komponenty

Více

Bezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ. www.mestozlin.cz

Bezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ. www.mestozlin.cz Bezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ Město Zlín Jednou z možností monitorování a řízení dopravy v obcích je automatické snímání silničního provozu Monitorování dopravy vozidel

Více

SW pro správu a řízení bezpečnosti

SW pro správu a řízení bezpečnosti Integrační bezpečnostní SW pro správu a řízení bezpečnosti Systém je vlastním produktem společnosti Integoo. Trvalý vývoj produktu reflektuje požadavky trhu a zákazníků. Ať už je velikost vaší organizace

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz, zbynek.winkler at mff.cuni.cz http://robotika.cz/guide/umor07/cs 27. listopadu 2007 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením Mapa světa - příklad Obsah Mapa světa Exaktní

Více

Typické problémy řešené informačními systémy

Typické problémy řešené informačními systémy Informační systémy Informační systém systém umožňující komunikaci a transformaci informací časově, prostorově i co do formy tak, aby byly lépe využity než v původním stavu (systém, který přidává hodnotu

Více

Dobývání znalostí z webu web mining

Dobývání znalostí z webu web mining Dobývání znalostí z webu web mining Web Mining is is the application of data mining techniques to discover patterns from the Web (Wikipedia) Tři oblasti: Web content mining (web jako kolekce dokumentů)

Více

GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o.

GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. GIS jako důležitá součást BI Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. ARCDATA PRAHA, s.r.o. THE GEOGRAPHIC ADVANTAGE Motto Sladit operační taktiku s organizační strategií Strategie bez taktiky je

Více

ZPRACOVÁNÍ A VYUŽITÍ DAT PŘI ŘÍZENÍ PROCESU PLYNULÉHO ODLÉVÁNÍ OCELI

ZPRACOVÁNÍ A VYUŽITÍ DAT PŘI ŘÍZENÍ PROCESU PLYNULÉHO ODLÉVÁNÍ OCELI ZPRACOVÁNÍ A VYUŽITÍ DAT PŘI ŘÍZENÍ PROCESU PLYNULÉHO ODLÉVÁNÍ OCELI Zdeněk FRANĚK 1), Miloš MASARIK 2), René PYSZKO 3), Miroslav PROKEL 4) 1) Slezská univerzita, Obchodně podnikatelská fakulta, Univerzitní

Více

Martin Jakubička Ústav výpočetní techniky MU, Fakulta Informatiky MU Osnova Ohlédnutí za minulým rokem Úvod do problematiky Správa aktiv Ohlédnutí za minulým rokem loňský příspěvek zaměřen na specifikaci,

Více

Metody výběru ve výzkumech veřejného mínění

Metody výběru ve výzkumech veřejného mínění Metody výběru ve výzkumech veřejného mínění Populace (základní soubor) Soubor jednotek, o nichž předpokládáme, že jsou pro ně závěry výzkumu platné Někdy se rozlišuje: Cílová populace - všechny jednotky

Více

STRATEGIE A PROJEKTY ODBORU INFORMATIKY MHMP

STRATEGIE A PROJEKTY ODBORU INFORMATIKY MHMP STRATEGIE A PROJEKTY ODBORU INFORMATIKY MHMP Ing. Ivan Seyček Vedoucí oddělení realizace řešení a provozu Odbor informatiky MHMP 1 / 30. dubna 2009 AGENDA PREZENTACE 1. Strategie Odboru informatiky MHMP

Více

Diagnostika infarktu myokardu pomocí pravidlových systémů

Diagnostika infarktu myokardu pomocí pravidlových systémů pomocí pravidlových systémů Bakalářská práce 2009 pomocí pravidlových systémů Přehled prezentace Motivace a cíle Infarkt myokardu, EKG Pravidlové systémy Výsledky Motivace Infarkt myokardu Detekce infarktu

Více

Business Intelligence a datové sklady

Business Intelligence a datové sklady Business Intelligence a datové sklady Ing Jan Přichystal, PhD Mendelova univerzita v Brně 2 prosince 2014 Ing Jan Přichystal, PhD Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské

Více

MARKETINGOVÝ INFORMAČNÍ SYSTÉM

MARKETINGOVÝ INFORMAČNÍ SYSTÉM MARKETINGOVÝ INFORMAČNÍ SYSTÉM Proč je nutná existence MIS ve firmě? Firmy přechází od místního k celonárodnímu a ke globálnímu marketingu změna orientace od zákaznických potřeb k zák. přáním / stále vybíravější

Více

ROZDÍLY V NÁVRZÍCH RELAČNÍCH A OBJEKTOVÝCH DATABÁZÍ A JEJICH DŮSLEDKY PRO TRANSFORMACI MODELŮ

ROZDÍLY V NÁVRZÍCH RELAČNÍCH A OBJEKTOVÝCH DATABÁZÍ A JEJICH DŮSLEDKY PRO TRANSFORMACI MODELŮ ROZDÍLY V NÁVRZÍCH RELAČNÍCH A OBJEKTOVÝCH DATABÁZÍ A JEJICH DŮSLEDKY PRO TRANSFORMACI MODELŮ RELATIONAL AND OBJECT DATABASES DESIGN DIFFERENCES AND IT S IMPLICATIONS TO MODEL TRANSFORMATION Vít Holub

