Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav zemědělské a potravinářské techniky

Rozměr: px
Začít zobrazení ze stránky:

Download "Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav zemědělské a potravinářské techniky"

Transkript

1 Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav zemědělské a potravinářské techniky Bilance živin u prasat Bakalářská práce Vedoucí práce: prof. Ing. Ladislav Zeman, CSc. Vypracoval: Richard Krobot Brno 2008

2 PROHLÁŠENÍ Prohlašuji, že jsem bakalářskou práci na téma Bilance živin u prasat vypracoval samostatně a použil jen pramenů, které cituji a uvádím v přiloženém seznamu literatury. Diplomová práce je školním dílem a může být použita ke komerčním účelům jen se souhlasem vedoucího bakalářské práce a děkana AF MZLU v Brně. dne. podpis diplomanta.

3 Poděkování Chtěl bych poděkovat všem, kteří mi pomohli se získáváním informací pro bakalářskou práci a také těm, kteří mě celou dobu podporovali ve studiu. Zejména bych chtěl vyjádřit své poděkování vedoucímu bakalářské práce panu prof. Ing. Ladislavu Zemanovi, CSc.

4 Mendelova zemědělská a lesnická univerzita v Brně Ústav výživy zvířat a pícninářství Agronomická fakulta 2007/2008 ZADÁNÍ BAKALÁŘSKÉ PRÁCE Autor práce: Studijní program: Obor: Richard Krobot Zemědělská specializace Všeobecné zemědělství Název tématu: Rozsah práce: Bilance živin u prasat stran Zásady pro vypracování: 1. Zpracujte literární rešerši na téma bilance u prasat 2. prostudujte literární zdroje týkající se problematiky bilance živin 3. Zpracujte analýzu provádění bilancí 4. Vyhodnotte jednotlive publikace a abstrahujte závěry z literatury 5. Sepište esej na téma vaši práce. 6. Vytvořte originální schémata v Power Pointu a nebo v CorelDraw 7. Přepište vše do podoby bakalářské práce

5 Seznam odborné literatury: ZEMAN, L. -- DOLEŽAL, P. -- KOPŘIVA, A. -- MRKVICOVÁ, E. -- PROCHÁZKOVÁ, J. -- RYANT, P. -- SKLÁDANKA, J. -- STRAKOVÁ, E SUCHÝ, P. -- VESELÝ, P. -- ZELENKA, J. Výživa a krmení hospodářských zvířat. 1. vyd. Praha: Profi Press, s.r.o., Živiny, s ISBN ZEMAN, L. -- MRKVICOVÁ, E. -- DOLEŽAL, P. -- KLECKER, D VESELÝ, P. Výživa hospodářských zvířat , Brno, MZLU (CZ). SIKORA, M. -- VAVREČKA, J. -- KRATOCHVÍLOVÁ, P. -- MAREŠ, P. - - ZEMAN, L. Změna užitkových vlastností vykrmovaných prasat vlivem rozdílné odrůdy a hladiny bobu v krmných směsích. In KRÁČMAR, S VAVREČKA, J. -- BUŇKA, F. -- VYSKOČIL, I. Výživa zvířat Proteiny. Brno: Mendelova zemědělská a lesnická univerzita v Brně, 2006, s ISBN Datum zadání bakalářské práce: Termín odevzdání bakalářské práce: listopad 2006 duben 2008 Richard Krobot řešitel bakalářské práce prof. Ing. Ladislav Zeman, CSc. vedoucí bakalářské práce prof. Ing. Ladislav Zeman, CSc. vedoucí ústavu prof. Ing. Ladislav Zeman, CSc. děkan AF MZLU v Brně

6 ABSTRACT KROBOT, R.: Nutrients Balance by pigs. Bachelor Thesis. Mendel university of Agriculture and Forestry, 2008, 57 p. My bachelor thesis Pig nutrient balance engages in general view of nutriments flow in nature, fodders and in animal organism. I focused on the main nutriments, which organism needs for its normal work, growing and for a productive life, on mikroelements (Cu, Zn) and makroelements (P,K,...) which are included in fodders or supplied in to fodder dues in form premixs or by other additives. Details are aimed on the content of nitrogen, phosphorus, zinc and coppers. The work is aimed on separating of those elements by excretions and possibilities to decline their content in excretions. Declining of these elements is possible either with minimalization dose in to the messes, using of more better degestible forms (e.q. chelates) or addition enzymes (e.q. phytase) in to the feedings messes. Key words: pigs, zinc, copper, sewage, nutrients, chelates, secretion

7 Obsah 1 Úvod Literární část Živiny Bilanční pokusy Rozdělení živin Minerální látky Vitamíny Voda Dusík Koloběh dusíku Emise dusíku Obsah ve výkalech a moči Eutrofizace Zinek Koloběh zinku v organismu Snížení obsahu Zn ve výkalech pomocí chelátů Fosfor Koloběh fosforu v organismu Fytátová forma fosforu Možnosti snížení fytátového fosforu Měď Koloběh mědi v organismu Snížení obsahu Cu ve výkalech pomocí chelátů Další metody snižování emisí v chovu prasat Látky koncipované na principu adsorpce Látky využívajících enzymatických aktivit Látky podporující trávení BAT v chovu prasat Závěr Anotace Přehled použité literatury Přílohy...51

8 1 Úvod Zemědělství zajišťuje už od nepaměti obživu pro člověka a to buď prostřednictvím pěstování rostlin pro přímou výživu člověka, nebo jako krmivo pro hospodářská zvířata. Snahou zemědělců je intenzifikace zemědělské výroby, to znamená, že je snaha o získání maximálního užitku z jednotky jedince. Zemědělství má plnit nejen funkce produkční, ale také environmentální a sociální. Společná zemědělská politika Evropské unie podporuje konkurence schopnost zemědělců, harmonický rozvoj venkovských oblastí a vesnic včetně krajových a lokálních specifik, mimoprodukční a environmentální funkcí zemědělství včetně obnovitelných zdrojů energie, potravinářský a zpracovatelský průmysl, který má za cíl zajistit maximální pestrost, kvalitu a bezpečnost potravin pro spotřebitele, a konečně i efektivní agrární export. V rámci EU, stejně jak v České republice, existují velké rozdíly mezi jednotlivými typy farem. Rozdíly je možno charakterizovat velikostí, technologickým vybavením i intenzitou produkce. Převážnou část farem živočišné výroby je možno v současné době charakterizovat jako vysoce specializované, industrializované a koncentrované chovy s vysokou produktivitou. Jedná se tedy o především intenzivní chovy zvířat, které se svými dopady na životní prostředí staly předmětem pozornosti široké veřejnosti. Podstatou celé situace je často problém nepříjemného pachu v okolí farem. Často je v této souvislosti diskutována i otázka možnosti kontaminace půdy a vody při nadbytečné či nevhodné aplikaci statkových hnojiv. Moderní chovy prasat přistupují k postupům omezujícím či eliminujícím negativní dopady na životní prostředí a zároveň respektujícím požadavky zvířat. Hlavní determinanty úrovní emisí pocházející z intenzivního chovu hospodářských zvířat jsou všeobecně odvislé od kvality a složení hnoje, způsobu jeho skladování a manipulace s ním. 8

9 2 Literární část 2.1 Živiny Živiny jsou chemicky definované látky potřebné k výživě zvířat nebo rostlin. Nejde vždy jen o látky nezbytné pro organismus. (Zeman, 2006) Pro zvířata jsou živiny obsaženy v krmivech, mohou vstoupit do trávicího ústrojí látky, které organismus vůbec nevyužije (látky pro organismus indiferentní, např. křemík, chróm, lignin), ale které organismu neškodí. Základem výživy živočichů jsou biologické sloučeniny (živiny), které přijímají zvířata v krmivech. Jsou to látky nezbytné pro živočišný organismus k zajištění všech životních procesů, to znamená k samotnému procesu trávení, pohybu, udržení tělesné teploty, růstu, rozmnožování, tvorbě tělesné hmoty (zvláště svalové), k produkci mléka laktujících zvířat, vajec, vlny atd. Pro tyto funkce může využít živočišný organismus jen tu část přijatých živin, která neodešla z těla ve výkalech. Živiny, které odešly ve výkalech jsou dále výživou pro rostliny. Tu část živin, která zůstane v organismu nazýváme retenované živiny. Zjišťováním jak která část živin se využije v organismu se zabývají bilanční pokusy. 2.2 Bilanční pokusy V bilančních pokusech zjišťujeme kolik se z přijatých živin strávilo (přestoupilo přes výstelku střeva do organismu) a ve vlastním bilančním pokusu se sběrem výkalů a moče dozvíme kolik se ze strávených živin v organismu zadrželo a kolik se vyloučilo močí. Je samozřejmě nutné v přesných bilančních pokusech, zjišťovat ještě ztráty živiny kůží, potem, dýcháním, odloupanými epitely, tvorbou plodu a nebo ztráty způsobené reprodukcí (plodové obaly) anebo ztráty energie vyzářením. Bilanční metody: 9

10 Množství bilančně stravitelné živiny, běžně zjišťujeme tak, že od obsahu živin v krmivu odečítáme celý obsah živiny ve výkalech. Bilančně stravitelná živina = živina v krmivu živina ve výkalech Procentuální podíl bilančně stravitelné živiny z jejího celkového obsahu v krmivu nazýváme koeficientem bilanční (zdánlivé) stravitelnosti nebo zjednodušeně, i když méně přesně, jen koeficientem stravitelnosti. Koeficient bilanční stravitelnosti = bilančně stravitelná živina/ živina krmiva * 100 Při zjišťování bilanční stravitelnosti zanedbáváme skutečnost, že výkaly obsahují také živiny metabolického původu, které nepocházejí přímo ze zkoumaného krmiva, ale z organismu zvířete (např. trávících šťáv, z odloupaných buněk sliznice). Jestliže při vhodném uspořádání pokusu stanovíme obsah živin metabolického původu a pak od přijaté živiny odečteme jen nestrávenou živinu krmiva, zjistíme množství skutečně stravitelné živiny. Skutečně stravitelná živina = živina v krmivu (celkový obsah živiny ve výkalech živina metabolického původu ve výkalech) Klasická bilanční metoda V bilančním období zaznamenáváme množství předpokládaných krmiv, evidujeme případné nedožerky, popř. krmivo vyházené z krmítka, kvantitativně shromažďujeme výkaly a odebíráme vzorky pro analýzu. U všech krmiv, tedy i suché objemné píce a krmiv jadrných, stanovíme při navažování dávek pro jednotlivá krmení sušinu. Dávky suchých krmiv můžeme připravit pro všechna krmení v bilanční periodě najednou. Při bilancování některých makroelementů a mikroelementů je třeba evidovat i spotřebu a sležení vody použité k napájení. Během pokusu dodržujeme pravidelný režim dne. Denně odebrané vzorky výkalů zmrazujeme, nebo je po přídavku několika kapek chloroformu uchováváme v hermeticky uzavřené nádobě v chladničce. Ztráty živin při úpravě vzorku pro rozbory předsušováním za vyšších teplot mohou být značné, a proto dáváme přednost lyofilizaci (dáváme přednost, se dává přednost, se upřednostňuje), nebo provedeme 10

