METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

Rozměr: px
Začít zobrazení ze stránky:

Download "METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1"

Transkript

1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

2 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ VE VELKÝCH OBJEMECH DAT SLOUŽÍCÍ K ODHALENÍ DŘÍVE NEZNÁMÝCH VZTAHŮ MEZI DATY ZA ÚČELEM ZÍSKÁNÍ OBCHODNÍ VÝHODY VSTUPNÍ DATA JSOU ZÍSKÁVÁNA Z DATOVÝCH SKLADŮ V PROCESU DOLOVÁNÍ JE VELMI DŮLEŽITÁ KVALITA VSTUPNÍCH DAT ČIŠTĚNÍ OD CHYB, SJEDNOCENÍ FORMÁTŮ, AKTUALIZACE DAT

3 OBECNÉ METODY DOLOVÁNÍ DAT PREDIKTIVNÍ MODELOVÁNÍ NA ZÁKLADĚ ZNÁMÉ MNOŽINY VSTUPNÍCH HODNOT A TOMU ODPOVÍDAJÍCÍCH ZNÁMÝCH HODNOT VÝSTUPNÍCH SE HLEDÁ NEJPRAVDĚPODOBNĚJŠÍ HODNOTA VÝSTUPU PRO PŘEDEM NEZNÁMÉ KOMBINACE VSTUPNÍCH HODNOT KLASIFIKACE METODA ROZDĚLOVÁNÍ DAT DO SKUPIN DLE JISTÝCH KRITÉRIÍ. DĚLÍME JI NA ŘÍZENOU (ALESPOŇ PRO VZOREK DAT JSOU KRITÉRIA ZNÁMÁ) A NEŘÍZENOU (KRITÉRIA NEJSOU PŘEDEM ZNÁMÁ A ÚLOHOU KLASIFIKACE JE JEJICH NALEZENÍ)

4 OBECNÉ METODY DOLOVÁNÍ DAT ANALÝZA ASOCIACÍ NEJČASTĚJŠÍM PŘÍKLADEM ANALÝZY ASOCIACÍ JE ANALÝZA NÁKUPNÍHO KOŠÍKU ZABÝVAJÍCÍ SE HLEDÁNÍM KOMBINACÍ PRODUKTŮ, KTERÉ SE VE VSTUPNÍCH DATECH (KOŠÍKU) VYSKYTUJÍ VÝZNAMNĚ ČASTĚJI SPOLU. CÍLEM JE NALÉZT PRAVIDLA TYPU: PŘI NÁKUPU ZBOŽÍ A A C SPOTŘEBITELÉ VÝRAZNĚ ČASTĚJI NAKUPUJÍ I ZBOŽÍ D A B

5 OBECNÉ METODY DOLOVÁNÍ DAT VZORKOVÁNÍ VÝBĚR OMEZENÉ MNOŽINY DAT ZE ZÁKLADNÍHO SOUBORU. NEJJEDNODUŠŠÍM VZORKOVÁNÍM JE NÁHODNÝ VÝBĚR (SLOUŽÍ KE ZMENŠENÍ OBJEMU ZPRACOVÁVANÝCH DAT). SLOŽITĚJŠÍ METODOU JE NAPŘ. VÝBĚR STEJNÉHO POČTU ZÁZNAMŮ DANÉHO TYPU (REDUKCE MNOŽSTVÍ ZPRACOVÁVANÝCH DAT PŘI SOUČASNÉ ZÁRUCE POŽADOVANÉ PŘESNOSTI VÝSLEDKU

6 METODY DOLOVÁNÍ DAT V GIS SHLUKOVÁ ANALÝZA UMĚLÉ NEURONOVÉ SÍTĚ GENETICKÉ ALGORITMY

7 SHLUKOVÁ ANALÝZA ROZDĚLENÍ VSTUPNÍ MNOŽINY DAT DO NĚKOLIKA STEJNORODÝCH NAVZÁJEM DISJUNKTNÍCH SHLUKŮ SNAHOU JE, ABY OBJEKTY UVNITŘ JEDNOHO SHLUKU SI BYLY CO NEJVÍCE PODOBNÉ A ZÁROVEŇ SE CO MOŽNÁ NEJVÍCE ODLIŠOVALY OD OBJEKTŮ JINÝCH SHLUKŮ POČET SHLUKŮ JE, ČI NENÍ ZADÁN POUŽÍVANÉ ALGORITMY: AGLOMERATIVNÍ POSTUP - VYCHÁZÍ Z N SHLUKŮ, KDY KAŽDÝ OBSAHUJE POUZE JEDEN OBJEKT, V KAŽDÉM KROKU SE SHLUKY SPOJUJÍ VE SHLUKY VYŠŠÍ ÚROVNĚ NA ZÁKLADĚ VZDÁLENOSTI ČI PODOBNOSTI OBJEKTŮ

