METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1
|
|
- Josef Čech
- před 9 lety
- Počet zobrazení:
Transkript
1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1
2 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ VE VELKÝCH OBJEMECH DAT SLOUŽÍCÍ K ODHALENÍ DŘÍVE NEZNÁMÝCH VZTAHŮ MEZI DATY ZA ÚČELEM ZÍSKÁNÍ OBCHODNÍ VÝHODY VSTUPNÍ DATA JSOU ZÍSKÁVÁNA Z DATOVÝCH SKLADŮ V PROCESU DOLOVÁNÍ JE VELMI DŮLEŽITÁ KVALITA VSTUPNÍCH DAT ČIŠTĚNÍ OD CHYB, SJEDNOCENÍ FORMÁTŮ, AKTUALIZACE DAT
3 OBECNÉ METODY DOLOVÁNÍ DAT PREDIKTIVNÍ MODELOVÁNÍ NA ZÁKLADĚ ZNÁMÉ MNOŽINY VSTUPNÍCH HODNOT A TOMU ODPOVÍDAJÍCÍCH ZNÁMÝCH HODNOT VÝSTUPNÍCH SE HLEDÁ NEJPRAVDĚPODOBNĚJŠÍ HODNOTA VÝSTUPU PRO PŘEDEM NEZNÁMÉ KOMBINACE VSTUPNÍCH HODNOT KLASIFIKACE METODA ROZDĚLOVÁNÍ DAT DO SKUPIN DLE JISTÝCH KRITÉRIÍ. DĚLÍME JI NA ŘÍZENOU (ALESPOŇ PRO VZOREK DAT JSOU KRITÉRIA ZNÁMÁ) A NEŘÍZENOU (KRITÉRIA NEJSOU PŘEDEM ZNÁMÁ A ÚLOHOU KLASIFIKACE JE JEJICH NALEZENÍ)
4 OBECNÉ METODY DOLOVÁNÍ DAT ANALÝZA ASOCIACÍ NEJČASTĚJŠÍM PŘÍKLADEM ANALÝZY ASOCIACÍ JE ANALÝZA NÁKUPNÍHO KOŠÍKU ZABÝVAJÍCÍ SE HLEDÁNÍM KOMBINACÍ PRODUKTŮ, KTERÉ SE VE VSTUPNÍCH DATECH (KOŠÍKU) VYSKYTUJÍ VÝZNAMNĚ ČASTĚJI SPOLU. CÍLEM JE NALÉZT PRAVIDLA TYPU: PŘI NÁKUPU ZBOŽÍ A A C SPOTŘEBITELÉ VÝRAZNĚ ČASTĚJI NAKUPUJÍ I ZBOŽÍ D A B
5 OBECNÉ METODY DOLOVÁNÍ DAT VZORKOVÁNÍ VÝBĚR OMEZENÉ MNOŽINY DAT ZE ZÁKLADNÍHO SOUBORU. NEJJEDNODUŠŠÍM VZORKOVÁNÍM JE NÁHODNÝ VÝBĚR (SLOUŽÍ KE ZMENŠENÍ OBJEMU ZPRACOVÁVANÝCH DAT). SLOŽITĚJŠÍ METODOU JE NAPŘ. VÝBĚR STEJNÉHO POČTU ZÁZNAMŮ DANÉHO TYPU (REDUKCE MNOŽSTVÍ ZPRACOVÁVANÝCH DAT PŘI SOUČASNÉ ZÁRUCE POŽADOVANÉ PŘESNOSTI VÝSLEDKU
6 METODY DOLOVÁNÍ DAT V GIS SHLUKOVÁ ANALÝZA UMĚLÉ NEURONOVÉ SÍTĚ GENETICKÉ ALGORITMY
7 SHLUKOVÁ ANALÝZA ROZDĚLENÍ VSTUPNÍ MNOŽINY DAT DO NĚKOLIKA STEJNORODÝCH NAVZÁJEM DISJUNKTNÍCH SHLUKŮ SNAHOU JE, ABY OBJEKTY UVNITŘ JEDNOHO SHLUKU SI BYLY CO NEJVÍCE PODOBNÉ A ZÁROVEŇ SE CO MOŽNÁ NEJVÍCE ODLIŠOVALY OD OBJEKTŮ JINÝCH SHLUKŮ POČET SHLUKŮ JE, ČI NENÍ ZADÁN POUŽÍVANÉ ALGORITMY: AGLOMERATIVNÍ POSTUP - VYCHÁZÍ Z N SHLUKŮ, KDY KAŽDÝ OBSAHUJE POUZE JEDEN OBJEKT, V KAŽDÉM KROKU SE SHLUKY SPOJUJÍ VE SHLUKY VYŠŠÍ ÚROVNĚ NA ZÁKLADĚ VZDÁLENOSTI ČI PODOBNOSTI OBJEKTŮ
8 SHLUKOVÁ ANALÝZA DIVIZNÍ POSTUP - VYCHÁZÍ Z JEDNOHO SHLUKU, KTERÝ JE KAŽDÉM DALŠÍM KROKU ROZŠTĚPEN NA DVA, NA KONCI PROCESU OBDRŽÍME N SHLUKŮ UMĚLÉ NEURONOVÉ SÍTĚ (UNS) CÍLEM JE SNAHA PŘIBLÍŽIT SE V TECHNICKÉ PRAXI ŽIVÝM ORGANISMŮM, VYCHÁZEJÍ Z ANALOGIE S LIDSKÝM MOZKEM PODOBNĚ JAKO MOZEK JSOU TVOŘENY MNOŽSTVÍM NAVZÁJEM PROPOJENÝCH ELEMENTŮ (NEURONŮ)
9 UMĚLÉ NEURONOVÉ SÍTĚ (UNS) V UNS JE NEURON CHÁPÁN JAKO BUŇKA, KTERÁ PŘIJÍMÁ PODNĚTY OD JINÝCH NEURONŮ, KTERÉ JSOU K NÍ PŘIPOJENY NA VSTUPU. POKUD SOUHRNNÝ ÚČINEK TĚCHTO VSTUPNÍCH PODNĚTŮ PŘEKROČÍ URČITÝ PRÁH, NEURON SE AKTIVUJE A SÁM ZAČNE SVÝM VÝSTUPEM PŮSOBIT NA DALŠÍ NEURONY DŮLEŽITÁ JE SCHOPNOST TĚCHTO MODELŮ UČIT SE Z PŘÍKLADŮ