Více

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy - 2.1 - Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit Množiny vztahů Otázky návrhu Plánování mezí Klíče E-R diagram Rozšířené E-R rysy Návrh E-R databázového schématu Redukce

Více

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Projekt ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH PŘIHLÁŠKA STUDENTSKÉHO PROJEKTU Název projektu: Návrh a implementace procesu zpracování dat, formát MzXML Uchazeč Hlavní řešitel

Více

Využití technologie GIS a prostorových databází při výpočtu fragmentace krajiny. Miroslav Kopecký, Tomáš Soukup

Využití technologie GIS a prostorových databází při výpočtu fragmentace krajiny. Miroslav Kopecký, Tomáš Soukup Využití technologie GIS a prostorových databází při výpočtu fragmentace krajiny Miroslav Kopecký, Tomáš Soukup Geoinformace pro praxi, Brno 27.6.-28.6.2009 Řešitelé Projekt je řešen za podpory EEA v rámci

Více

Fenomén Big Data Pohled technický

Fenomén Big Data Pohled technický Fenomén Big Data Pohled technický Diribet / Q-DAS Konference Homo Digitalis, 2014-10-09 Motivace Běžná situace při rozhodování: Mám více dat, než jsem schopen zpracovat Mám pocit nedostatku informací Více

Více

Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1. Your Organization (Line #1)

Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1. Your Organization (Line #1) Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1 2005-12-31 1.12.2009 Your Daniel Name Vojtek Jakub Your Valčík Title Your Organization (Line #1) Your Organization Query Languages (Line #2) I Agenda

Více

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů

Více

Trendy: Růst významu analytického reportingu. Tomáš Pospíšil, Oracle Czech Olomouc, 6.3.2014

Trendy: Růst významu analytického reportingu. Tomáš Pospíšil, Oracle Czech Olomouc, 6.3.2014 Trendy: Růst významu analytického reportingu Tomáš Pospíšil, Oracle Czech Olomouc, 6.3.2014 Témata Údaje, informace, poznání Analytický reporting opravdu to někdo potřebuje? Aktivní

Více

Průzkumy dopravního chování: základní zdroj dat o dopravní poptávce. Petr Šenk Centrum dopravního výzkumu, v.v.i.

Průzkumy dopravního chování: základní zdroj dat o dopravní poptávce. Petr Šenk Centrum dopravního výzkumu, v.v.i. Průzkumy dopravního chování: základní zdroj dat o dopravní poptávce Petr Šenk Centrum dopravního výzkumu, v.v.i. Metodika aktivitně-cestovního průzkumu Vytvořena v rámci projektu VaV DOPIKOT ve spolupráci

Více

Ing. Roman Danel, Ph.D. 2010

Ing. Roman Danel, Ph.D. 2010 Datový sklad Ing. Roman Danel, Ph.D. 2010 Co je to datový sklad a kdy se používá? Pojmem datový sklad (anglicky Data Warehouse) označujeme zvláštní typ databáze, určený primárně pro analýzy dat v rámci

Více

P R Ů M Y S L O V Ý M A R K E T I N G

P R Ů M Y S L O V Ý M A R K E T I N G P R Ů M Y S L O V Ý M A R K E T I N G 5 ZS, akad.rok 2014/2015 Průmyslový marketing - VŽ 1 M A R K E T I N G O V Ý I N F O R M A Č N Í S Y S T É M ZS, akad.rok 2014/2015 Průmyslový marketing - VŽ 2 Mnoho

Více

Uživatelská podpora v prostředí WWW

Uživatelská podpora v prostředí WWW Uživatelská podpora v prostředí WWW Jiří Jelínek Katedra managementu informací Fakulta managementu Jindřichův Hradec Vysoká škola ekonomická Praha Úvod WWW obsáhlost obsahová i formátová pestrost dokumenty,

Více

0,7 0,6 0,5 0,4 0,3 0,2 0,1

0,7 0,6 0,5 0,4 0,3 0,2 0,1 VÝVOJ PROSTŘEDKŮ VÝPOČTOVÉ INTELIGENCE PRO MONITOROVÁNÍ A ŘÍZENÍ OCELÁŘSKÝCH VÝROBNÍCH PROCESŮ Miroslav Pokorný¹ Václav Kafka² Zdeněk Bůžek³ 1) VŠB TU Ostrava, FEI, 17. listopadu 15, 708 33 Ostrava, ČR,

Více

powerful SAP-Solutions

powerful SAP-Solutions We deliver powerful SAP-Solutions to the World! Praktický průvodce novými SAP technologiemi Září 2015 Martin Chmelař itelligence, a.s. Milníky: 2002: založení společnosti 2008: společnost členem itelligence

Více

Management informačních systémů. Název Information systems management Způsob ukončení * přednášek týdně

Management informačních systémů. Název Information systems management Způsob ukončení * přednášek týdně Identifikační karta modulu v. 4 Kód modulu Typ modulu profilující Jazyk výuky čeština v jazyce výuky Management informačních systémů česky Management informačních systémů anglicky Information systems management