11 alespoň některé rozbory hned po ukončení bilančního období ve výkalech čerstvých (stanovení dusíkatých látek). Výpočet: Koeficient bilanční stravitelnosti = m krm *ž krm m výk m krm* žkrm * žvýk * 100 Indikátorová metoda Chceme - li se vyhnout nutnosti přesného ujišťování spotřeby krmiva a množství vyloučených výkalů, můžeme koeficienty stravitelnosti stanovit indikátorovou metodou. Zjistíme - li procentuální obsah nestravitelné látky-indikátoru v krmné dávce a ve výkalech, můžeme vypočítat, kolik výkalů se vytvořilo z hmotnosti jednotky krmiva, jaký je poměr výkalů. Ve výkalech se vylučuje veškerý přijatý indikátor, z přijatých živin pouze živiny nestrávené. Hmotnost sušiny výkalů je vždy menší než hmotnost sušiny přijatého krmiva, koncentrace indikátoru v sušině výkalů je vyšší než v sušině krmiva. Obsahuje-li sušina výkalů např. čtyřnásobné množství výkalů než sušina krmiva, je množství výkalů čtyřikrát menší než spotřeba krmiva (v sušině). Jako indikátoru pro zjišťování stravitelnosti může být použito některé původní složky krmiva (přirozené indikátory popel nerozpustný v 4 M kyselině chlorovodíkové, lignin) nebo komponenty ke krmné dávce záměrně přidané (externí indikátory). Indikátory přidávané ke krmivu musí být nestravitelné a nesmí ovlivňovat trávení. Nesmí se zapojovat do metabolických procesů a nijak je omezovat. Musí to být látky, které lze rovnoměrně rozptýlit v krmivu, které procházejí trávicím traktem stejnou rychlostí jako krmivo, musí být inertní, nezaměnitelné se všemi látkami z krmiva a mají být snadno, přesně a spolehlivě stanovitelné. Jako externí indikátory se nejčastěji používají oxid chromitý (Cr 2 O 3 ), oxid titaničitý (TiO 2 ). Při použití indikátorové metody není třeba zvířata držet v klecích nebo na bilančních stanicích, stačí odebírat vzorky výkalů nekontaminovaných močí, popř. částečkami steliva, krmiva, u zvířat ustájených v běžné stáji. Indikátorové metody usnadňují bilance při běžných technikách chovu. Jsou výhodné všude tam, kde by byla obtížná evidence množství přijatého krmiva. Nemusíme znát ani jeho sušinu při zkrmovaní. Zvíře může žrát ad libitum a není také omezováno zařízením pro kvantitativní sběr exkrementů. 11

12 Výpočet: Koeficient bilanční stravitelnosti = Kde: i i krm výk * ž * ž výk krm * 100 i obsah indikátoru v sušině v procentech ž obsah živiny index krm v krmivu index výk ve výkalech Pomocí ve vodě rozpustného indikátoru polyetylénglykolu (PEG) o relativní molekulové hmotnosti okolo 4000 můžeme stanovit množství vypité vody, i když ji zvířata přijímají z běžně používaných napáječek nevybavených vodoměrem. V zásobní nádrži se rozpustí indikátor a z jeho koncentrace ve vodě a ve výkalech a z množství výkalů vypočítáme příjem vody. (Zeman, 2006) Výpočet: Množství přijaté vody = množství výkalů * procento PEG ve výkalech procento PEG ve vodě 2.3 Rozdělení živin Do živočišného těla vstupují z krmiva živiny ve formě sacharidů, organických kyselin, lipidů, dusíkatých látek a minerálních látek Sacharidy Nejdůležitějšími sacharidy pro výživu hospodářských zvířat, pokud jde o množství a jejich význam, jsou škrob, cukry a celulóza. Sumu cukru a škrobu a organických kyselin v krmivech označujeme jako bezdusíkaté látky výtažkové (BNLV). 12

13 V rámci sacharidů mají z hlediska energetického metabolismu mimořádný význam disacharidy, a to především sacharóza (cukr řepný, třtinový), protože se jedná o hlavní energetickou živinu v buňkách krmné řepy, melasy, ale i všech krmiv rostlinného původu. Mezi sacharidy živočišného původu můžeme zařadit laktózu, která se vyskytuje výlučně v mléčných krmivech nezbytných pro výživu všech mláďat savců a která je zároveň základním komponentem mléka pro lidskou výživu. Polysacharidy jsou ve výživě zvířat významná zvláště u přežvýkavců, nevýznamnější skupinou energetických živin. Velmi významné jsou zvláště hexózy, z nich škrob a celulóza. Škrob tvoří 50 80% organické hmoty semen obilnin, bramborových hlíz aj. Je zastoupen ve všech krmivech rostlinného původu spolu s disacharidy. Tyto látky jsou náplní krmivářsky velmi důležité skupiny bezdusíkatých látek výtažkových, které tvoří zpravidla více než 50% sušiny organické hmoty krmiv rostlinného původu. Celulóza je základní podpůrnou látkou rostlinné buňky. Čistá celulóza se vyskytuje v rostlinách zcela výjimečně. V krmivech bilancujeme celulózu s dalšími látkami, a to především pod pojmem vláknina. Vláknina není chemicky přesně definovaná látka, je to směs látek sestávajících z celulózy, hemicelulóz a nestravitelných inkrustujících látek, zejména ligninu, kutinu, křemičitanů. Obecně lze konstatovat, že optimální zastoupení sacharidů ve výživě zvířat je základní předpokladem pro dosažení požadované produkce, zachování zdraví zvířat, reprodukce i vysoké nutriční hodnoty vyráběných potravin Ze sacharidů má ve výživě zvířat rozhodující význam glukóza. Glukóza (jako monosacharid) je sacharid minimálně zastoupený v krmivech, ale nesmírně důležitý pro samotný živočišný organismus, a to pro tvorbu krevní glukózy. Organismus získává glukózu především štěpením polysacharidů. Využívá ji pro bezprostřední krytí svých energetických potřeb glukózu. Glukóza je zdrojem pro tvorbu glykogenu a tvorbu jiných cukrů, např. laktózy a dále mastných kyselin a těkavých mastných kyselin. Zastoupení glukózy v krvi je v přímé vazbě na její zdroje. Koncentrace glukózy v krvi je přesným ukazatelem intenzity metabolismu sacharidů a je velmi důležitým ukazatelem při hodnocené metabolického stavu zvířat. Při nedostatku krevní glukózy dochází k hypoglikémii, při nadbytku k hyperglykémii, kdy dočasně obsah glukózy překročí normální hodnoty. 13

14 Živočišný organismus má ve formě glykogenu zásoby na udržení normální hladiny krevního cukru zhruba na jeden den. Ovšem při hladovění jsou využívány jako zdroje energie i jiné živiny, např. tuky, ale i bílkoviny a prostřednictvím meziproduktu látkové přeměny i jiné látky, např. kyselina mléčná, glycerol atd. (Zeman, 2006) Organické kyseliny K energetickým živinám patří i organické kyseliny. Z mnoha, které mohou do metabolismu zvířat vstoupit, mají ve výživě zvláštní důležitost kyselina mléčná, octová, propionová, mravenčí a máselná, a to proto, že některé z nich jsou produkovány zejména u přežvýkavců. (Zeman, 2006) Lipidy Další velkou skupinou energetických živin jsou lipidy, z nich nevýznamnější složkou jsou tuky. Stanoví se jako zbytek získaný sušením petroléterového, popř. etyléterového výtažku (obsahuje tuky, mastné kyseliny, vosky, lopoproteiny a některé další látky chlorofyl, steroly aj.). Lipidy a lipoproteiny jsou heterogenní skupinou látek. Jsou strukturálně odlišné, ale jsou si blízké svými fyzikálními vlastnostmi. Tyto vlastnosti je předurčily k jejich hlavním úlohám v organismu. Je to stavba především buněčných membrán, které jsou tvořeny převážně cholesterolem a fosfolipidy. Ty od sebe oddělují vodné prostředí jednotlivých buněk. Triacylglyceroly jsou ideálním zásobním energetickým substrátem, neabsorbujícím vodu z okolního prostředí. Mastné kyseliny jsou především pohotovým a vydatným zdrojem energie. Mastné kyseliny se rozdělují podle počtu uhlíků a nasycených nebo nenasycených dvojných vazeb. Analýza lipidů se provádí na plynovém nebo kapalinovém chromatografu. Klasifikace lipidů: Lipidy jednoduché: - mastné kyseliny - volný cholesterol Lipidy složené: - esterifikovaný cholesterol 14

15 - triaxylglyceroly - fosfolipidy Klasifikace mastných kyselin: - nasycené mastné kyseliny neobsahující žádnou vojnou vazbu ve svém řetězci. Mohou být syntetizovány v organismu a patři tedy mezi neesenciální mastné kyseliny. Slouží především jako rychlý a pohotový zdroj energie. Nenasycené mastné kyseliny vyskytující se v těle jsou převážně- laurová (C12 : 0), myristová (C14 : 0), palmitová (C16 : 0), stearová (C18 : 0) - nenasycené mastné kyseliny obsahující ve svém řetězci jednu nebo více dvojných vazeb, většinou v cis-konfiguraci. Nenasycené mastné kyseliny se děli dále na moneonové nenasycené masné kyseliny, které obsahují jednu dvojnou vazbu, mohou být syntetizovány v organismu a patří tedy mezi neesenciální mastné kyseliny např. palmitoolejová (C17 : 1), olejová (C18 : 1). Dále se ještě dělí na polyenové nenasycené mastné kyseliny, které obsahují dvě nebo více dvojných vazeb ve svém řetězci. Většinou je organismu není schopen syntetizovat a patří tedy mezi esenciální mastné kyseliny např. linolová (C18 : 2), arachidonová (C20 : 4), linolenová (C18 : 3) podle potřeby mastných kyselin je rozdělujeme na: - esenciální mastné kyseliny polyenové mastné kyseliny z první dvojnou vazbou na třetím nebo šestém uhlíku. Jejich syntéza v organismu není možná. Jsou mimo jiné prekurzory prostaglandinů, leukotirenů, tromboxanů. Patří k nim především: - n-6 mastné kyseliny (linolová, arachidonová) - n-3 mastné kyseliny (linolenová, eicosapentaenová, dcosahexaenová) - neesenciální mastné kyseliny mohou být syntetizovány v organismu. Mezi neesenciální mastné kyseliny patří některé nasycené mastné kyseliny (kyselina laurová, myristová, palmitová, stárová) a monoenové masné kyseliny (kyselina palmitoolejová, olejová). Nicméně syntéza kyseliny olejové může být někdy nedostatečná a je proto vhodný i její exogenní přívod. Při nedostatku esenciálních mastných kyselin se objevují tyto symptomy: - zpomalení růstu - změny na kůži - zvýšený příjem vody - degenerativní změny na varlatech a vaječnících - snížení odolnosti proti stresu a úhynu 15

16 Lipidy jsou zásobní látkou jak v rostlinách, tak v živočišném těle. V tom je jejich hlavní a zásadní význam. Tuky mají zhruba dvojnásobnou energetickou hodnotu ve srovnání se sacharidy. Zatím co energetická hodnota sacharidů je asi 17 kj/g, je energetická hodnota tuků asi 38 kj/g. Zastoupení tuku v živočišném těle: - buněčný, který je součástí protoplasmy a pro každý druh zvířat má charakteristické složení. Sestává převážně z lecitinu, glyceridů, masných kyselin, cholesterolu a jeho esteru. - Zásobní, který je tvořen triglyceridy vyšších mastných kyselin, a to zejména olejové, palmitové a u přežvýkavců stearové. Tuky se syntetizují v živočišném těle z podstatné části ze sacharidů. Zásobní tuk má také význam v metabolismu vody (oxidací 100 g tuku vzniká 107 g vody). Kromě funkce zásobního zdroje energie mají lipidy mimořádný význam u lipofilních vitamínů a to zejména jako nosiče vitamínů A, D, E a K. Zdroje lipidů V běžných zrninách a olejninách krmiv je od 1 do 45 % tuku. Ale také v těle zvířat jsou významné rozdíly v jejich zastoupení. Největší obsah lipidů mají: - Živočišný tuk (sádlo, lůj a jiné) 99,5 % - Rostlinný olej 99,5 % - Mlezivo 26 % - Lněná a slunečnicová semena % - Zelená píce a siláže 2,1 5 % - Seno 1,5 2,8 % - Zrniny 1,3 5,5 % Dusíkaté látky Tato skupina živin patří svým charakterem do stavebních živin, ale část z nich může být využita v organismu jako energetický zdroj. Vyjadřují obsah dusíku v krmivu jako prvku násobeného zpravidla koeficientem 6,25, který je odvozen ze skutečnosti, že bílkoviny obsahují 16 % dusíku. Tento koeficient je u některých 16