8 SHLUKOVÁ ANALÝZA DIVIZNÍ POSTUP - VYCHÁZÍ Z JEDNOHO SHLUKU, KTERÝ JE KAŽDÉM DALŠÍM KROKU ROZŠTĚPEN NA DVA, NA KONCI PROCESU OBDRŽÍME N SHLUKŮ UMĚLÉ NEURONOVÉ SÍTĚ (UNS) CÍLEM JE SNAHA PŘIBLÍŽIT SE V TECHNICKÉ PRAXI ŽIVÝM ORGANISMŮM, VYCHÁZEJÍ Z ANALOGIE S LIDSKÝM MOZKEM PODOBNĚ JAKO MOZEK JSOU TVOŘENY MNOŽSTVÍM NAVZÁJEM PROPOJENÝCH ELEMENTŮ (NEURONŮ)

9 UMĚLÉ NEURONOVÉ SÍTĚ (UNS) V UNS JE NEURON CHÁPÁN JAKO BUŇKA, KTERÁ PŘIJÍMÁ PODNĚTY OD JINÝCH NEURONŮ, KTERÉ JSOU K NÍ PŘIPOJENY NA VSTUPU. POKUD SOUHRNNÝ ÚČINEK TĚCHTO VSTUPNÍCH PODNĚTŮ PŘEKROČÍ URČITÝ PRÁH, NEURON SE AKTIVUJE A SÁM ZAČNE SVÝM VÝSTUPEM PŮSOBIT NA DALŠÍ NEURONY DŮLEŽITÁ JE SCHOPNOST TĚCHTO MODELŮ UČIT SE Z PŘÍKLADŮ

10 UMĚLÉ NEURONOVÉ SÍTĚ (UNS) Schopnost učit se Zvýšení spolehlivosti (při poruše mohou funkční bloky nahradit funkci bloků poškozených) Schopnost generalizace Obtížná identifikace procesů v UNS Příliš velký počet stupňů volnosti Velký počet variant uspořádání UNS

11 GENETICKÉ ALGORITMY PŘEDSTAVUJÍ PRAVDĚPODOBNOSTNÍ PROHLEDÁVACÍ METODU, KTERÁ JE ZALOŽENA NA PŘÍRODNÍM VÝBĚRU (SELEKCI) A JE INSPIROVÁNA PŘÍRODNÍMI GENETICKÝMI PRINCIPY (DĚDIČNOST, MUTACE, KŘÍŽENÍ) OBECNÉ SCHÉMA ALGORITMU: Vytvoření nulté populace Výběr zdatných jedinců Z vybraných jedinců vygeneruj nové (křížení, reprodukce) Výpočet zdatnosti nových jedinců Konec cyklu (není-li splněna zastavovací podmínka) Konec algoritmu Výstupem je jedinec s nejvyšší zdatností

12 GENETICKÉ ALGORITMY Nevyžadují znalosti o cílové funkci Odolné proti sklouznutí do lokálního optima Využití při optimalizaci Problémy s nalezením přesného optima Implementace není vždy přímočará

13 VYUŽITÍ TECHNIK DOLOVÁNÍ DAT ANALÝZA ÚVĚROVÉHO RIZIKA VYHODNOCENÍ MARKETINGOVÝCH KAMPANÍ SEGMENTACE ZÁKAZNÍKŮ DETEKCE PODVODŮ ANALÝZA PRODUKTŮ ANALÝZA CHOVÁNÍ ZÁKAZNÍKŮ

14 DATOVÉ SKLADY (DATA WAREHOUSE) Jsou zdrojem dat pro proces dolování dat DATA ULOŽENÁ VE STRUKTUŘE UMOŽŇUJÍCÍ EFEKTIVNÍ ANALÝZU A DOTAZOVÁNÍ DATA JSOU DO SKLADŮ ČERPÁNA Z PRIMÁRNÍCH INFORMAČNÍCH ZDROJŮ SKLÁDÁ SE ZE TŘÍ VRSTEV: SPODNÍ (DATOVÝ SKLAD S RELAČNÍ DB) PROSTŘEDNÍ (OLAP) VRCHNÍ (=KLIENT)