Více

Xirrus Zajímavé funkce. Jiří Zelenka

Xirrus Zajímavé funkce. Jiří Zelenka Xirrus Zajímavé funkce Jiří Zelenka Integrovaný kontrolér Distribuované řízení Řízení na přístupu pro maximální výkon Žádný single point of failure Snadné rozšiřování Centrální řízení Centrální řízení

Více

Marketingový informační systém

Marketingový informační systém Marketingový informační systém Vazba mezi MIS a marketingovým výzkumem. Algoritmus MV. Ing. Lucie Vokáčov ová, vokacova@pef.czu.cz Marketingový informační systém MIS zahrnuje pracovníky, zařízení a informační

Více

Management IS1. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz

Management IS1. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Management IS1 Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz 23 1 Proč a jaký IS/IT? Informační systém je pro podnik totéž, co šaty pro člověka. Může mít vlastní, může mít vypůjčené (outsourcing), ale musí

Více

30.dubna 2010. Ing. Miloslav Kavka

30.dubna 2010. Ing. Miloslav Kavka SNÍŽENÍ PROVOZNÍCH NÁKLADŮ SPOTŘEBNÍ ZDRAVOTNICKÝ MATERIÁL 30.dubna 2010 Ing. Miloslav Kavka Agenda 1. Představení a cíl projektu 2. Časový harmonogram projektu 3. Představení projektu a projektového týmu

Více

7. Geografické informační systémy.

7. Geografické informační systémy. 7. Geografické informační systémy. 154GEY2 Geodézie 2 7.1 Definice 7.2 Komponenty GIS 7.3 Možnosti GIS 7.4 Datové modely GIS 7.5 Přístup k prostorovým datům 7.6 Topologie 7.7 Vektorové datové modely 7.8

Více

Využití strojového učení k identifikaci protein-ligand aktivních míst

Využití strojového učení k identifikaci protein-ligand aktivních míst Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita

Více

Analýza a návrh datového skladu pro telekomunikační společnost. Bc. Josef Jurák

Analýza a návrh datového skladu pro telekomunikační společnost. Bc. Josef Jurák Analýza a návrh datového skladu pro telekomunikační společnost Bc. Josef Jurák Diplomová práce 2006 ABSTRAKT Business Intelligence a Data warehouse jsou základní prostředky pro podporu rozhodování, které

Více

Internetový marketing střední školy zatím nevyužívají. Chtějí se v něm ale zdokonalovat. Shrnutí výsledků průzkumu občanského sdružení Než zazvoní

Internetový marketing střední školy zatím nevyužívají. Chtějí se v něm ale zdokonalovat. Shrnutí výsledků průzkumu občanského sdružení Než zazvoní Internetový marketing střední školy zatím nevyužívají. Chtějí se v něm ale zdokonalovat. Shrnutí výsledků průzkumu občanského sdružení Než zazvoní 7. října 2013 Průzkum mezi učiteli výpočetní techniky

Více

Customer Intelligence, aneb Jak může neoblíbená analýza dat usnadnit práci marketingu

Customer Intelligence, aneb Jak může neoblíbená analýza dat usnadnit práci marketingu Customer Intelligence, aneb Jak může neoblíbená analýza dat usnadnit práci marketingu Filip Trojan Applied Analytics Manager, Deloitte Advisory Listopad 2012 Obsah 1. Představení 2. Marketing versus analýza

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

Automatický optický pyrometr v systémové analýze

Automatický optický pyrometr v systémové analýze ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ K611 ÚSTAV APLIKOVANÉ MATEMATIKY K620 ÚSTAV ŘÍDÍCÍ TECHNIKY A TELEMATIKY Automatický optický pyrometr v systémové analýze Jana Kuklová, 4 70 2009/2010

Více

Skóringový model. Stanovení pravděpodobnosti úpadku subjektu v následujících 12 měsících

Skóringový model. Stanovení pravděpodobnosti úpadku subjektu v následujících 12 měsících BISNODE SKÓRING Skóringový model Stanovení pravděpodobnosti úpadku subjektu v následujících 12 měsících Hodnocení na základě: sofistikovaných matematicko-statistických modelů desítek vstupních parametrů

Více

Ukládání a vyhledávání XML dat

Ukládání a vyhledávání XML dat XML teorie a praxe značkovacích jazyků (4IZ238) Jirka Kosek Poslední modifikace: $Date: 2014/12/04 19:41:24 $ Obsah Ukládání XML dokumentů... 3 Ukládání XML do souborů... 4 Nativní XML databáze... 5 Ukládání

Více

Publikování map na webu - WMS

Publikování map na webu - WMS Semestrální práce z předmětu Kartografická polygrafie a reprografie Publikování map na webu - WMS Autor: Ondřej Dohnal, Martina Černohorská Editor: Filip Dvořáček Praha, duben 2010 Katedra mapování a kartografie

Více

Geografické informační systémy GIS

Geografické informační systémy GIS Geografické informační systémy GIS Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským

Více