17 krmiv odlišný. Např. pro mléko je 6,38, živočišné moučky 6,0, obiloviny a mlýnská krmiva 5,25. Dusíkaté látky jsou ve výživě zvířat nezastupitelné. Existence živočichů a jejich produkce jsou podmíněny přítomností a zdroj využitelných forem dusíkatých látek. Z výživářského hlediska dnes rozlišujeme dusíkaté látky na: - bílkoviny složené z aminokyselin, které se dělí na proteiny a proteidy - nebílkovinné dusíkaté sloučeniny např. amidy, alkaloidy, peptidy, nukleové kyseliny, amoniak, močovinu, dusičnany. Metabolismus bílkovin v organismu Bílkoviny proteiny jsou v žaludku a na začátku tenkého střeva rozštěpeny na oligopeptidy s krátkým řetězcem a na volné aminokyseliny. Štěpení způsobují enzymy zažívacího traktu. Po rozštěpení jsou aminokyseliny absorbovány. Absorbované aminokyseliny jsou dopravovány krví nebo lymfou do jater. Tam probíhají následující reakce: - syntéza bílkovin - desaminace čpavek se vyloučí jako močovina močí, bezdusíkatá frakce se oxiduje nebo se z ní tvoří cukry - aminokyseliny se krví dopraví do svalů a tam dojde k syntéze bílkovin, odštěpení čpavku a bezdusíkatá frakce se oxiduje. Volné aminokyseliny vytváří v organismu zvířat rezervoár, tzv. aminokyselinový pool, který organismus používá na tyto účely: - na tvorbu bílkovin, enzymů a hormonů - na tvorbu glycidů nebo tuků - na neustálou náhradu opotřebovaných bílkovin a na tvorbu nových bílkovin přírůstku, pro tvorbu mléka a jiné - na krytí energetických potřeb organismu - na syntézu derivátů aminokyselin glutation, kreatin a jiné Deponování bílkovin v organismu je omezené a zásoby proteinů jsou jen zlomkem zásob tuků nebo glykogenu. Z hlediska využívání bílkovin jako rezervy je možné je rozdělit na: - fixní bílkoviny nezbytně nutné pro život - postradatelné bílkoviny které organismus může použít pro svoji potřebu bez ohrožení života - labilní proteiny které se při přechodné potřebě uvolňují do krve, doplňují bílkoviny plazmy anebo se používají jako zdroj aminokyselin. 17

18 Bílkoviny mají pro živočišný organismus specifický význam, neboť jsou jedinou živinou, která je sama nebo ve formě svých složek (spolu s vodou, minerálními látkami a vitamíny) schopna vyživovat živočišné buňky. Nacházejí se v každé buňce a jsou hlavní složkou cytoplazmy. Bílkoviny tkání organismu se mohou rozkládat účinkem vnitrobuněčných enzymů (katepsinů) na aminokyseliny, které v organismu fungují stejně jako aminokyseliny z krmné dávky. Zdroje aminokyselin pro správnou funkci metabolismu jsou: - exogenní enzymový rozklad bílkovin potravy - endogenní zdrojem je neustálá proteolýza tkání Je důležité si uvědomit, že v průběhu procesu zpracování proteinů organismus získává také energetické zdroje. Rozštěpením 100 g bílkovin se získá přibližně 58 g glukózy. Spálením 1 g bílkovin se získá asi 24 kj energie. A však oxidací jednoho gramu proteinů organismus získá jen asi 17 kj tepla, protože je nutné od původního spalného tepla odečíst přibližně 7 kj energie na vyloučení dusíku ve formě močoviny. Konečným produktem metabolismu bílkovin jsou voda, oxid uhličitý a čpavek. Z organismu se vylučují močí, výkaly nebo plyny. Nejvýznamnější cestou pro vylučování dusíku z organismu je moč. Rozdělení bílkovin podle chemického složení: Proteiny složené převážně z aminokyselin Proteidy obsahují kromě aminokyselin i nebílkovinné skupiny, které se lehce oddělují Aminokyseliny rozdělujeme na: - esenciální nepostradatelné, které organismus vyšších živočichů s jednoduchým žaludkem syntetizuje v nedostatečné míře. U přežvýkavců je syntetizují bakterie v předžaludku. Mezi esenciální aminokyseliny patří: lyzin, methionin, fenylalanin, tryptofan, histidin, leucin, izoleucin,treonin, valin, arginin - neesenciální postradatelné, které organismy živočichů syntetizují v dostatečné míře nebo je syntetizují z esenciálních AMK. Mezi neesenciální aminokyseliny patří: glycin, prolin, cystein, alanin, serin, tyrozin, kyselina asparagová, kyselina glutamová, hydroxyprolin, citrulin. Na rozdíl od zvířat s polygastrickým trávicím aparátem (skot.), které jsou schopny díky své bachorové mikroflóře syntetizovat aminokyseliny, jsou zvířata s jednoduchým trávícím aparátem závislá na exogenních zdrojích aminokyselin. Dusíkaté látky nebílkovinné jsou v dusíkovém komplexu krmiv zastoupeny od 0 do 50 %. Vyšší hodnoty jsou nacházeny např. v mladé zelené píci. Naopak v krmivech živočišného původu je zastoupení nebílkovinného dusíku minimální. 18

19 Narozdíl od sacharidů a tuků, z nichž se při přebytku v dietě mohou tvořit zásoby v podobě tělního tuku, tomu tak u dusíkatých látek není. Těch musí být v každodenní krmné dávce tolik, kolik živočišný organismus potřebuje na obnovu svých tkání, růst, produkci, atd. Při přebytku dusíkatých látek v krmné dávce musí tyto látky tělo opustit, protože se z nich nemohou vytvářet zásoby. Přebytek dusíkatých látek způsobuje přetížení detoxikační kapacity jater, dochází k desaminaci aminokyselin, poškozování vylučovacích systému, atd. Naopak deficit dusíkatých látek zpomaluje růst, zhoršuje konverzi krmiva. (Zeman, 2006) 2.4 Minerální látky Minerální látky vstupující do organismu rozdělujeme na makroprvky (Ca, P, K, Na, Mg, Cl, S) a na mikroprvky (Fe, Mn, Cu, Co, I, Mo, Se, Cr, Zn) Makroprvky Vápník Vápník se resorbuje převážně v tenkém střevě. Resorpce probíhá jako aktivní proces a ovlivňuje ji dostatečná acidita střevního obsahu, hladina vitamínu D, obsah fosfátů, nebo oxalátů v krmivech a parathormon. Resorbovaný vápník se vylučuje především výkaly a močí. Zvýšené vylučování vápníku močí je indikátorem dekalcifikace kostí. Resorbovaný vápník se také vylučuje některými živočišnými produkty (mléko a tělo mláďat) (Mcdowell aj. 1992). Vápník je v zelených krmivech nejvíce obsažen v jetelovinách, v zelené řepce, luskovinách, řepkovém listě a v trávách. Obsah vápníku je však velmi variabilní a závisí především na ph půdy a vodním režimu v půdě. V suchém období přijímá rostlina mnohem více vápníku a méně fosforu z půdy. Z ostatních krmiv obsahuje mnoho vápníku především rybí a masokostní moučka, mléko, sušené cukrovarské řízky a melasa. Ostatní krmiva obsahují relativně málo vápníku (Sommer, 1985). Fosfor 19

20 Fosfor se převážně nachází v kostech a zubech. V krvi se nachází většinou v erytrocytech a je vázaný ve fosfatidech a fosfátových esterech. V krevním séru se nachází jako anorganický fosfát a je snadno využitelný pro chemickou reakci. Fosfor se resorbuje zvláště v tenkém střevě, u přežvýkavců i ve slezu. Vstřebává se jako anorganický fosfát. Přebytek iontů vápníku, hořčíku a hliníku v krmné dávce tvoří ve střevech nerozpustné a neresorbovatelné fosfáty. Je vylučován výkaly a močí, na rozdíl od vápníku závisí vylučování fosforu močí na jeho množství v krmné dávce. Koncentrace fosforu je řízena stejně jako koncentrace vápníku. Pro přežvýkavce je fosfor potřebný na rozmnožování a rozvoj bachorové mikroflóry, má vliv na produkci mléka a obsah tuku, jeho poměr k vápníku má úzký vztah k plodnosti. Vysoký obsah fosforu mají obilniny, mlýnská krmiva a extrahované šroty. Nejvyšší obsah fosforu mají však rybí moučky. Nejméně fosforu obsahují okopaniny. Draslík Je hlavním kationtem intracelulárního prostoru. Do organismu je draslík dodáván krmivy rostlinného původu a je resorbován ve střevě. Značná část draslíku se nachází v játrech a hlavně ve svalech a ve všech sekretech trávicího systému, značná část draslíku je také obsažena v mléce. Resorbovaný draslík se vylučuje močí, vylučování výkaly nebo potem je minimální. Draslík není potřeba přidávat ve formě draselných solí. Obsah draslíku v půdě a rostlinách závisí na obsahu vody v půdě a na vegetačním stádiu rostlin. Vysoký obsah draslíku mají řepa, řepné listy, trávy, jeteloviny a extrahované šroty. Nízký obsah draslíku mají živočišné moučky a zrniny (Sommer 1985). Sodík Sodíkový iont je hlavním kationtem extracelulární tekutiny. Nepatrná část sodíku je vázáná intracelulárně. Asi 40 % celkového množství sodíku je vázáno v kostech, ale je těžko mobilizovatelné. Poměrně vysoká koncentrace sodíku je ve svalech a v játrech. Zvířata získávají sodík hlavně ve formě NaCl z potravy rostlinného a živočišného původu. U přežvýkavců se resorbovaný sodík dostává zpět do trávící soustavy slinami bachorová tekutina se stává určitou rezervou sodíku. Obsah sodíku v půdě je relativně nízký a v rostlinách velmi kolísá. Nízký obsah sodíku mají zrniny, extrahované šroty a brambory. Vysoký obsah sodíku mají živočišné moučky, kvasnice, řepa a řepné skrojky (Sommer 1985). 20

21 Hořčík Nedostatek i nadbytek hořčíku působí nepříznivě na živočišný organismus. Určování normální koncentrace hořčíku je možné jenom jeho pravidelným přísunem v krmivu. Využitelnost přijatého hořčíku je velmi důležitá, protože s věkem zvířat se snižuje. Resorpce probíhá převážně v tenkém střevě. V rostlinách je obsah hořčíku velmi rozdílný a závisí na vegetačním stádiu a druhu půdy. Mladé rostliny mají vyšší obsah hořčíku. V mokrých rocích je obsah hořčíku v travách nižší. Vysoký obsah hořčíku mají olejniny, extrahované šroty a otruby, naproti tomu brambory mají nízký obsah a řepa přiměřený obsah hořčíku. Chlór Je hlavním aniontem extracelulární tekutiny. Skoro 1/5 celkového množství chlóru se nachází ve formě organických sloučenin. Vyskytuje se především v krvi, podkožním vazivu, ve svalech a v játrech. Hospodářská zvířata přijímají chlór prakticky vždy ve formě chloridu, převážně chloridu sodného. Síra Síra se v živočišném těle nachází ve formě organických sloučenin. Je součástí aminokyselin obsahující síru, je strukturální součástí některých vitamínů. Je přítomna ve všech buňkách a hraje důležitou roli v oxidoredukčních procesech. Většina krmných dávek obsahuje víc, než jeden gram S na jeden kg sušiny což stačí na pokrytí potřeby zvířat mikroprvky Železo Potřeba železa pro skot se plně kryje krmivem. Resorpce železa záleží na věku, stupni zabezpečení organismu železem, stavu trávicí soustavy, druhu přijímaného krmiva, složení krmné dávky a přítomnosti dalších minerálních látek. Kromě okopanin a mléka je v krmivech přebytek železa. Nedostatek železa mají zpravidla pouze selata. Mangan 21