15 DATOVÉ SKLADY (DATA WAREHOUSE) OLTP (ON-LINE TRANSACTION PROCESSING, VÝROBA DAT ) PERIODICKÁ AGREGACE (SUMARIZACE) DAT A JEJICH NÁSLEDNÉ ULOŽENÍ DO SKLADU OLAP (ON-LINE ANALYTICAL PROCESSING, PREZENTACE, PRODEJ DAT ) OKAMŽITÉ ZPRACOVÁNÍ DAT, CO NEJRYCHLEJŠÍ POSKYTNUTÍ POŽADOVANÝCH AGREGOVANÝCH DAT ZE SKLADU UŽIVATELI

16 DĚKUJI ZA POZORNOST

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Pokročilé operace s obrazem

Pokročilé operace s obrazem Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání

Více

10. Datové sklady (Data Warehouses) Datový sklad

10. Datové sklady (Data Warehouses) Datový sklad 10. Datové sklady (Data Warehouses) Datový sklad komplexní data uložená ve struktuře, která umožňuje efektivní analýzu a dotazování data čerpána z primárních informačních systémů a dalších zdrojů OLAP

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ

ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ 18.11.2012 Radim Tvardek, Petr Bulava, Daniel Mašek U&SLUNO a.s. I Sadová 28 I 702 00 Ostrava I Czech Republic PŘEDPOKLADY PRO ANALÝZU NÁKUPNÍHO KOŠÍKU 18.11.2012 Daniel

Více

Získávání znalostí z databází. Alois Kužela

Získávání znalostí z databází. Alois Kužela Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního

Více

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 2. a 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká: 2. soustředění 16.1.2009

Více

Základy business intelligence. Jaroslav Šmarda

Základy business intelligence. Jaroslav Šmarda Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Zdroje Studijní materiály Heleny Palovské

Více

Profitabilita klienta v kontextu Performance management

Profitabilita klienta v kontextu Performance management IBM Technical specialist team Pre Sale 26/10/2010 Profitabilita klienta v kontextu Performance management Co všechno řadíme do PM? Automatická data Běžný reporting Pokročilé statistické modely Včera What

Více

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1 Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové

Více

Popis zobrazení pomocí fuzzy logiky

Popis zobrazení pomocí fuzzy logiky Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy

Více

Získávání dat z databází 1 DMINA 2010

Získávání dat z databází 1 DMINA 2010 Získávání dat z databází 1 DMINA 2010 Získávání dat z databází Motto Kde je moudrost? Ztracena ve znalostech. Kde jsou znalosti? Ztraceny v informacích. Kde jsou informace? Ztraceny v datech. Kde jsou

Více

PowerOPTI Řízení účinnosti tepelného cyklu

PowerOPTI Řízení účinnosti tepelného cyklu PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika

Více

Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9

Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9 Obsah Úvod 9 Kapitola 1 Business Intelligence, datové sklady 11 Přechod od transakčních databází k analytickým..................... 13 Kvalita údajů pro analýzy................................................

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

BA_EM Electronic Marketing. Pavel

BA_EM Electronic Marketing. Pavel BA_EM Electronic Marketing Pavel Kotyza @VŠFS Agenda Efektivní data mining jako zdroj relevantních dat o potřebách zákazníků Co je data mining? Je absolutní Je předem neznámý Je užitečný Co jsou data?

Více

Dolování asociačních pravidel

Dolování asociačních pravidel Dolování asociačních pravidel Miloš Trávníček UIFS FIT VUT v Brně Obsah přednášky 1. Proces získávání znalostí 2. Asociační pravidla 3. Dolování asociačních pravidel 4. Algoritmy pro dolování asociačních

Více

kapitola 2 Datové sklady, OLAP

kapitola 2 Datové sklady, OLAP Tomáš Burger, burger@fit.vutbr.cz kapitola 2 Datové sklady, OLAP Získávání znalostí z databází IT-DR-3 / ZZD Co je to datový sklad A data warehouse is a subjectoriented, integrated, time-variant and nonvolatile

Více

DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS

DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS DATABÁZOVÉ SYSTÉMY Současné aplikace IS/ICT Informační systémy a databázové systémy Databázová technologie Informační systémy Aplikační architektura Vlastníci, management Business Intelligence, manažerské