10 UMĚLÉ NEURONOVÉ SÍTĚ (UNS) Schopnost učit se Zvýšení spolehlivosti (při poruše mohou funkční bloky nahradit funkci bloků poškozených) Schopnost generalizace Obtížná identifikace procesů v UNS Příliš velký počet stupňů volnosti Velký počet variant uspořádání UNS
11 GENETICKÉ ALGORITMY PŘEDSTAVUJÍ PRAVDĚPODOBNOSTNÍ PROHLEDÁVACÍ METODU, KTERÁ JE ZALOŽENA NA PŘÍRODNÍM VÝBĚRU (SELEKCI) A JE INSPIROVÁNA PŘÍRODNÍMI GENETICKÝMI PRINCIPY (DĚDIČNOST, MUTACE, KŘÍŽENÍ) OBECNÉ SCHÉMA ALGORITMU: Vytvoření nulté populace Výběr zdatných jedinců Z vybraných jedinců vygeneruj nové (křížení, reprodukce) Výpočet zdatnosti nových jedinců Konec cyklu (není-li splněna zastavovací podmínka) Konec algoritmu Výstupem je jedinec s nejvyšší zdatností
12 GENETICKÉ ALGORITMY Nevyžadují znalosti o cílové funkci Odolné proti sklouznutí do lokálního optima Využití při optimalizaci Problémy s nalezením přesného optima Implementace není vždy přímočará
13 VYUŽITÍ TECHNIK DOLOVÁNÍ DAT ANALÝZA ÚVĚROVÉHO RIZIKA VYHODNOCENÍ MARKETINGOVÝCH KAMPANÍ SEGMENTACE ZÁKAZNÍKŮ DETEKCE PODVODŮ ANALÝZA PRODUKTŮ ANALÝZA CHOVÁNÍ ZÁKAZNÍKŮ
14 DATOVÉ SKLADY (DATA WAREHOUSE) Jsou zdrojem dat pro proces dolování dat DATA ULOŽENÁ VE STRUKTUŘE UMOŽŇUJÍCÍ EFEKTIVNÍ ANALÝZU A DOTAZOVÁNÍ DATA JSOU DO SKLADŮ ČERPÁNA Z PRIMÁRNÍCH INFORMAČNÍCH ZDROJŮ SKLÁDÁ SE ZE TŘÍ VRSTEV: SPODNÍ (DATOVÝ SKLAD S RELAČNÍ DB) PROSTŘEDNÍ (OLAP) VRCHNÍ (=KLIENT)
15 DATOVÉ SKLADY (DATA WAREHOUSE) OLTP (ON-LINE TRANSACTION PROCESSING, VÝROBA DAT ) PERIODICKÁ AGREGACE (SUMARIZACE) DAT A JEJICH NÁSLEDNÉ ULOŽENÍ DO SKLADU OLAP (ON-LINE ANALYTICAL PROCESSING, PREZENTACE, PRODEJ DAT ) OKAMŽITÉ ZPRACOVÁNÍ DAT, CO NEJRYCHLEJŠÍ POSKYTNUTÍ POŽADOVANÝCH AGREGOVANÝCH DAT ZE SKLADU UŽIVATELI
16 DĚKUJI ZA POZORNOST
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Pokročilé operace s obrazem
Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání
10. Datové sklady (Data Warehouses) Datový sklad
10. Datové sklady (Data Warehouses) Datový sklad komplexní data uložená ve struktuře, která umožňuje efektivní analýzu a dotazování data čerpána z primárních informačních systémů a dalších zdrojů OLAP
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)
Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 2. a 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká: 2. soustředění 16.1.2009
Získávání znalostí z databází. Alois Kužela
Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního
Jak se matematika poučila v biologii
Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika
Databáze Bc. Veronika Tomsová
Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána
ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ
ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ 18.11.2012 Radim Tvardek, Petr Bulava, Daniel Mašek U&SLUNO a.s. I Sadová 28 I 702 00 Ostrava I Czech Republic PŘEDPOKLADY PRO ANALÝZU NÁKUPNÍHO KOŠÍKU 18.11.2012 Daniel
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Základy business intelligence. Jaroslav Šmarda
Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování
Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)
Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Zdroje Studijní materiály Heleny Palovské
Profitabilita klienta v kontextu Performance management
IBM Technical specialist team Pre Sale 26/10/2010 Profitabilita klienta v kontextu Performance management Co všechno řadíme do PM? Automatická data Běžný reporting Pokročilé statistické modely Včera What
Analýza a vizualizace dat
Analýza a vizualizace dat Business intelligence Jednou z dalších oblastí, která spadá do sféry systémové integrace, je návrh a implementace řešení, spadajících do oblasti nazývané Business Intelligence
AdventureWorksDW2014 SQL Server Data Tools Multidimenziona lnı model Tabula rnı model Multidimenziona lnı mo d Tabula rnı mo d MS SQL Server 2016 Tabula rnı mo d Azure Analysis Services 16 3.2 Dimenzionální
DATABÁZOVÉ SYSTÉMY. Metodický list č. 1
Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové
Popis zobrazení pomocí fuzzy logiky
Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy
Evoluční výpočetní techniky (EVT)
Evoluční výpočetní techniky (EVT) - Nacházejí svoji inspiraci v přírodních vývojových procesech - Stejně jako přírodní jevy mají silnou náhodnou složku, která nezanedbatelným způsobem ovlivňuje jejich
Business Intelligence
Business Intelligence Skorkovský KAMI, ESF MU Principy BI zpracování velkých objemů dat tak, aby výsledek této akce manažerům pomohl k rozhodování při řízení procesů výsledkem zpracování musí být relevantní
Získávání dat z databází 1 DMINA 2010
Získávání dat z databází 1 DMINA 2010 Získávání dat z databází Motto Kde je moudrost? Ztracena ve znalostech. Kde jsou znalosti? Ztraceny v informacích. Kde jsou informace? Ztraceny v datech. Kde jsou
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Algoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS
DATABÁZOVÉ SYSTÉMY Současné aplikace IS/ICT Informační systémy a databázové systémy Databázová technologie Informační systémy Aplikační architektura Vlastníci, management Business Intelligence, manažerské
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
BA_EM Electronic Marketing. Pavel
BA_EM Electronic Marketing Pavel Kotyza @VŠFS Agenda Efektivní data mining jako zdroj relevantních dat o potřebách zákazníků Co je data mining? Je absolutní Je předem neznámý Je užitečný Co jsou data?