22 Je nenahraditelný mikroprvek pro organismus zvířat. Ukládá se v játrech, pankreasu, ledvinách, kostře a srsti. Krmiva obsahují dostatek manganu. Nejvíc ho mají objemová krmiva a olejniny, méně zrniny a nejméně krmiva živočišného původu (Sommer 1985). Měď Je nenahraditelný mikroprvek pro přežvýkavce. Využití mědi závisí na složení krmné dávky a na fyziologickém stavu organismu (Mcdowell aj. 1992). V některých oblastech se může vyskytnout nedostatek mědi ve výživě přežvýkavců. Při přebytku vznikají otravy zvířat (Sommer 1985). Kobalt V živočišném organismu se kobalt nachází v mnohých tkáních a orgánech nejvíce kobaltu je obsaženo v játrech, svalech, slezině a plicích. Množství kobaltu v organismu závisí na jeho obsahu v krmivu. Je účasten na krvetvorných procesech (Mcdowell aj. 1992). Vysoký obsah kobaltu mají výlisky, nízký obsah obilniny (Sommer 1985). Jód Biologický význam jódu je znám velmi dlouho. Jeho potřeba pro živočišný organismus závisí na mnoha faktorech, jako je druh zvířat, plemeno a fyziologický stav. Nejvíce jódu obsahuje štítná žláza (Lichovníková aj. 2004). Molybden Množství molybdenu nacházející se v krmivech rostlinného a živočišného původu stačí většinou krýt potřebu hospodářských zvířat. V praxi nedochází k deficitu molybdenu, ale častěji se vyskytuje jeho nadbytek molybdenová toxikóza (Mcdowell aj. 2004). Selen Je to mikroprvek, jehož biologický význam byl objasněn až v posledních 20-ti letech. Resorpce selenu a jeho sloučenin se uskutečňuje ve dvanáctníku a závisí na složení krmné dávky, resorpci bílkovin a na přítomnosti jiných elementů, které mají antagonistický vztah k selenu (síra) (Mcdowell aj. 1992). Chróm 22

23 Je znám jako esenciální stopový prvek. Význam chrómu je v jeho nedílné složce faktoru tolerance glukózy (Mcdowell aj. 1992). Zinek Zinek má význam jako složka nebo aktivátor důležitých enzymů a hormonů. Zinek je interakčně spojen s jinými minerálními prvky. Metabolismus zinku v organismu souvisí s metabolismem železa, mědi, manganu, kobaltu a molybdenu. Jestliže je měď používána jako růstový stimulátor, můžou se u prasat krmených dietami založenými na rostlinných proteinech objevit příznaky deficience zinku, pokud dotace zinku není dostatečná. Naopak při krmení směsí bohatou na zinek, ale s nedostatkem mědi, existuje nebezpečí anémie. Antagonistická vzájemná závislost při absorpci zinku a mědi spočívá v jejich vzájemné konkurenci při absorpci v zažívacím traktu (Tvrzník, Zeman, 2005). 2.5 Vitamíny Vitamíny jsou obecně definovány jako organické složky potravy nezbytné pro život, zdraví a růst a nejsou zdrojem energie. Provitamíny jsou látky, které nemají biologickou aktivitu vitamínů, nicméně organismus je schopen z nich dané vitamíny vyrobit. Projevy nedostatku či nadbytku vitamínů: - avitaminóza je obecně úplný nedostatek vitamínů s rozvojem karenčních příznaků. Rozděluje se na primární avitaminózu je úplný nedostatek vitamínů v důsledku jejich nedostatečného přívodu potravou a sekundární avitaminózu což je úplný nedostatek vitamínů v důsledku neschopnosti organismu vitamíny využít. - Hypovitaminóza je obecně neúplná či dočasná karence vitamínů. Dělí se na relativní hypovitaminózu, vzniká v důsledku zvýšené potřeby organismu při jinak dostatečném přívodu a využitelnosti vitamínů a na hypervitaminózu což je nadbytečný přísun vitamínů. Faktory ovlivňující potřebu vitamínů. Věk mladší věkové kategorie v období růstu a jejich dalšího vývoje jsou citlivější, vnímavější na nedostatek vitamínů. Pohlaví a fyziologický stav zvýšené nároky na dostatek vitamínů a minerálů v období březosti a laktace. 23

24 Vlivy zevního prostředí ekologická zátěž, fyzická, ale i psychická zátěž zvířete. Stupeň a intenzita látkové výměny při stoupající úrovní metabolismu stoupá i potřeba vitamínů. Složení krmiva některé živiny zvyšují nároky na příjem vitamínů, např. vliv spotřeby cukru na potřebu vitamínů B 1. Dělení vitamínů: - vitamíny rozpustné v tucích, tzv. lipofilní (A, D, E, K), lipofilní vitamíny potřebují pro svou resorpci v gastrointestinálním aparátu neporušenou resorpci tuků a obvykle vytvářejí v organismu zásoby tzv. depa. Při dlouhodobém nadměrném podávání bývají toxičtější. - Vitamíny rozpustné ve vodě, tzv. hydrofilní (C, skupina B-komplexu), nejsou tak náročné na resorpci v gastrointestinálním aparátu a většinou se v organismu neukládají, jsou z organismu vylučovány moči. Při dlouhodobém nadměrném podávání bývají obvykle méně toxické. (Zeman, 2006) 2.6 Voda Obsah vody v prázdném těle prasete se mění, u narozených selat je obsah vody od 82 % až po 53 % u jatečného prasete. Voda je nezbytná při fyziologických funkcích organizmu pro maximální produkci. Kromě toho je nutná při regulaci teploty, transportu živin a odpadů, metabolizmu živin a k produkci mléka. Voda je vylučována z těla prasat plícemi při dýchání, kůží při odpařování, střevy při kálení, ledvinami při močení, mlékem u kojících prasnic, ejakulátem u kanců anebo porodem. (Šimeček, 2000) Hlavním zdrojem vody pro hospodářská zvířata je pitná voda. Musí být zdravotně nezávadná a dostatečně chladná, aby dodávala pocit svěžesti. Dalším zdrojem vody je voda obsažená v krmivech, obsah kolísá od 10 do 95 %. Exogenní voda se vstřebává do organismu přes výstelku střeva do krve a vstupuje do procesu látkové přeměny. Dále máme vodu endogenního původu, která se tvoří v důsledku rozpadu organických látek v organismu. Při rozkladu 1 g tuku vzniká 1, 071 g vody, 1g sacharidů tvoří 0,555 g vody a 1 g bílkovin tvoří 0,413 g vody. Nedostatek vody je u organismu snášen hůře než hladovění, kdy organismus může ztratit až 40 % vlastní hmotnosti. Při snížení hmotnosti žízněním o 4 5 % pozorujeme neklid a 24

25 odmítání krmiva, při snížení hmotnosti o 6 8 % se objevují příznaky dehydratační vyčerpanosti, která se projevuje poruchami funkcí centrálního nervového systému, při ztrátě % živé hmotnosti dochází k úhynu zvířat. Potřeba vody u zvířat je úměrná intenzitě látkové přeměny. Závisí na druhu a individualitě zvířete, na druhu krmiva a způsobu krmení, na jeho tělesném stavu a dále také na klimatických poměrech. Největší potřebu vody mají sací mláďata, mladých a hubených zvířat. Postupem věku potřeba vody klesá. V letním období je potřeba vody vyšší než v zimním. (Zeman, 2006) 25

26 3 Dusík 3.1 Koloběh dusíku Spolu s kyslíkem, uhlíkem a vodíkem představuje dusík kvantitativně hlavní biogenní prvek. Ve vodách nebývá limitujícím prvkem. Jeho snížená koncentrace koresponduje s vysokým nárůstem fytoplanktonu zejména ve vegetačním období. Maxima koncentrace dusíku jsou zaznamenána na nádržích s vytvořeným vodním květem. Podíl dusíku v ekosystému narůstá používáním dusíkatých hnojiv v zemědělství a dále spalováním fosilních paliv. Dusík se v přírodě vyskytuje v podobě atmosférické molekuly dusíku, anorganických sloučenin (amoniaku, dusitanu a dusičnanů) a organických sloučenin (nukleových kyselin, bílkovin a močoviny). Atomy dusíku jsou v molekule poutány pevnou trojnou vazbou, dávající dusíku vlastnost inertního plynu. Přímo atmosférický dusík využívají organismy se schopností biologické fixace, umožněné enzymem nitrogenázou, která převádí dusík na amonné soli, glutamin a inkorporuje ho do vegetativní buňky. Biologickou fixaci provádějí symbiotičtí a volně žijící aerobní, anaerobní a fototrofní vazači atmosférického dusíku. Symbiotickým vazačem je hlízkatá bakterie rodu Rhizobium, žijící na kořenech bobovitých rostlin. Volně žijící vazači jsou aerobní bakterie rodu Azotobacter a anaerobní rod Clostridium. Dusičnany přijímané producenty se přeměňují na organickou hmotu bílkovin a nukleových kyselin. Pro zelené rostliny a pro vazbu atmosférického dusíku např. Azotobacterem je důležitý draslík (další biogenní prvek). Z fototrofních vazačů se jedná o zástupce sinic např. rody Anabaena a Aphanizomenon. Dusík je do okolního prostředí uvolňován metabolismem či rozkladem uhynulých částí. Organicky vázaný dusík mineralizují chemotrofní bakterie na amoniak procesem amonifikace. Uvolněný amoniak dále využívají bakterie, řasy a nitrifikační bakterie. Nitrifikace je oxidace amoniaku na dusitany (nitritace) bakteriemi rodu Nitrosomonas a dusitanů na dusičnany (nitratace) bakteriemi rodu Nitrobacter. Proces probíhající v anaerobním prostředí je denitrifikace. Bakterie rodu Pseudomonas redukcí dusičnanů na plynný dusík získávají kyslík pro svůj metabolismus. Z exkrementů živočichů se do vodního prostředí dostává amoniak, močovina a kyselina močová. Na koloběhu dusíku se podílejí další 26

27 typy bakterií, které rozkládají dusíkaté látky, např. amonizační bakterie a proteolytické bakterie. (Říhová, 2007) 3.2 Emise dusíku Tuto oblast upravuje Směrnice rady 91/671/EHS ze dne 12. prosince 1991 o ochraně vod před znečištěním dusičnany ze zemědělských zdrojů (nitrátová směrnice), která má za cíl snížit znečištění vod způsobované dusičnany ze zemědělských zdrojů a předcházet dalšímu takovémuto znečišťování. Směrnice byla přijata vzhledem k tomu, že v některých oblastech členských států stoupá obsah dusičnanů ve vodách a vzhledem k tomu, že je zájmem Evropské unie snížit znečištění vod způsobované vyvážením nebo vypouštěním odpadů z chovů zvířat. Nitrátová směrnice pak uvádí zásady správné zemědělské praxe směřující ke snížení znečišťování životního prostředí dusičnany a naplnění výše uvedených cílů. Tato opatření by měla zajistit, že množství použitých statkových hnojiv včetně výkalů hospodářských zvířat nepřekročí na žádném zemědělském provozu stanovené množství na ha za rok. Nejvyšší roční množství na jeden hektar je takové množství statkových hnojiv, které obsahuje 170kg dusíku. K takovému snížení obsahu dusíku aplikovaného na zemědělskou půdu mohou přispět specifické postupy ve výživě zvířat 3.3 Obsah ve výkalech a moči Složení výkalů je na prvním místě ovlivněné kvalitou a složením krmiva, což je vyjádřeno obsahem sušiny, koncentrací živin a účinností, s jakou jsou zvířata schopna přeměnit tyto živiny na výsledný produkt. Dále ovlivňují tyto emise spojené s aplikací výkalů do půdy opatření používaná v souvislosti s ustájením, uskladněním a nakládáním s výkaly. Odhad emisí je možné uskutečnit na základě znalostí o složení krmiva a tak určit potenciální ztráty minerálů, pokud by byly výkaly aplikovány do půdy, bez dalších ztrát způsobených skladováním nebo jiným nakládáním. Složení krmiva a úroveň využití krmiva určují obsah živin v exkrementech. Využití se může lišit, ale pokrok v chápání látkové výměny u prasat umožňuje měnit složení exkrementů změnou obsahu živin v krmivu. Úroveň využití krmiva se také mění v jednotlivých produkčních etapách. 27