Více

VYUŽITÍ PROGRAMU DATA MINING V ANALÝZE NÁKUPNÍHO CHOVÁNÍ

VYUŽITÍ PROGRAMU DATA MINING V ANALÝZE NÁKUPNÍHO CHOVÁNÍ VYUŽITÍ PROGRAMU DATA MINING V ANALÝZE NÁKUPNÍHO CHOVÁNÍ Petra Hloušková Stanislava Grosová Definice funkčních potravin: Funkční potraviny jsou potraviny, které se podobají běžným konvenčním potravinám

Více

Informační systémy 2006/2007

Informační systémy 2006/2007 13 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení Informační systémy 2006/2007 Ivan Kedroň 1 Obsah Analytické nástroje SQL serveru. OLAP analýza

Více

Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi

Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function

Více

Základní informace o co se jedná a k čemu to slouží

Základní informace o co se jedná a k čemu to slouží Základní informace o co se jedná a k čemu to slouží založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové

Více

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ Podle toho, zda informační systém funguje na operativní, taktické nebo strategické řídicí úrovni, můžeme systémy rozdělit do skupin. Tuto pyramidu

Více

Genetická diverzita masného skotu v ČR

Genetická diverzita masného skotu v ČR Genetická diverzita masného skotu v ČR Mgr. Jan Říha Výzkumný ústav pro chov skotu, s.r.o. Ing. Irena Vrtková 26. listopadu 2009 Genetická diverzita skotu pojem diverzity Genom skotu 30 chromozomu, genetická

Více

Strojové učení se zaměřením na vliv vstupních dat

Strojové učení se zaměřením na vliv vstupních dat Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications

Více

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1 Informační

Více

Dolování v objektových datech. Ivana Rudolfová

Dolování v objektových datech. Ivana Rudolfová Dolování v objektových datech Ivana Rudolfová Relační databáze - nevýhody První normální forma neumožňuje vyjádřit vztahy A je podtypem B nebo vytvořit struktury typu pole nebo množiny SQL omezení omezený

Více

8.2 Používání a tvorba databází

8.2 Používání a tvorba databází 8.2 Používání a tvorba databází Slide 1 8.2.1 Základní pojmy z oblasti relačních databází Slide 2 Databáze ~ Evidence lidí peněz věcí... výběry, výpisy, početní úkony Slide 3 Pojmy tabulka, pole, záznam

Více

PŘÍLOHA C Požadavky na Dokumentaci

PŘÍLOHA C Požadavky na Dokumentaci PŘÍLOHA C Požadavky na Dokumentaci Příloha C Požadavky na Dokumentaci Stránka 1 z 5 1. Obecné požadavky Dodavatel dokumentaci zpracuje a bude dokumentaci v celém rozsahu průběžně aktualizovat při každé

Více

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY

Více

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP Petr Jaša Obsah Úvod do problematiky Data vs. informace Operační vs. analytická databáze Relační vs. multidimenzionální model Datový sklad Důvody pro budování datových skladů Definice, znaky Schéma vazeb

Více

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Databázové systémy Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Vývoj databázových systémů Ukládání dat Aktualizace dat Vyhledávání dat Třídění dat Výpočty a agregace 60.-70. léta Program Komunikace Výpočty

Více

Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013

Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013 Ambasadoři přírodovědných a technických oborů Ing. Michal Řepka Březen - duben 2013 Umělé neuronové sítě Proč právě Neuronové sítě? K čemu je to dobré? Používá se to někde v praxi? Úvod Umělé neuronové

Více

04 - Databázové systémy

04 - Databázové systémy 04 - Databázové systémy Základní pojmy, principy, architektury Databáze (DB) je uspořádaná množina dat, se kterými můžeme dále pracovat. Správa databáze je realizována prostřednictvím Systému pro správu

Více

Genetické algoritmy a jejich praktické využití

Genetické algoritmy a jejich praktické využití Genetické algoritmy a jejich praktické využití Pavel Šturc PB016 Úvod do umělé inteligence 21.12.2012 Osnova Vznik a účel GA Princip fungování GA Praktické využití Budoucnost GA Vznik a účel GA Darwinova

Více

Datové sklady ve školství

Datové sklady ve školství Datové sklady ve školství aneb evaluace procesu výuky jinak Jana Šarmanová Obsah Business Intelligence a školní výuka Databáze a datové sklady Analýza datového skladu Studie DS pro studijní agendu VŠ Studie