PowerOPTI Řízení účinnosti tepelného cyklu
PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika
kapitola 2 Datové sklady, OLAP
Tomáš Burger, burger@fit.vutbr.cz kapitola 2 Datové sklady, OLAP Získávání znalostí z databází IT-DR-3 / ZZD Co je to datový sklad A data warehouse is a subjectoriented, integrated, time-variant and nonvolatile
VYUŽITÍ PROGRAMU DATA MINING V ANALÝZE NÁKUPNÍHO CHOVÁNÍ
VYUŽITÍ PROGRAMU DATA MINING V ANALÝZE NÁKUPNÍHO CHOVÁNÍ Petra Hloušková Stanislava Grosová Definice funkčních potravin: Funkční potraviny jsou potraviny, které se podobají běžným konvenčním potravinám
4IT218 Databáze. 4IT218 Databáze
4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek
Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi
Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function
Základní informace o co se jedná a k čemu to slouží
Základní informace o co se jedná a k čemu to slouží založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové
Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9
Obsah Úvod 9 Kapitola 1 Business Intelligence, datové sklady 11 Přechod od transakčních databází k analytickým..................... 13 Kvalita údajů pro analýzy................................................
ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ
ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ Podle toho, zda informační systém funguje na operativní, taktické nebo strategické řídicí úrovni, můžeme systémy rozdělit do skupin. Tuto pyramidu
Dolování asociačních pravidel
Dolování asociačních pravidel Miloš Trávníček UIFS FIT VUT v Brně Obsah přednášky 1. Proces získávání znalostí 2. Asociační pravidla 3. Dolování asociačních pravidel 4. Algoritmy pro dolování asociačních
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Genetická diverzita masného skotu v ČR
Genetická diverzita masného skotu v ČR Mgr. Jan Říha Výzkumný ústav pro chov skotu, s.r.o. Ing. Irena Vrtková 26. listopadu 2009 Genetická diverzita skotu pojem diverzity Genom skotu 30 chromozomu, genetická
Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz
Databázové systémy Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Vývoj databázových systémů Ukládání dat Aktualizace dat Vyhledávání dat Třídění dat Výpočty a agregace 60.-70. léta Program Komunikace Výpočty
Informační systémy 2006/2007
13 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení Informační systémy 2006/2007 Ivan Kedroň 1 Obsah Analytické nástroje SQL serveru. OLAP analýza
Analýza a modelování dat. Přednáška 8
Analýza a modelování dat Přednáška 8 OLAP, datová kostka, dotazování nad kostkou Motivace většina DB relační zaznamenání vztahů pomocí logicky provázaných tabulek jakou mají velmi často vztahy povahu vztah
Dolování v objektových datech. Ivana Rudolfová
Dolování v objektových datech Ivana Rudolfová Relační databáze - nevýhody První normální forma neumožňuje vyjádřit vztahy A je podtypem B nebo vytvořit struktury typu pole nebo množiny SQL omezení omezený
8.2 Používání a tvorba databází
8.2 Používání a tvorba databází Slide 1 8.2.1 Základní pojmy z oblasti relačních databází Slide 2 Databáze ~ Evidence lidí peněz věcí... výběry, výpisy, početní úkony Slide 3 Pojmy tabulka, pole, záznam
OBSAH PŘEDMLUVA KONKURENČNÍ PROSTŘEDÍ A KONKURENCE...48 KONKURENČNÍ PROSTŘEDÍ...48
OBSAH PŘEDMLUVA...8 1 MARKETING, JEHO PODSTATA A VÝZNAM...9 MARKETING... 12 Historie a důvod vzniku. Definice marketingu... 12 Úloha marketingu ve společnosti a firmě... 14 Podstata marketingu... 15 ZÁKLADNÍ
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
Genetické programování
Genetické programování Vyvinuto v USA v 90. letech J. Kozou Typické problémy: Predikce, klasifikace, aproximace, tvorba programů Vlastnosti Soupeří s neuronovými sítěmi apod. Potřebuje značně velké populace
Genetické algoritmy a jejich praktické využití