28 Množství prasečích výkalů a jejich charakteristika závisí na kategorii prasat, na obsahu živin v krmivu, používaném napájecím systému, ale i na látkové výměně typické pro jednotlivou produkční fázi. Pro sledování změn ve složení výkalů a moče (kejdy) během roku jsou důležitými faktory délka produkčního cyklu a poměr přijímaného krmiva a vody Tab. 1 Kejda - je částečně zkvašená směs výkalů, moče a technologické odpadní vody. Kvalitní kejda je srovnatelná s ostatními statkovými hnojivy, obohacuje se o organické látky a snadno přijatelné živiny. Její složení závisí na druhu hospodářských zvířat, krmení, množství vypité vody, způsobu odklizu a skladování. Nejvíce je však ovlivněno množstvím technologické a jiné vody, jejíž obsah by neměl překročit 20% vyprodukované naředěné kejdy. Za dobrou kejdu je možno považovat produkt s následujícími hodnotami v tabulce č Eutrofizace přirozená hlavním zdrojem je výplach živin z půdy a rozklad mrtvých organismů a nadměrná eutrofizace způsobená lidskou činností nepřirozená dusíkaté látky a fosfáty z hnojiv používaných v zemědělském sektoru se do vodních toků dostávají jejich splavováním deštěm, existují však i jiné signifikantní zdroje. Důsledkem eutrofizace je nejprve přemnožení planktonu (vodní květ) a posléze, po jeho masovém odumření, způsobí nedostatek kyslíku ve vodě, zejména u dna, kde ho odnímá tlení hmoty a následné vymírání ryb a dalších organismů, zejména těch žijících u dna. Toxické látky pocházející ze sinic, dekompozitorů a rozkládající se organické hmoty však mohou v extrémním případě působit na většinu či celou rybí populaci i další organismy v potravním řetězci. Zemědělské zdroje patří mezi nevětší producenty emisí amoniaku v celosvětovém měřítku, proto se v posledních letech stalo prioritou u těchto ostatních stacionárních zdrojů znečišťování ovzduší, jak jsou zákonem o ovzduší kategorizované, tyto emise snižovat vhodnými technicky a ekonomicky nenáročnými způsoby, které jsou provozovatelem realizovatelné. Odhaduje se, že ve světovém měřítku se ročně vyprodukuje mil. tun amoniaku. Z tohoto množství připadá 90 % na zemědělství, 8 % na přírodní zdroje a jenom 2 % na průmysl a spalování fosilních paliv. 28

29 Při spalování fosilních paliv k emisím amoniaku primárně nedochází. Problematickou emisí je v tomto případě emise oxidů dusíku (NO x ). Pro jejich omezení se pak využívá selektivní katalytická, či nekatalytická reakce. Postatou těchto metod snižujících amonné emise je vstřikování koncentrovaného roztoku močoviny, či amoniaku do vypouštěné vzdušniny. Pokud nedojde k dokonalé reakci oxidů dusíku a amoniaku, může se tento dostat do vnějšího prostředí. Opačný systém pak lze využít u systému mokrých praček vzduchu, kdy se deklaruje snížení emise amoniaku až o 99 %. Vznikající kondenzáty se dále využívají při převodu plynného amoniaku do stavu tekutých roztoků, které lze dále využít například při přípravě průmyslových hnojiv. Podíl jednotlivých zdrojů na celkových emisích je znázorněn v grafu č. 1 (dodělat str. 7) V České republice se pohybuje roční hodnota emise amoniaku mezi tis. tun, přičemž se za hlavní zdroje amoniaku považují chovy skotu a drůbeže. V čistém stavu za normálních podmínek je amoniak bezbarvý plyn (teplota varu za normálních podmínek činí 33,5 C) s typickým čpícím štiplavým zápachem. Je zásaditý, dráždivý a žíravý. Hustotou 0,77 kg.m -3 je zhruba o polovinu lehčí než vzduch. Může být skladován za zvýšeného tlaku v kapalném stavu. Jeho rozpustnost ve vodě je výborná (540 g.l -1 při teplotě 0 C). Reaguje s kyselinami za vzniku amonných solí. Má silné korozivní účinky vůči kovům, zejména vůči slitinám mědi. V případě vysokých úniků hrozí nebezpečí výbuchu. Amoniak je velice toxický pro vodní organismy, zejména pro ryby, proto hraje důležitou roli jeho velmi dobrá rozpustnost ve vodě. Toxické koncentrace amoniaku mohou být uvolňovány rozkladem chlévské mrvy, kejdy a odpadů z chovů zvířat. Amoniak vzniká především rozkladem močoviny nebo kyseliny močové v exkrementech zvířat. Na tomto rozkladném procesu má významný podíl enzym ureáza (amidohydroláza), kterou produkují hlavně některé fekální mikroorganismy, za vzniku amoniaku a bikarbonátových iontů. Ureáza může být obsažena i v některých krmivech např. semena luštěnin a jejich zkrmováním obohacovat exkrementy zvířat. Omezením působení ureázy v exkrementech lze významně omezit a zpomalit rozklad močoviny a snížit tak produkci amoniaku. Pro komplexnost je nutno vidět výchozí stav exkrementů, jejichž složení (zastoupení dusíkatých látek) je odvislé již od využitelnosti dusíkatých látek krmné dávky. Amoniak ve větších koncentracích dráždí především sliznice očí, horní cesty dýchací a plíce, ztěžuje ventilaci plic a zhoršuje choroby dýchacích cest. Z výkalů se amoniak v objektech uvolňuje pomalu a jeho koncentrace je závislá na celé řadě faktorů (teplota, 29

30 vlhkost vzduchu, ventilační výkon, množství zvířat, kvalita podestýlky a složení krmiva (hrubé bílkoviny) ovlivňují celkové množství uvolněného amoniaku. Přehled procesů, s možnostmi jejich ovlivnění je uveden v tab. 4. Vždy je třeba mít na paměti konkrétní druh zvířete, neboť i zde existují podstatné rozdíly. Například v moči prasete, která je součástí kejdy, představuje dusík močoviny více než 95 % celkového dusíku. Jako výsledek činnosti mikrobiální ureázy, může být tato močovina rychle přeměněna na těkavý amoniak. Anorganický dusík výkalů se uvolňuje různými mechanismy nitrifikace, denitrifikace, vyluhování do vod, těkavost. Vysoké úrovně amoniaku také ovlivňují pracovní podmínky farmářů a v mnoha členských státech stanovují vyhlášky o pracovním prostředí horní limity na přijatelné koncentrace na pracovišti. Tvorba plynných látek v ustájení zvířat také ovlivňuje kvalitu vnitřního prostředí (vzduchu) a může ovlivnit zdraví zvířat a vytvořit zdravotně nevhodné pracovní podmínky pro farmáře. Množství plynných látek v objektech je tedy omezeno na maximální koncentrace. Např. úroveň amoniaku v ustájovacích systémech pro prasata je omezena na 25 ppm a v ustájení pro nosnice a brojlery je dlouhodobá úroveň 15 ppm pokládána za metatoxickou především v prvních dvou týdnech života. V chovech králíků je pak koncentrace nad 15 ppm hodnocena jako kritická. Dalším významným faktorem s místním významem, který je do určité míry v zemědělských zařízeních spjat s množstvím uvolňovaného amoniaku je zápach. Vztah mezi množstvím uvolňovaného amoniaku a zápachem se v mnoha případech posuzuje v úzké korelaci. Amoniak se na celkovém zápachu podílí pouze z části. Předpokládá se, že obtížný zápach vzniká také odpařováním mastných kyselin z hnoje. Zápach je svázán s rozšiřováním chovu hospodářských zvířat a s rozvojem venkovských obytných sídel, která se rozšířila do tradičních zemědělských oblastí. Dá se očekávat, že současný výzkum bude věnovat problematice zápachu zvýšenou pozornost, jakožto jednomu z problémů týkajícího se životního prostředí. Zápach může být emitován stacionárními zdroji, jako jsou sklady, ale může být také důležitou emisí během rozmetání hnoje na půdu v závislosti na použitém postupu rozmetání. Dopad zápachu se v konečném důsledku zvětšuje s velikostí produkční jednotky. Samotný amoniak nemá podstatný význam pro vznik skleníkového efektu a ve srovnání s oxidem uhličitým a metanem přetrvává v atmosféře relativně krátkou dobu. Značná část emitovaného amoniaku je ukládána v sousedství zdroje emise (asi 30 % v dosahu 5 km). 30

31 Amoniak však na sebe váže až z poloviny oxidy síry emitované do ovzduší a může způsobovat eutrofizaci, okyselení a může mít toxický účinek na ekosystémy. Dále amoniak škodí v samotných chovech zvířat, kde jeho zvýšená koncentrace negativně ovlivňuje zdraví zvířat, lidí a prokazatelně snižují užitkovost chovaných zvířat. V uzavřených stájích v závislosti na technologii a hygieně chovu mohou koncentrace amoniaku dosahovat takové úrovně, která má ve spojení s částicemi prachu a mikroorganismy toxický účinek nejen na zvířata, ale i obsluhující personál. Tyto koncentrace jsou často predispozičním faktorem pro vznik řady onemocnění, především respiračních. Následně dochází k prodloužení léčby, zvýšení nákladů na léčbu a zvýšení přímých i nepřímých ztrát. Navíc, jestliže se amoniak kombinuje s těkavými organickými složkami, může se stupňovat vytváření nepříjemných a škodlivých pachů a obtěžovat sousední obytné prostory. Emise zápachu amoniaku do okolí jsou nejčastější příčinou silného odboru obyvatel proti výstavbě stájí. V půdách se přirozeně vyskytuje amoniak ve formě amonného iontu. Amoniakální forma dusíku je přitom klíčovým zdrojem dusíku pro rostliny. Z tohoto důvodu se aplikují dusíkatá průmyslová hnojiva, ze kterých se však do podzemních vod uvolňují dusičnany. Podzemní vody pak mohou být nevhodné pro využití člověkem, resp. s jejich využitím jsou spojeny vysoké náklady na čištění a odstranění dusičnanů. Přítomnost dusičnanů, původem přímo z hnojiv či bakteriální oxidací amoniaku, rovněž zvyšuje kyselost půd s negativními důsledky. Kyselost zemin je zvyšována i depozicí pocházející z ovzduší. Amoniak tvoří relativně stabilní soli se sírany a dusičnany pocházejícími z kyselých plynů SO 2, SO 3 a NO x, které jsou v atmosféře přítomny. Takové soli jsou potom ve srovnání s kyselými plyny a samotným amoniakem podstatně ochotněji a rychleji z atmosféry uvolněny ve formě dešťů či spadu a dostávají se tak do půd. Přestože je tedy amoniak sám o sobě zásaditou látkou, podílí se na kyselých depozicích. Je rovněž jedním z původců fotochemického smogu vyskytujícího se především ve městech. Další působení amoniaku spočívá v jeho působení v rámci parametru celkový dusík, kde hlavní negativní dopad na životní prostředí je přílišné vnášení živin na životní prostředí a s tím spojená například eutrofizace vod, což je spojeno s nárůstem řas a sinic. (Havlíček, 2007) 31

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních. 1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné

Více

Chemická analýza krmiv

Chemická analýza krmiv Chemická analýza krmiv Multimediální studijní materiál Vznik tohoto studijního materiálu finančně podpořil Fond rozvoje vysokých škol (projekt č. 1288/2012) Autoři: MVDr. Eva Štercová, Ph.D. (stercovae@vfu.cz)

Více

Potřeba živin pro drůbež

Potřeba živin pro drůbež Potřeba živin pro drůbež Energie Potřeba energie pro drůbež i obsah energie v krmivech se vyjadřuje v hodnotách bilančně metabolizovatelné energie opravené na dusíkovou rovnováhu (ME N ). Metabolizovatelná

Více

Dekompozice, cykly látek, toky energií

Dekompozice, cykly látek, toky energií Dekompozice, cykly látek, toky energií Vše souvisí se vším Živou hmotu tvoří 3 hlavní organické složky: - Bílkoviny, cukry, tuky Syntézu zajišťuje cca 20 biogenních prvků - Nejdůležitější C, O, N, H, P

Více

Obsah 5. Obsah. Úvod... 9

Obsah 5. Obsah. Úvod... 9 Obsah 5 Obsah Úvod... 9 1. Základy výživy rostlin... 11 1.1 Rostlinné živiny... 11 1.2 Příjem živin rostlinami... 12 1.3 Projevy nedostatku a nadbytku živin... 14 1.3.1 Dusík... 14 1.3.2 Fosfor... 14 1.3.3

Více

Pavel Suchánek, RNDr. Institut klinické a experimentální medicíny Fórum zdravé výživy Praha