Více

Genetické programování

Genetické programování Genetické programování Vyvinuto v USA v 90. letech J. Kozou Typické problémy: Predikce, klasifikace, aproximace, tvorba programů Vlastnosti Soupeří s neuronovými sítěmi apod. Potřebuje značně velké populace

Více

3 zdroje dat. Relační databáze EIS OLAP

3 zdroje dat. Relační databáze EIS OLAP Zdroje dat 3 zdroje dat Relační databáze EIS OLAP Relační databáze plochá dvourozměrná tabulková data OLTP (Online Transaction Processing) operace selekce projekce spojení průnik, sjednocení, rozdíl dotazování

Více

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe

Více

Emergence chování robotických agentů: neuroevoluce

Emergence chování robotických agentů: neuroevoluce Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové

Více

NÁSTROJE BUSINESS INTELLIGENCE

NÁSTROJE BUSINESS INTELLIGENCE NÁSTROJE BUSINESS INTELLIGENCE Milena Tvrdíková VŠB Technická univerzita Ostrava, Ekonomická fakulta, Katedra informatiky v ekonomice, Sokolská 33, 701021 Ostrava1, ČR, milena.tvrdikova@vsb.cz Abstrakt

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza

AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Shluková analýza Cílem shlukové analýzy je nalézt v datech podmnožiny

Více

NÁKUP SKUPINY RWE ČESKÁ REPUBLIKA A.S. Den Dodavatelů, 7. 3. 2014, Praha

NÁKUP SKUPINY RWE ČESKÁ REPUBLIKA A.S. Den Dodavatelů, 7. 3. 2014, Praha NÁKUP SKUPINY RWE ČESKÁ REPUBLIKA A.S. Den Dodavatelů, 7. 3. 2014, Praha RWE 3/17/2014 Strana 1 DEN DODAVATELŮ PROČ PRÁVĚ VY? více než 3 000 aktivních dodavatelů ve skupině RWE Roční výdaje = 5 500 000

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

Jak získat nové a čerstvé adresy? Ing. Miroslav Červenka, Schober Information Group CZ a.s.

Jak získat nové a čerstvé adresy? Ing. Miroslav Červenka, Schober Information Group CZ a.s. Jak získat nové a čerstvé adresy? Ing. Miroslav Červenka, Schober Information Group CZ a.s. Obsah 1 Nové technologie pro získávání adres 2 Listbroking 3 Výběr cílové skupiny - příklad Seite 2 Nové technologie

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

Z znam workshopu k projektu QJ Program workshopu: 4. Diskuse. s metodice. H

Z znam workshopu k projektu QJ Program workshopu: 4. Diskuse. s metodice. H Z znam workshopu k projektu QJ1220346 P 17. 12. 2014 v P V Praze P. Program workshopu: 1. P ( dostupnost) 2. P 3. U 4. Diskuse P P V VÚV TGM P j ) s metodice. H P dokumentace)bude VÚV TGM v.v.i., http://heis.vuv.cz/projekty/emisevoda

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

1. Úvod do genetických algoritmů (GA)

1. Úvod do genetických algoritmů (GA) Obsah 1. Úvod do genetických algoritmů (GA)... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Základní pomy genetických algoritmů... 2 1.3.1 Úvod... 2 1.3.2 Základní pomy... 2 1.3.3 Operátor

Více

Business Intelligence. Adam Trčka

Business Intelligence. Adam Trčka Business Intelligence Adam Trčka 09:00 11:30: BI v kostce Navrhněme si sklad Ukázka BI Datamining 12:30 14:30: Pokračování kurzu 14:30 15:00: Q&A Agenda Co se dnes dovíme? Data informace znalost Business

Více

SW pro správu a řízení bezpečnosti

SW pro správu a řízení bezpečnosti Integrační bezpečnostní SW pro správu a řízení bezpečnosti Systém je vlastním produktem společnosti Integoo. Trvalý vývoj produktu reflektuje požadavky trhu a zákazníků. Ať už je velikost vaší organizace

Více

Úvodní přednáška. Význam a historie PIS

Úvodní přednáška. Význam a historie PIS Úvodní přednáška Význam a historie PIS Systémy na podporu rozhodování Manažerský informační systém Manažerské rozhodování Srovnávání, vyhodnocování, kontrola INFORMACE ROZHODOVÁNÍ organizace Rozhodovacích

Více

Microsoft Office. Excel vyhledávací funkce

Microsoft Office. Excel vyhledávací funkce Microsoft Office Excel vyhledávací funkce Karel Dvořák 2011 Vyhledávání v tabulkách Vzhledem ke skutečnosti, že Excel je na mnoha pracovištích používán i jako nástroj pro správu jednoduchých databází,