Genetické algoritmy a jejich praktické využití Pavel Šturc PB016 Úvod do umělé inteligence 21.12.2012 Osnova Vznik a účel GA Princip fungování GA Praktické využití Budoucnost GA Vznik a účel GA Darwinova
Strojové učení se zaměřením na vliv vstupních dat
Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications
Datové sklady ve školství
Datové sklady ve školství aneb evaluace procesu výuky jinak Jana Šarmanová Obsah Business Intelligence a školní výuka Databáze a datové sklady Analýza datového skladu Studie DS pro studijní agendu VŠ Studie
Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování
Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1 Informační
PŘÍLOHA C Požadavky na Dokumentaci
PŘÍLOHA C Požadavky na Dokumentaci Příloha C Požadavky na Dokumentaci Stránka 1 z 5 1. Obecné požadavky Dodavatel dokumentaci zpracuje a bude dokumentaci v celém rozsahu průběžně aktualizovat při každé
Emergence chování robotických agentů: neuroevoluce
Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové
OSA. maximalizace minimalizace 1/22
OSA Systémová analýza metodika používaná k navrhování a racionalizaci systémů v podmínkách neurčitosti vyšší stupeň operační analýzy Operační analýza (výzkum) soubor metod umožňující řešit rozhodovací,
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Business Intelligence. Adam Trčka
Business Intelligence Adam Trčka 09:00 11:30: BI v kostce Navrhněme si sklad Ukázka BI Datamining 12:30 14:30: Pokračování kurzu 14:30 15:00: Q&A Agenda Co se dnes dovíme? Data informace znalost Business
K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami. Josef Keder
K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami Josef Keder Motivace Předpověď budoucí úrovně znečištění ovzduší s předstihem v řádu alespoň několika hodin má význam
Úvodní přednáška. Význam a historie PIS
Úvodní přednáška Význam a historie PIS Systémy na podporu rozhodování Manažerský informační systém Manažerské rozhodování Srovnávání, vyhodnocování, kontrola INFORMACE ROZHODOVÁNÍ organizace Rozhodovacích
NÁSTROJE BUSINESS INTELLIGENCE
NÁSTROJE BUSINESS INTELLIGENCE Milena Tvrdíková VŠB Technická univerzita Ostrava, Ekonomická fakulta, Katedra informatiky v ekonomice, Sokolská 33, 701021 Ostrava1, ČR, milena.tvrdikova@vsb.cz Abstrakt
Bu B sin i e n s e s s I n I te t l e lig i en e c n e c Skorkovský KA K M A I, E S E F MU
Business Intelligence Skorkovský KAMI, ESF MU Principy BI zpracování velkých objemů dat tak, aby výsledek této akce manažerům pomohl k rozhodování při řízení procesů výsledkem zpracování musí být relevantní
04 - Databázové systémy
04 - Databázové systémy Základní pojmy, principy, architektury Databáze (DB) je uspořádaná množina dat, se kterými můžeme dále pracovat. Správa databáze je realizována prostřednictvím Systému pro správu
AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza
AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Shluková analýza Cílem shlukové analýzy je nalézt v datech podmnožiny
Business Intelligence
Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma
individuální TRÉNINKOVÝ PROFIL
individuální TRÉNINKOVÝ PROFIL Iniciály klienta Jméno příjmení: Ukázka prezentace Datum narození: 1. 1. 1990 začátek analýzy: 1. 1. 2018 konec analýzy: 30. 1. 2018 Sport: Běh GAS (General Adaptation Syndrome)
Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP
Petr Jaša Obsah Úvod do problematiky Data vs. informace Operační vs. analytická databáze Relační vs. multidimenzionální model Datový sklad Důvody pro budování datových skladů Definice, znaky Schéma vazeb
Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013
Ambasadoři přírodovědných a technických oborů Ing. Michal Řepka Březen - duben 2013 Umělé neuronové sítě Proč právě Neuronové sítě? K čemu je to dobré? Používá se to někde v praxi? Úvod Umělé neuronové