Pavel Suchánek, RNDr. Institut klinické a experimentální medicíny Fórum zdravé výživy Praha Jídelníček dorostenců, fotbalistů Pavel Suchánek, RNDr. Institut klinické a experimentální medicíny Fórum zdravé výživy Praha Program přednášky 1. Základní složky výživy 2. Odlišnosti ve stravě dorostenců

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA AGROBIOLOGIE, POTRAVINOVÝCH A PŘÍRODNÍCH ZDROJŮ KATEDRA MIKROBIOLOGIE, VÝŽIVY A DIETETIKY VÝŽIVA ZVÍŘAT

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA AGROBIOLOGIE, POTRAVINOVÝCH A PŘÍRODNÍCH ZDROJŮ KATEDRA MIKROBIOLOGIE, VÝŽIVY A DIETETIKY VÝŽIVA ZVÍŘAT ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA AGROBIOLOGIE, POTRAVINOVÝCH A PŘÍRODNÍCH ZDROJŮ KATEDRA MIKROBIOLOGIE, VÝŽIVY A DIETETIKY VÝŽIVA ZVÍŘAT 1. přednáška DOC. ING. ALOIS KODEŠ, CSc. VÝŽIVA ZVÍŘAT

Více

Nutrienty v potravě Energetická bilance. Mgr. Jitka Pokorná Mgr. Veronika Březková

Nutrienty v potravě Energetická bilance. Mgr. Jitka Pokorná Mgr. Veronika Březková Nutrienty v potravě Energetická bilance Mgr. Jitka Pokorná Mgr. Veronika Březková Energetická bilance energetický příjem ve formě chemické energie živin (sacharidů 4kcal/17kJ, tuků 9kcal/38kJ, bílkovin

Více

MINERÁLNÍ A STOPOVÉ LÁTKY

MINERÁLNÍ A STOPOVÉ LÁTKY MINERÁLNÍ A STOPOVÉ LÁTKY Následující text podává informace o základních minerálních a stopových prvcích, jejich výskytu v potravinách, doporučených denních dávkách a jejich významu pro organismus. Význam

Více

SACHARIDY. mono- + di- sacharidy -> jednoduché cukry hnědý cukr, melasa rafinovaný cukr, med,...

SACHARIDY. mono- + di- sacharidy -> jednoduché cukry hnědý cukr, melasa rafinovaný cukr, med,... SACHARIDY 50-80 % energetického příjmu funkce využitelných sacharidů: 1. zdroj energie - l g ~ 4kcal 2. stavební jednotky mono- + di- sacharidy -> jednoduché cukry hnědý cukr, melasa rafinovaný cukr, med,...

Více

Aplikace nových poznatků z oblasti výživy hospodářských zvířat do běžné zemědělské praxe

Aplikace nových poznatků z oblasti výživy hospodářských zvířat do běžné zemědělské praxe Výživa zvířat a její vliv na užitkovost u a zdraví zvířete ODBORNÝ SEMINÁŘ v rámci projektu Aplikace nových poznatků z oblasti výživy hospodářských zvířat do běžné zemědělské praxe Za podpory Ministerstva

Více

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty triviální (glukóza, fruktóza ) vědecké (α-d-glukosa) organické látky nezbytné pro život hlavní zdroj energie

Více

a) pevná fáze půdy jíl, humusové částice vážou na svém povrchu živiny v podobě iontů

a) pevná fáze půdy jíl, humusové částice vážou na svém povrchu živiny v podobě iontů Otázka: Minerální výživa rostlin Předmět: Biologie Přidal(a): teriiiiis MINERÁLNÍ VÝŽIVA ROSTLIN - zahrnuje procesy příjmu, vedení a využití minerálních živin - nezbytná pro život rostlin Jednobuněčné

Více

Proteiny. Markéta Vojtová VOŠZ a SZŠ Hradec Králové

Proteiny. Markéta Vojtová VOŠZ a SZŠ Hradec Králové Proteiny Markéta Vojtová VOŠZ a SZŠ Hradec Králové Proteiny 1 = hlavní, energetická živina = základní stavební složka orgánů a tkání těla, = jejich energetickou hodnotu tělo využívá jen v některých metabolických

Více

METABOLISMUS TUKŮ VĚČNĚ DISKUTOVANÉ TÉMA

METABOLISMUS TUKŮ VĚČNĚ DISKUTOVANÉ TÉMA METABOLISMUS TUKŮ VĚČNĚ DISKUTOVANÉ TÉMA Ing. Vladimír Jelínek V dnešním kongresovém příspěvku budeme hledat odpovědi na následující otázky: Co jsou to tuky Na co jsou organismu prospěšné a při stavbě

Více

Česko ORGANICKÉ MINERÁLY BIOGENNÍ PRVKY VÁPNÍK, ŽELEZO, JÓD, ZINEK, SELÉN,

Česko ORGANICKÉ MINERÁLY BIOGENNÍ PRVKY VÁPNÍK, ŽELEZO, JÓD, ZINEK, SELÉN, Česko ORGANICKÉ MINERÁLY BIOGENNÍ PRVKY VÁPNÍK, ŽELEZO, JÓD, ZINEK, SELÉN, CHRÓM, Calcium, Magnesium Organické Minerály ORGANICKÉ MINERÁLY Zásadní zvláštností všech přípravků linie «Organické minerály»

Více

Optimalizace vysokoškolského studia zahradnických oborů na Zahradnické fakultě v Lednici Reg. č.: CZ.1.07/2.2.00/15.0122

Optimalizace vysokoškolského studia zahradnických oborů na Zahradnické fakultě v Lednici Reg. č.: CZ.1.07/2.2.00/15.0122 Optimalizace vysokoškolského studia zahradnických oborů na Zahradnické fakultě v Lednici Reg. č.: CZ.1.07/2.2.00/15.0122 Inovovaný předmět Výživa člověka Přednášející: prof. Ing. Karel Kopec, DrSc. Téma

Více

- příjem a zpracování potravy, rozklad na tělu potřebné látky, které jsou z TS převedeny do krve nebo lymfy

- příjem a zpracování potravy, rozklad na tělu potřebné látky, které jsou z TS převedeny do krve nebo lymfy Trávicí soustava - příjem a zpracování potravy, rozklad na tělu potřebné látky, které jsou z TS převedeny do krve nebo lymfy děje probíhající v TS: 1) mechanické zpracování potravy - rozmělnění potravy

Více

Složky potravy a vitamíny

Složky potravy a vitamíny Složky potravy a vitamíny Potrava musí být pestrá a vyvážená. Měla by obsahovat: základní živiny cukry (60%), tuky (25%) a bílkoviny (15%) vodu, minerální látky, vitaminy. Metabolismus: souhrn chemických

Více

AMK u prasat. Pig Nutr., 20/3

AMK u prasat. Pig Nutr., 20/3 AMK u prasat. Pig Nutr., 20/3 Potřeba AMK ve výživě prasat Prasata mají obecně odlišné nároky na živiny než ostatní hospodářská zvířata, především pak na zastoupení aminokyselin. Ve výživě prasat se krmná

Více

EU peníze středním školám

EU peníze středním školám EU peníze středním školám Název projektu Registrační číslo projektu Název aktivity Název vzdělávacího materiálu Číslo vzdělávacího materiálu Jméno autora Název školy Moderní škola CZ.1.07/1.5.00/34.0526

Více

Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav výživy zvířat a pícninářství

Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav výživy zvířat a pícninářství Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav výživy zvířat a pícninářství Stanovení kvality bílkovin krmných směsí pro psy Diplomová práce Vedoucí práce: prof. MVDr. Ing.

Více

Přikrmování (nikoliv tedy krmení) zvěře musí pak být kvantitativně i kvalitativně dostatečné, dobré a zdravotně nezávadné.

Přikrmování (nikoliv tedy krmení) zvěře musí pak být kvantitativně i kvalitativně dostatečné, dobré a zdravotně nezávadné. Modul č. 4 MYSLIVOST Téma 4: Výživa zvěře Střední lesnická škola Hranice, Jurikova 588, 75301 Hranice Autor modulu: Ing. Lukáš Kandler VÝŽIVA ZVĚŘE Mezi odborníky se vedou spory o tom, zda zvěř v období

Více

Terabb E Krmivo pro sportovní koně s vysokým obsahem energie a doplňkem minerálních látek, stopových prvků a vitamínů.

Terabb E Krmivo pro sportovní koně s vysokým obsahem energie a doplňkem minerálních látek, stopových prvků a vitamínů. Reformin Plus Vitaminózní a minerální doplněk krmiva REFORMIN PLUS svým sestavením zajišťuje dostatečný a vyvážený přísun minerálií, stopových prvků a vitamínů pro všechny kategorie koní. Obsahuje sušené

Více

Metabolismus aminokyselin. Vladimíra Kvasnicová

Metabolismus aminokyselin. Vladimíra Kvasnicová Metabolismus aminokyselin Vladimíra Kvasnicová Aminokyseliny aminokyseliny přijímáme v potravě ve formě proteinů: důležitá forma organicky vázaného dusíku, který tak může být v těle využit k syntéze dalších

Více

MODERNÍ STRATEGIE VÝŽIVY SELAT A BĚHOUNŮ

MODERNÍ STRATEGIE VÝŽIVY SELAT A BĚHOUNŮ MODERNÍ STRATEGIE VÝŽIVY SELAT A BĚHOUNŮ Zeman, L., Vavrečka, J., Mareš, P. a Sikora, M. Mendelova zemědělská a lesnická univerzita v Brně Je celá řada oblastí, které mají vliv na užitkovost a rentabilitu

Více

Za závažnou dehydrataci se považuje úbytek tekutin kolem 6%. Dehydratace se dá rozdělit na:

Za závažnou dehydrataci se považuje úbytek tekutin kolem 6%. Dehydratace se dá rozdělit na: Pitný režim Lidské tělo obsahuje 50-65% vody, samotné svaly obsahují až 70%. Už jen tento fakt snad dostatečně vypovídá o důležitosti vody v těle. Obyčejný pracující a nesportující člověk by měl přijmout

Více

Více než 1,5 miliardy lidí na zemi trpí chronickými bolestmi. Existuje východisko z tohoto pekla?

Více než 1,5 miliardy lidí na zemi trpí chronickými bolestmi. Existuje východisko z tohoto pekla? Více než 1,5 miliardy lidí na zemi trpí chronickými bolestmi. Existuje východisko z tohoto pekla? 100% Přírodní produkt pro podporu zdraví a úlevu od jakékoliv bolesti. Patentovaná technologie bylin na

Více

9. přednáška. Téma přednášky: Výživa telat. Cíl přednášky:

9. přednáška. Téma přednášky: Výživa telat. Cíl přednášky: 9. přednáška Téma přednášky: Výživa telat Cíl přednášky: Devátá přednáška je zaměřena na výživu telat a rozdělení krmných období. Studenti se seznámí s výživou telat, s problematikou profylakční, mléčné

Více

ALLKRAFT Naturprodukte ZA STUDENA LISOVANÝ LNĚNÝ OLEJ A POKRUTINY V KVALITĚ POTRAVINY

ALLKRAFT Naturprodukte ZA STUDENA LISOVANÝ LNĚNÝ OLEJ A POKRUTINY V KVALITĚ POTRAVINY ZA STUDENA LISOVANÝ LNĚNÝ OLEJ A POKRUTINY V KVALITĚ POTRAVINY Vlastní výroba a ruční stáčení Lisování za studena při teplotě max. 40 C 100% pro potravinářský průmysl Žádné geneticky modifikované suroviny

Více

VAPIG EKONOMICKY VÝHODNÝ SYSTÉM OCHRANY NOVOROZENÉHO SELETE

VAPIG EKONOMICKY VÝHODNÝ SYSTÉM OCHRANY NOVOROZENÉHO SELETE VAPIG EKONOMICKY VÝHODNÝ SYSTÉM OCHRANY NOVOROZENÉHO SELETE Vahala J. Nemálo chovatelů prasat nejen v ČR se zabývá otázkou, zda vysoké náklady na farmakoterapii téměř vždy spojené s medikací ATB přináší

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Název školy: Střední zdravotnická škola a Obchodní akademie, Rumburk, příspěvková organizace Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Více