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

MODERNÍ METODY SEGMENTACE ZÁKAZNÍKŮ Ing. Miloš Uldrich ZÁKAZNICKÁ LOAJALITA A AKVIZICE VE FINANČNÍCH SLUŽBÁCH. StatSoft CR

MODERNÍ METODY SEGMENTACE ZÁKAZNÍKŮ Ing. Miloš Uldrich ZÁKAZNICKÁ LOAJALITA A AKVIZICE VE FINANČNÍCH SLUŽBÁCH. StatSoft CR Váš pomocník pro analýzu dat MODERNÍ METODY SEGMENTACE ZÁKAZNÍKŮ Ing. Miloš Uldrich StatSoft CR StatSoft StatSoft CR Dodavatel komplexních analytických řešení Výhradní dodavatel softwaru STATISTICA pro

Více

Business Intelligence

Business Intelligence Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma

Více

Marketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph)

Marketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) Marketingová komunikace Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) 2. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Minulé soustředění úvod

Více

Vývoj IS - strukturované paradigma II

Vývoj IS - strukturované paradigma II Milan Mišovič (ČVUT FIT) Pokročilé informační systémy MI-PIS, 2011, Přednáška 05 1/18 Vývoj IS - strukturované paradigma II Prof. RNDr. Milan Mišovič, CSc. Katedra softwarového inženýrství Fakulta informačních

Více

BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu

BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu BI v rámci IS/ICT komponenty BI architektura Charakteristika dat a procesů v IS/ICT Datové sklady ukládání dat návrh datového skladu BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních

Více

Marketingový výzkum. Ing. Martina Ortová, Ph.D. Technická univerzita v Liberci. Projekt TU v Liberci

Marketingový výzkum. Ing. Martina Ortová, Ph.D. Technická univerzita v Liberci. Projekt TU v Liberci Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Marketingový výzkum Ing., Ph.D. Technická univerzita v Liberci Projekt 1 Technická

Více

ití empirických modelů při i optimalizaci procesu mokré granulace léčivl ková SVK ÚOT

ití empirických modelů při i optimalizaci procesu mokré granulace léčivl ková SVK ÚOT Využit ití empirických modelů při i optimalizaci procesu mokré granulace léčivl Jana Kalčíkov ková 5. ročník Školitel: Doc. Ing. Zdeněk k Bělohlav, B CSc. Granulace Prášek Granule Vlhčivo Promíchávání

Více

Metodika hodnocení ekonomicky spjatých skupin ČR

Metodika hodnocení ekonomicky spjatých skupin ČR Metodika hodnocení ekonomicky spjatých skupin ČR Výsledky projektu a možnosti jeho uplatnění v praxi Praha 17. 2. 2015 Jan Cikler, Luděk Mácha Ekonomicky spjatá skupina Ekonomicky spjatá skupina komplexní

Více

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ DATABÁZOVÉ SYSTÉMY ARCHITEKTURA DATABÁZOVÝCH SYSTÉMŮ. Ing. Lukáš OTTE, Ph.D.

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ DATABÁZOVÉ SYSTÉMY ARCHITEKTURA DATABÁZOVÝCH SYSTÉMŮ. Ing. Lukáš OTTE, Ph.D. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ DATABÁZOVÉ SYSTÉMY ARCHITEKTURA DATABÁZOVÝCH SYSTÉMŮ Ing. Lukáš OTTE, Ph.D. Ostrava 2013 Tento studijní materiál vznikl za finanční podpory

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Systémy pro podporu rozhodování. Datové sklady, OLAP

Systémy pro podporu rozhodování. Datové sklady, OLAP Systémy pro podporu rozhodování Datové sklady, OLAP 1 4. Datový management: sklady, přístup a vizualizace Principy MSS Nové koncepce Objektové databáze Inteligentní databáze Datové sklady On-line analytické

Více

Algoritmus. Cílem kapitoly je seznámit žáky se základy algoritmu, s jeho tvorbou a způsoby zápisu.