5. Umělé neuronové sítě. Neuronové sítě
Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně
3 zdroje dat. Relační databáze EIS OLAP
Zdroje dat 3 zdroje dat Relační databáze EIS OLAP Relační databáze plochá dvourozměrná tabulková data OLTP (Online Transaction Processing) operace selekce projekce spojení průnik, sjednocení, rozdíl dotazování
Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011
Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe
Z znam workshopu k projektu QJ Program workshopu: 4. Diskuse. s metodice. H
Z znam workshopu k projektu QJ1220346 P 17. 12. 2014 v P V Praze P. Program workshopu: 1. P ( dostupnost) 2. P 3. U 4. Diskuse P P V VÚV TGM P j ) s metodice. H P dokumentace)bude VÚV TGM v.v.i., http://heis.vuv.cz/projekty/emisevoda
1. Úvod do genetických algoritmů (GA)
Obsah 1. Úvod do genetických algoritmů (GA)... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Základní pomy genetických algoritmů... 2 1.3.1 Úvod... 2 1.3.2 Základní pomy... 2 1.3.3 Operátor
SW pro správu a řízení bezpečnosti
Integrační bezpečnostní SW pro správu a řízení bezpečnosti Systém je vlastním produktem společnosti Integoo. Trvalý vývoj produktu reflektuje požadavky trhu a zákazníků. Ať už je velikost vaší organizace
A1 Marketingové minimum pro posílení výchovy k podnikavosti (8h)
A1 Marketingové minimum pro posílení výchovy k podnikavosti (8h) 2.1 Základy marketingové strategie (2,5h) Učitelé se seznámí se základní marketingovou terminologií a s možnými cestami rozvoje firmy. V
Strojové učení a dolování dat. Vybrané partie dolování dat 2016/17 Jan Šimbera
Strojové učení a dolování dat vgeografii Vybrané partie dolování dat 2016/17 Jan Šimbera simberaj@natur.cuni.cz Kde v geografii? Získávání prostorově podrobných dat Prostorová dezagregace Analýza dat dálkového
Umělá inteligence a rozpoznávání
Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních
Microsoft Office. Excel vyhledávací funkce
Microsoft Office Excel vyhledávací funkce Karel Dvořák 2011 Vyhledávání v tabulkách Vzhledem ke skutečnosti, že Excel je na mnoha pracovištích používán i jako nástroj pro správu jednoduchých databází,
Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček
Aplikace IS, outsourcing, systémová integrace Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Kontext Dodavatelé Strategická Zákazníci Taktická Operativní Kategorie ERP - zaměřeno na řízení
Databázové systémy. 10. přednáška
Databázové systémy 10. přednáška Business Intelligence Poprvé byl termín BI použit Gartnerem a dále pak popularizován Howardem Dresnerem jako: proces zkoumání doménově strukturovaných informací za účelem
Role BI v e-business řešeních pohled do budoucnosti
Ing. Ota Novotný, Ph.D. katedra informačních technologií Vysoká škola ekonomická v Praze novotnyo@vse.cz katedra informačních technologií VŠE Praha jsme uznávanou autoritou v oblasti aplikované informatiky
Marketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph)
Marketingová komunikace Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) 2. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Minulé soustředění úvod
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
MODERNÍ METODY SEGMENTACE ZÁKAZNÍKŮ Ing. Miloš Uldrich ZÁKAZNICKÁ LOAJALITA A AKVIZICE VE FINANČNÍCH SLUŽBÁCH. StatSoft CR
Váš pomocník pro analýzu dat MODERNÍ METODY SEGMENTACE ZÁKAZNÍKŮ Ing. Miloš Uldrich StatSoft CR StatSoft StatSoft CR Dodavatel komplexních analytických řešení Výhradní dodavatel softwaru STATISTICA pro
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Marketingový výzkum. Ing. Martina Ortová, Ph.D. Technická univerzita v Liberci. Projekt TU v Liberci
Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Marketingový výzkum Ing., Ph.D. Technická univerzita v Liberci Projekt 1 Technická
GIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.
Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová
Státnice odborné č. 20
Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
1. Statistická analýza dat Jak vznikají informace Rozložení dat
1. Statistická analýza dat Jak vznikají informace Rozložení dat J. Jarkovský, L. Dušek, S. Littnerová, J. Kalina Význam statistické analýzy dat Sběr a vyhodnocování dat je způsobem k uchopení a pochopení
GRR. získávání znalostí v geografických datech Autoři. Knowledge Discovery Group Faculty of Informatics Masaryk Univerzity Brno, Czech Republic
GRR získávání znalostí v geografických datech Autoři Knowledge Discovery Group Faculty of Informatics Masaryk Univerzity Brno, Czech Republic GRR cílet 2 GRR - Popis systému - cíle systém pro dolování
BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu
BI v rámci IS/ICT komponenty BI architektura Charakteristika dat a procesů v IS/ICT Datové sklady ukládání dat návrh datového skladu BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních
Efektivní informační služby NTK pro veřejnost a státní správu. 25. dubna 2012
Efektivní informační služby NTK pro veřejnost a státní správu 25. dubna 2012 1 Agenda prezentace 1. Cíle projektu; 2. Realizované činnosti v projektu; 3. Příklady výstupů z projektu; 4. Harmonogram projektu;
3. Vícevrstvé dopředné sítě
3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze
CZ.1.07/1.5.00/ Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT
Autor: Mgr. Barbora Blažková Tematický celek: Základy ekologie Cílová skupina: 1. ročník SŠ Anotace Kontrolní test navazuje na prezentaci, která seznámila žáky se základními projevy živé hmoty, definicí
StatSoft Úvod do neuronových sítí
StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem
Jak získat nové a čerstvé adresy? Ing. Miroslav Červenka, Schober Information Group CZ a.s.
Jak získat nové a čerstvé adresy? Ing. Miroslav Červenka, Schober Information Group CZ a.s. Obsah 1 Nové technologie pro získávání adres 2 Listbroking 3 Výběr cílové skupiny - příklad Seite 2 Nové technologie
Systémy pro podporu rozhodování. Datové sklady, OLAP
Systémy pro podporu rozhodování Datové sklady, OLAP 1 4. Datový management: sklady, přístup a vizualizace Principy MSS Nové koncepce Objektové databáze Inteligentní databáze Datové sklady On-line analytické
KIS A JEJICH BEZPEČNOST-I
KIS A JEJICH BEZPEČNOST-I INFORMAČNÍ SYSTÉMY POUŽÍVANÉ V MANAŽERSKÉ PRAXI pplk. Ing. Petr HRŮZA, Ph.D. Univerzita obrany, Fakulta ekonomiky a managementu Katedra vojenského managementu a taktiky E-mail.:
SSOS_ZE_1.10 Příroda projevy živé hmoty
Číslo a název projektu Číslo a název šablony CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT DUM číslo a název SSOS_ZE_1.10
NÁKUP SKUPINY RWE ČESKÁ REPUBLIKA A.S. Den Dodavatelů, 7. 3. 2014, Praha
NÁKUP SKUPINY RWE ČESKÁ REPUBLIKA A.S. Den Dodavatelů, 7. 3. 2014, Praha RWE 3/17/2014 Strana 1 DEN DODAVATELŮ PROČ PRÁVĚ VY? více než 3 000 aktivních dodavatelů ve skupině RWE Roční výdaje = 5 500 000
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ
DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ Úvod a oblasti aplikací Martin Plchút plchut@e-globals.net DEFINICE A POJMY Netriviální extrakce implicitních, ch, dříve d neznámých a potenciáln lně užitečných informací z