KREVNÍ ELEMENTY, PLAZMA. Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje

KREVNÍ ELEMENTY, PLAZMA. Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje KREVNÍ ELEMENTY, PLAZMA Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Leden 2010 Mgr. Jitka Fuchsová KREV Červená, neprůhledná, vazká tekutina Skládá

Více

Teorie: Trávení: proces rozkladu molekul na menší molekuly za pomoci enzymů trávícího traktu

Teorie: Trávení: proces rozkladu molekul na menší molekuly za pomoci enzymů trávícího traktu Trávení Jan Kučera Teorie: Trávení: proces rozkladu molekul na menší molekuly za pomoci enzymů trávícího traktu Trávicí trakt člověka (trubice + žlázy) Dutina ústní Hltan Jícen Žaludek Tenké střevo Tlusté

Více

Co jsou aminokyseliny

Co jsou aminokyseliny Co jsou aminokyseliny Aminokyseliny jsou molekuly obsahující vodík, uhlík, kyslík a dusík. Dusík je ve formě aminoskupiny, typické právě jen pro aminokyseliny. Přeměnou aminokyselin se vytváří z aminoskupiny

Více

10. Minerální výživa rostlin na extrémních půdách

10. Minerální výživa rostlin na extrémních půdách 10. Minerální výživa rostlin na extrémních půdách Extrémní půdy: Kyselé Alkalické Zasolené Kontaminované těžkými kovy Kyselé půdy Procesy vedoucí k acidifikaci (abnormálnímu okyselení): Zvětrávání hornin

Více

Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav výživy zvířat a pícninářství. Bílkoviny ve výživě psů Bakalářská práce

Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav výživy zvířat a pícninářství. Bílkoviny ve výživě psů Bakalářská práce Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav výživy zvířat a pícninářství Bílkoviny ve výživě psů Bakalářská práce Vedoucí práce: Mgr. Ing. Eva Mrkvicová, Ph.D. Vypracoval:

Více

Klasifikace vod podle čistoty. Jakost (kvalita) vod. Čištění vod z rybářských provozů

Klasifikace vod podle čistoty. Jakost (kvalita) vod. Čištění vod z rybářských provozů Ochrana kvality vod Klasifikace vod podle čistoty Jakost (kvalita) vod Čištění vod z rybářských provozů Doc. Ing. Radovan Kopp, Ph.D. Klasifikace vod podle čistoty JAKOST (= KVALITA) VODY - moderní technický

Více

Lipidy. RNDr. Bohuslava Trnková ÚKBLD 1.LF UK. ls 1

Lipidy. RNDr. Bohuslava Trnková ÚKBLD 1.LF UK. ls 1 Lipidy RNDr. Bohuslava Trnková ÚKBLD 1.LF UK ls 1 Lipidy estery vyšších mastných kyselin a alkoholů (příp. jejich derivátů) lipidy jednoduché = acylglyceroly (tuky a vosky) lipidy složené = fosfoacylglyceroly,

Více

Biologicky rozložitelné suroviny Znaky kvalitního kompostu

Biologicky rozložitelné suroviny Znaky kvalitního kompostu Kompost patří k nejstarším a nejpřirozenějším prostředkům pro zlepšování vlastností půdy. Pro jeho výrobu jsou zásadní organické zbytky z domácností, ze zahrady atp. Kompost výrazně přispívá k udržení

Více

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík, DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické

Více

Minerální látky, stopové prvky, vitaminy. Zjišťování vý.zvyklostí 6.10.

Minerální látky, stopové prvky, vitaminy. Zjišťování vý.zvyklostí 6.10. Minerální látky, stopové prvky, vitaminy Zjišťování vý.zvyklostí 6.10. Vápník 99% v kostní tkáni, 1% v ECT DDD 1mg průměrně vstřebá se cca 35-50% v proximální části tenkého střeva Vylučuje se ledvinami

Více

) se ve vodě ihned rozpouští za tvorby amonných solí (iontová, disociovaná forma NH 4+ ). Vzájemný poměr obou forem závisí na ph a teplotě.

) se ve vodě ihned rozpouští za tvorby amonných solí (iontová, disociovaná forma NH 4+ ). Vzájemný poměr obou forem závisí na ph a teplotě. Amoniakální dusík Amoniakální dusík se vyskytuje téměř ve všech typech vod. Je primárním produktem rozkladu organických dusíkatých látek živočišného i rostlinného původu. Organického původu je rovněž ve

Více

Voda jako životní prostředí rozpuštěné látky : sloučeniny dusíku

Voda jako životní prostředí rozpuštěné látky : sloučeniny dusíku Hydrobiologie pro terrestrické biology Téma 9: Voda jako životní prostředí rozpuštěné látky : sloučeniny dusíku Koloběh dusíku Dusík je jedním z hlavních biogenních prvků Hlavní zásobník : atmosféra, plynný

Více

Mendelova zemědělská a lesnická univerzita v Brně. Agronomická fakulta. Seminární práce na téma:

Mendelova zemědělská a lesnická univerzita v Brně. Agronomická fakulta. Seminární práce na téma: Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Seminární práce na téma: Využití a zpracování odpadů mlynářského a škrobárenského průmyslu Vypracovala: Hron Martin Obor: Zootechnika

Více

O R G A N I Z A C E M A T U R I T

O R G A N I Z A C E M A T U R I T O R G A N I Z A C E M A T U R I T PRO ŠKOLNÍ ROK 2015/2016 PROFILOVÁ ČÁST MATURITNÍ ZKOUŠKY TÉMATA Povinné zkoušky profilové části (pro jednotlivé obory) A G R O P O D N I K Á N Í (denní studium) zaměření

Více

Rediar. Efektivní podpora při řešení trávicích problémů u telat FARM-O-SAN - PŘEŽVÝKAVCI

Rediar. Efektivní podpora při řešení trávicích problémů u telat FARM-O-SAN - PŘEŽVÝKAVCI Rediar Efektivní podpora při řešení trávicích problémů u telat REDIAR JE Vysoký obsah vitaminů A, D a E Obohaceno probiotiky Vysoký obsah elektrolytů a glukózy Snadná aplikace rychle a snadno rozpustný

Více

Vitaminy. lidský organismus si je většinou v vytvořit. Hlavní funkce vitaminů: Prekurzory biokatalyzátor hormonů kových. Hypovitaminóza Avitaminóza

Vitaminy. lidský organismus si je většinou v vytvořit. Hlavní funkce vitaminů: Prekurzory biokatalyzátor hormonů kových. Hypovitaminóza Avitaminóza Vitaminy Vitaminy lidský organismus si je většinou v nedovede sám s vytvořit musí být přijp ijímány stravou Hlavní funkce vitaminů: Prekurzory biokatalyzátor torů - součásti sti koenzymů, hormonů Antioxidační

Více

dodržování zásad pro uchování zdraví (dnes synonymum pro dodržování čistoty)

dodržování zásad pro uchování zdraví (dnes synonymum pro dodržování čistoty) Otázka: Hygiena a toxikologie Předmět: Chemie Přidal(a): dan 1. Definice, základní poznatky HYGIENA = dodržování zásad pro uchování zdraví (dnes synonymum pro dodržování čistoty) vnějším znakem hygieny

Více

Polysacharidy. monosacharidy disacharidy stravitelné PS nestravitelné PS (vláknina) neškrobové PS resistentní škroby Potravinové zdroje

Polysacharidy. monosacharidy disacharidy stravitelné PS nestravitelné PS (vláknina) neškrobové PS resistentní škroby Potravinové zdroje Klasifikace a potravinové zdroje sacharidů Dělení Jednoduché sacharidy Polysacharidy (PS) monosacharidy disacharidy stravitelné PS nestravitelné PS (vláknina) Zástupci glukóza fruktóza galaktóza maltóza

Více

Stabilizace dusíku. Efektivnější a ekologičtější hnojení se stabilizovaným dusíkem. Chemie pro budoucnost.

Stabilizace dusíku. Efektivnější a ekologičtější hnojení se stabilizovaným dusíkem. Chemie pro budoucnost. Stabilizace dusíku Efektivnější a ekologičtější hnojení se stabilizovaným dusíkem. Chemie pro budoucnost. Každý den lze udělat něco lépe. I s dusíkatými hnojivy. Jakožto největší výrobce močoviny a čpavku

Více

ZÁSADY SPRÁVNÉ LABORATORNÍ PRAXE VYBRANÁ USTANOVENÍ PRAKTICKÉ APLIKACE

ZÁSADY SPRÁVNÉ LABORATORNÍ PRAXE VYBRANÁ USTANOVENÍ PRAKTICKÉ APLIKACE ZÁSADY SPRÁVNÉ LABORATORNÍ PRAXE VYBRANÁ USTANOVENÍ PRAKTICKÉ APLIKACE Zabezpečování jakosti v laboratorní praxi je významnou součástí práce každé laboratoře. Problematiku jakosti řeší řada předpisů, z

Více

OBECNÁ FYTOTECHNIKA BLOK: VÝŽIVA ROSTLIN A HNOJENÍ Témata konzultací: Základní principy výživy rostlin. Složení rostlin. Agrochemické vlastnosti půd a půdní úrodnost. Hnojiva, organická hnojiva, minerální

Více

Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2014/2015 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu

Více

Katedra genetiky, šlechtění a výživy BAKALÁŘSKÁ PRÁCE

Katedra genetiky, šlechtění a výživy BAKALÁŘSKÁ PRÁCE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ZEMĚDĚLSKÁ FAKULTA Studijní obor: Katedra: Agropodnikání Katedra genetiky, šlechtění a výživy BAKALÁŘSKÁ PRÁCE Posouzení úrovně výživy v daném zemědělském podniku

Více

Standard SANATORY č. 7 Výživa seniorů

Standard SANATORY č. 7 Výživa seniorů Standard SANATORY č. 7 Výživa seniorů Autoři: Jana Tichá, Lukáš Stehno V Pardubicích 1.1. 2016 Asociace penzionů pro seniory, z.s., K Višňovce 1095, Pardubice 530 02, www.appscr.cz Úvod do problematiky

Více

Pitný režim. PaedDr. & Mgr. Hana Čechová

Pitný režim. PaedDr. & Mgr. Hana Čechová Pitný režim PaedDr. & Mgr. Hana Čechová OSNOVA 1. Pitný režim 2. Vodní bilance 3. Kolik tekutin přijmout 4. Jak na pitný režim 5. Co pít 6. Voda 7. Perlivá či neperlivá 8. Minerální vody 9. Obsah zdravotně

Více

05 Biogeochemické cykly

05 Biogeochemické cykly 05 Biogeochemické cykly Ekologie Ing. Lucie Kochánková, Ph.D. Prvky hlavními - biogenními prvky: C, H, O, N, S a P v menších množstvích prvky: Fe, Na, K, Ca, Cl atd. ve stopových množstvích I, Se atd.

Více

Vitaminy. Autorem přednášky je Mgr. Lucie Mandelová, Ph.D. Přednáška se prochází klikáním nebo klávesou Enter.