Algoritmus. Cílem kapitoly je seznámit žáky se základy algoritmu, s jeho tvorbou a způsoby zápisu. Algoritmus Cílem kapitoly je seznámit žáky se základy algoritmu, s jeho tvorbou a způsoby zápisu. Klíčové pojmy: Algoritmus, vlastnosti algoritmu, tvorba algoritmu, vývojový diagram, strukturogram Algoritmus

Více

VISUAL BASIC. Přehled témat

VISUAL BASIC. Přehled témat VISUAL BASIC Přehled témat 1 ÚVOD DO PROGRAMOVÁNÍ Co je to program? Kuchařský předpis, scénář k filmu,... Program posloupnost instrukcí Běh programu: postupné plnění instrukcí zpracovávání vstupních dat

Více

StatSoft Úvod do data miningu

StatSoft Úvod do data miningu StatSoft Úvod do data miningu Tento článek je úvodním povídáním o data miningu, jeho vzniku, účelu a využití. Historie data miningu Rozvoj počítačů, výpočetní techniky a zavedení elektronického sběru dat

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

znalostí z databází- mnohostranná interpretace dat

znalostí z databází- mnohostranná interpretace dat Dobývání znalostí z databází- mnohostranná interpretace dat Petr Berka VŠE Praha berka@vse vse.cz Dobývání znalostí z databází Non-trivial process of identifying valid, novel, potentially useful and ultimately

Více

Analýza a modelování dat 6. přednáška. Helena Palovská

Analýza a modelování dat 6. přednáška. Helena Palovská Analýza a modelování dat 6. přednáška Helena Palovská Historie databázových modelů Jak je řešena temporalita? Temporalita v databázích Možnosti pro platnost faktu (valid time): platí nyní, je to aktuální

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška devátá Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 Obsah 1 Kombinatorika: princip inkluze a exkluze 2 Počítání

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních

Více

Přednáška č.6. Mezinárodní marketingový výzkum

Přednáška č.6. Mezinárodní marketingový výzkum Přednáška č.6 Mezinárodní marketingový výzkum Mezinárodní výzkum trhu Motto Kdo zná svého zákazníka, ten mu umí nabídnout zboží, které potřebuje způsobem, který ho zaujme. Marketingový výzkum systematické

Více

Marketingový výzkum 5

Marketingový výzkum 5 Marketingový výzkum 5 Kvantitativní metody dotazování Velikost výběru Techniky výběru Zpracování dat Velikost výběru a techniky výběru respondentů Určení velikosti výběru Ideál ptát se všech Typické velikosti

Více

Umělá inteligence a rozpoznávání

Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních

Více

Efektivní komunikace díky inovativním hlasovým technologiím. Praha, 25.11.2011 Call centrum ve finančních službách

Efektivní komunikace díky inovativním hlasovým technologiím. Praha, 25.11.2011 Call centrum ve finančních službách Efektivní komunikace díky inovativním hlasovým technologiím Praha, 25.11.2011 Call centrum ve finančních službách Agenda Představení společnosti Ovládání hlasových aplikací přirozenou řečí Nové bezpečností

Více

Role BI v e-business řešeních pohled do budoucnosti

Role BI v e-business řešeních pohled do budoucnosti Ing. Ota Novotný, Ph.D. katedra informačních technologií Vysoká škola ekonomická v Praze novotnyo@vse.cz katedra informačních technologií VŠE Praha jsme uznávanou autoritou v oblasti aplikované informatiky

Více

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování 1 Systémy pro podporu rozhodování 2. Úvod do problematiky systémů pro podporu rozhodování 2 Připomenutí obsahu minulé přednášky Rozhodování a jeho počítačová podpora Manažeři a rozhodování K čemu počítačová

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Vícerozměrné statistické rozdělení a testy, operace s vektory a maticemi Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Vícerozměrné statistické rozdělení

Více

Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Základní pojmy a cíle statistiky Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Statistika Pojmy a cíle

Více

Relační DB struktury sloužící k optimalizaci dotazů - indexy, clustery, indexem organizované tabulky

Relační DB struktury sloužící k optimalizaci dotazů - indexy, clustery, indexem organizované tabulky Otázka 20 A7B36DBS Zadání... 1 Slovníček pojmů... 1 Relační DB struktury sloužící k optimalizaci dotazů - indexy, clustery, indexem organizované tabulky... 1 Zadání Relační DB struktury sloužící k optimalizaci

Více

Aktuální otázky provozu datových skladů PAVEL HNÍK

Aktuální otázky provozu datových skladů PAVEL HNÍK Aktuální otázky provozu datových skladů PAVEL HNÍK K čemu slouží datové sklady IT podporuje business podniků S velikostí podniku se zvyšuje náročnost zpracování dat DWH = unifikovaná datová základna pro

Více

Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví

Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví Genetické algoritmy Informační a komunikační technologie ve zdravotnictví Přehled přednášky Úvod Historie Základní pojmy Principy genetických algoritmů Možnosti použití Související metody AI Příklad problém

Více

Příprava dat v softwaru Statistica

Příprava dat v softwaru Statistica Příprava dat v softwaru Statistica Software Statistica obsahuje pokročilé nástroje pro přípravu dat a tvorbu nových proměnných. Tyto funkcionality přinášejí značnou úsporu času při přípravě datového souboru,

Více

Řízení projektů. Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT

Řízení projektů. Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT Řízení projektů Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT 1 Úvod základní pojmy Projekt souhrn činností, které musí být všechny realizovány, aby byl projekt dokončen Činnost

Více

DATA SUPPORT READER S LOYALTY CONSUMER GUIDE

DATA SUPPORT READER S LOYALTY CONSUMER GUIDE DATA SUPPORT READER S LOYALTY CONSUMER GUIDE pro Unii vydavatelů Hana Říhová červen 2012 GfK 2012 Nástroje na výzkumnou podporu tisku June 2012 1 Agenda 1. Data Support 2. Reader s Loyalty 3. Consumer

Více

Datové tržiště nákladní přepravy

Datové tržiště nákladní přepravy Karel Martinec, Jan Pospíšil 1 Datové tržiště nákladní přepravy Klíčová slova: DTNP, nákladní přeprava, datové tržiště (data warehouse), statistika Úvod Železniční nákladní přeprava je dosti složitým procesem

Více

OBSAH KAPITOLY PODNIKOVÍ ZÁKAZNÍCI DRUHY PODNIKOVÝCH ZÁKAZNÍKŮ SPOTŘEBITELSKÝ TRH

OBSAH KAPITOLY PODNIKOVÍ ZÁKAZNÍCI DRUHY PODNIKOVÝCH ZÁKAZNÍKŮ SPOTŘEBITELSKÝ TRH OBSAH KAPITOLY PODNIKOVÍ ZÁKAZNÍCI Ing. Lukáš Kučera druhy podnikových zákazníků spotřebitelský trh a jeho chování průmyslový trh a jeho chování nákupní rozhodovací proces spotřebitele životní cyklus produktu

Více

Multidimenzionální pohled na zdravotnické prostředí. INMED Petr Tůma

Multidimenzionální pohled na zdravotnické prostředí. INMED Petr Tůma Multidimenzionální pohled na zdravotnické prostředí INMED - 21.11.2003 Petr Tůma Koncepce multid pohledu Poskytování péče probíhá v multidimenzionálním světě; dimenze tento svět mapují podobně jako souřadnice

Více

Inteligentní analýza obrazu. Ing. Robert Šimčík

Inteligentní analýza obrazu. Ing. Robert Šimčík Inteligentní analýza obrazu Ing. Robert Šimčík Jaký je přínos video analýzy? 2 Typické CCTV pracoviště? Příliš mnoho kamer! Pomoc! 3 Proč použít video analýzu? Analýza tisíců video záznamů Redukce zátěže

Více

Geoinformační technologie

Geoinformační technologie Geoinformační technologie Geografické informační systémy (GIS) Výukový materiál l pro gymnázia a ostatní středn ední školy Gymnázium, Praha 6, Nad Alejí 1952 Vytvořeno v rámci projektu SIPVZ 1357P2006

Více

KIS A JEJICH BEZPEČNOST-I

KIS A JEJICH BEZPEČNOST-I KIS A JEJICH BEZPEČNOST-I INFORMAČNÍ SYSTÉMY POUŽÍVANÉ V MANAŽERSKÉ PRAXI pplk. Ing. Petr HRŮZA, Ph.D. Univerzita obrany, Fakulta ekonomiky a managementu Katedra vojenského managementu a taktiky E-mail.:

Více

BRNĚNSKÉ HŘBITOVY ONLINE. Dana Glosová, Magistrát města Brna Kamila Klemešová, Magistrát města Brna

BRNĚNSKÉ HŘBITOVY ONLINE. Dana Glosová, Magistrát města Brna Kamila Klemešová, Magistrát města Brna BRNĚNSKÉ HŘBITOVY ONLINE Dana Glosová, Magistrát města Brna Kamila Klemešová, Magistrát města Brna O čem to bude Proč tvoříme tuto aplikaci? Informace o brněnských hřbitovech Data jsou základ Jak nejefektivněji

Více