Vitaminy. Autorem přednášky je Mgr. Lucie Mandelová, Ph.D. Přednáška se prochází klikáním nebo klávesou Enter. Vitaminy Tato přednáška pochází z informačního systému Masarykovy univerzity v Brně, kde byla zveřejněna jako studijní materiál pro studenty předmětu Fyziologie výživy. Autorem přednášky je Mgr. Lucie

Více

CHEMAP AGRO s.r.o 3. 1 Prémiová výživa 5

CHEMAP AGRO s.r.o 3. 1 Prémiová výživa 5 obsah CHEMAP AGRO s.r.o 3 1 Prémiová výživa 5 1.1 LISTER Zn 80 SL 6 1.2 LISTER Cu 80 SL 7 1.3 LISTER Mn 80 SL 8 1.4 LISTER Mo 80 SL 9 1.5 LISTER Fe 130 WP, LISTER Fe Plus 80 SL 10 1.6 LISTER Co 50 SL 11

Více

VÝŽIVA SPORTUJÍCÍCH DĚTÍ

VÝŽIVA SPORTUJÍCÍCH DĚTÍ Masarykova Univerzita v Brně Fakulta sportovních studií Katedra kineziologie Jana Kiršová VÝŽIVA SPORTUJÍCÍCH DĚTÍ Bakalářská práce Vedoucí bakalářské práce: Mgr. Jana Juříková, Ph.D. Vypracovala: Jana

Více

Hydrochemie přírodní organické látky (huminové látky, AOM)

Hydrochemie přírodní organické látky (huminové látky, AOM) Hydrochemie přírodní organické látky (huminové látky, AM) 1 Přírodní organické látky NM (Natural rganic Matter) - významná součást povrchových vod dělení podle velikosti částic: rozpuštěné - DM (Dissolved

Více

ANORGANICKÉ ŽIVINY. Patří sem: Kyslík Voda Minerální látky. A. KYSLÍK nezbytný pro život uplatňuje se při uvolňování energie

ANORGANICKÉ ŽIVINY. Patří sem: Kyslík Voda Minerální látky. A. KYSLÍK nezbytný pro život uplatňuje se při uvolňování energie ANORGANICKÉ ŽIVINY Patří sem: Kyslík Voda Minerální látky A. KYSLÍK nezbytný pro život uplatňuje se při uvolňování energie B. VODA základní podmínka pro život (nezastupitelná) viz. Voda ve výživě HZ C.

Více

Text Jana Jirková Photo Jana Jirková Cover Design Jana Jirková. ISBN 978-80-88174-01-1 (ve formátu PDF)

Text Jana Jirková Photo Jana Jirková Cover Design Jana Jirková. ISBN 978-80-88174-01-1 (ve formátu PDF) Text Jana Jirková Photo Jana Jirková Cover Design Jana Jirková ISBN 978-80-88174-01-1 (ve formátu PDF) Elektronické publikace: ISBN 978-80-88174-00-4 (ve formátu mobi) ISBN 978-80-88174-02-8 (ve formátu

Více

RNDr.Bohuslava Trnková ÚKBLD 1.LF UK. ls 1

RNDr.Bohuslava Trnková ÚKBLD 1.LF UK. ls 1 Sacharidy RNDr.Bohuslava Trnková ÚKBLD 1.LF UK ls 1 sákcharon - cukr, sladkost cukry mono a oligosacharidy (2-10 jednotek) ne: uhlohydráty, uhlovodany, karbohydráty polysacharidy (více než 10 jednotek)

Více

ZDRAVÉ A VITÁLNÍ SELE ZÁRUKA DOBRÉ EKONOMIKY CHOVU

ZDRAVÉ A VITÁLNÍ SELE ZÁRUKA DOBRÉ EKONOMIKY CHOVU ZDRAVÉ A VITÁLNÍ SELE ZÁRUKA DOBRÉ EKONOMIKY CHOVU Čeřovský, J. Výzkumný ústav živočišné výroby Praha, pracoviště Kostelec nad Orlicí Rentabilita produkce selat je velice variabilní fenomén a spíše je

Více

OBECNÁ FYTOTECHNIKA 1. BLOK: VÝŽIVA ROSTLIN A HNOJENÍ Ing. Jindřich ČERNÝ, Ph.D. FAKULTA AGROBIOLOGIE, POTRAVINOVÝCH A PŘÍRODNÍCH ZDROJŮ KATEDRA AGROCHEMIE A VÝŽIVY ROSTLIN MÍSTNOST Č. 330 Ing. Jindřich

Více

Malý vliv na krevní cholesterol. Další zdravotní aspekty

Malý vliv na krevní cholesterol. Další zdravotní aspekty Vejce představují významný zdroj bílkovin a dalších živin. Nové poznatky potvrzují, že konzumace vajec je spojena se zlepšením kvality stravy, zvýšením pocitu plnosti po jídle a může ovlivňovat a upravovat

Více

HYCOL. Lis tová hno jiva. HYCOL-Zn kulturní rostliny. HYCOL-Cu kulturní rostliny. HYCOL-E OLEJNINA řepka, slunečnice, mák

HYCOL. Lis tová hno jiva. HYCOL-Zn kulturní rostliny. HYCOL-Cu kulturní rostliny. HYCOL-E OLEJNINA řepka, slunečnice, mák Lis tová hno jiva n e j ž e n e... víc HYCOL do e kol o g ic ké p ro d u kce BIHOP-K+ HYCOL-BMgS HYCOL-NPK chmel, kukuřice, mák HYCOL-E OBILNINA řepka, slunečnice, mák zelenina, slunečnice pšenice, ječmen,

Více

Odborná škola výroby a služeb, Plzeň, Vejprnická 56, Plzeň. Číslo materiálu 19. Bc. Lenka Radová. Vytvořeno dne

Odborná škola výroby a služeb, Plzeň, Vejprnická 56, Plzeň. Číslo materiálu 19. Bc. Lenka Radová. Vytvořeno dne Název školy Název projektu Číslo projektu Číslo šablony Odborná škola výroby a služeb, Plzeň, Vejprnická 56, 318 00 Plzeň Digitalizace výuky CZ.1.07/1.5.00/34.0977 VY_32_inovace_ZZV19 Číslo materiálu 19

Více

Složky výživy - proteiny. Mgr.Markéta Vojtová VOŠZ a SZŠ Hradec Králové

Složky výživy - proteiny. Mgr.Markéta Vojtová VOŠZ a SZŠ Hradec Králové Složky výživy - proteiny Mgr.Markéta Vojtová VOŠZ a SZŠ Hradec Králové Proteiny 1 = jedna z hlavních živin, energetická živina = základní stavební složka orgánů a tkání těla, součást všech buněk, musí

Více

Onemocnění kostry související s výživou

Onemocnění kostry související s výživou Onemocnění kostry související s výživou Každý majitel či chovatel se jednoho dne stane opatrovníkem malého štěněte. Bude záviset z velké části jen a jen na něm, jak bude nový člen jeho domáctnosti prospívat

Více

DOPLŇKY VÝŽIVY PRO SKOT

DOPLŇKY VÝŽIVY PRO SKOT DOPLŇKY VÝŽIVY PRO SKOT MIKROP ČEBÍN a.s. 664 23 ČEBÍN 416, Česká republika e-mail: objednavky@mikrop.cz tel.: 549 410 318 fax: 549 410 073 sekretariát fax: 549 424 312 objednávky MIKROP Slovensko s.r.o.

Více

zajištění proteosyntézy zajištění přísunu esenciálních složek přísun specifických nutrietů, které zvyšují výkonnost (není doping)

zajištění proteosyntézy zajištění přísunu esenciálních složek přísun specifických nutrietů, které zvyšují výkonnost (není doping) VÝŽIVA SPORTOVCŮ Specifika: Individuální řešení Metoda pokus-omyl všechna doporučení jsou obecná Rozdíly mezi jednotlivými sportovními odvětvími Krátkodobé manipulace ve správném období Potravinové doplňky

Více

živé organismy získávají energii ze základních živin přeměnou látek v živinách si syntetizují potřebné sloučeniny, dochází k uvolňování energie některé látky organismy nedovedou syntetizovat, proto musí

Více

Výživa a poruchy metabolizmu v chovech exotických ptáků MVDr.Viktor Tukač, CSc.

Výživa a poruchy metabolizmu v chovech exotických ptáků MVDr.Viktor Tukač, CSc. Výživa a poruchy metabolizmu v chovech exotických ptáků MVDr.Viktor Tukač, CSc. Význam výživy pro zdravotní stav Zdravotní stav Prevence Výživa Chovatelské podmínky Genetické vybavení Možnosti ovlivnění

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216. Vzdělávací materiál vytvořený v projektu VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Sloučeniny dusíku. N elementární N anorganicky vázaný. N organicky vázaný. resp. N-NH 3 dusitanový dusík N-NO. amoniakální dusík N-NH 4+

Sloučeniny dusíku. N elementární N anorganicky vázaný. N organicky vázaný. resp. N-NH 3 dusitanový dusík N-NO. amoniakální dusík N-NH 4+ Sloučeniny dusíku Dusík patří mezi nejdůležitější biogenní prvky ve vodách Sloučeniny dusíku se uplatňují při všech biologických procesech probíhajících v povrchových, podzemních i odpadních vodách Dusík

Více

Posílení spolupráce p mezi MZLU a dalšími institucemi v terciárním vzdělávání a výzkumu CZ.1.07/2.4.00/12.045

Posílení spolupráce p mezi MZLU a dalšími institucemi v terciárním vzdělávání a výzkumu CZ.1.07/2.4.00/12.045 Posílení spolupráce p mezi MZLU a dalšími institucemi v terciárním vzdělávání a výzkumu CZ.1.07/2.4.00/12.045 Představení činnosti oddělení Agrochemie a výživy rostlin Ústavu agrochemie, půdoznalství,

Více

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,

Více

KRMIVA AGROBS. Dr. rer. nat. Manuela Bretzke a Glord.cz

KRMIVA AGROBS. Dr. rer. nat. Manuela Bretzke a Glord.cz KRMIVA AGROBS Dr. rer. nat. Manuela Bretzke a Glord.cz KŮŇ A POTRAVA Kůň je stepní zvíře Trávy a byliny s nízkým obsahem bílkovin Bohatá biodiversita Velmi dobrá kvalita bez plísní Čistá potrava díky stálému

Více

Odběr rostlinami. Amonný N (NH 4 )

Odběr rostlinami. Amonný N (NH 4 ) Složka N do půdy N z půdy Spady Export Atmosférický dusík Minerální hnojiva Stájová hnojiva Fixace N Organický dusík Rostlinné zbytky Amonný N + (NH 4 ) Odběr rostlinami Volatilizace Nitrátový N - (NO

Více

Význam organických hnojiv pro výživu rybniční biocenózy

Význam organických hnojiv pro výživu rybniční biocenózy Význam organických hnojiv pro výživu rybniční biocenózy Pavel Hartman Název konference: Intenzivní metody chovu ryb a ochrana kvality vody Třeboň, únor 2012 1. Úvod a literární přehled Mnoho generací rybníkářů

Více

Koloběh látek v přírodě - koloběh dusíku

Koloběh látek v přírodě - koloběh dusíku Koloběh látek v přírodě - koloběh dusíku Globální oběh látek v přírodě se žádná látka nevyskytuje stále na jednom místě díky různým činitelům (voda, vítr..) se látky dostávají do pohybu oběhu - cyklu N

Více

NAŘÍZENÍ VLÁDY č. 61 ze dne 29. ledna 2003. O b e c n á u s t a n o v e n í

NAŘÍZENÍ VLÁDY č. 61 ze dne 29. ledna 2003. O b e c n á u s t a n o v e n í NAŘÍZENÍ VLÁDY č. 61 ze dne 29. ledna 2003 o ukazatelích a hodnotách přípustného znečištění povrchových vod a odpadních vod, náležitostech povolení k vypouštění odpadních vod do vod povrchových a do kanalizací

Více

Listová hnojiva HYCOL

Listová hnojiva HYCOL Listová hnojiva HYCOL Produkty a přípravky HYCOL BIHOP-K + chmel, kukuřice, mák HYCOL-BMgS řepka, slunečnice, mák HYCOL-NPK zelenina, slunečnice d o ekologické prod ukce d o ekologické prod ukce d o ekologické

Více

Metodický list č. 1. TÉMA: Ekologicky šetrné zemědělství PĚSTOVÁNÍ ROSTLIN. Ochrana krajiny

Metodický list č. 1. TÉMA: Ekologicky šetrné zemědělství PĚSTOVÁNÍ ROSTLIN. Ochrana krajiny 32 TÉMA: Cíl: uvědomit si vazby mezi zemědělstvím, přírodou a životním prostředím, seznámit žáky s prioritami současné zemědělské výroby v souladu s ochranou životního prostředí Základní pojmy: meliorace,

Více

Veterinární vitamínové přípravky

Veterinární vitamínové přípravky Veterinární vitamínové přípravky Malá zvířata Psi a kočky O Aurum 0 čištění zdravého ucha u psů koček o Aurum 1 tlumí ostré záněty uší o Aurum 2 isotonický přípravek o Aurum 3 alkalický roztok ph8 proti

Více

SOURHN ÚDAJŮ O PŘÍPRAVKU

SOURHN ÚDAJŮ O PŘÍPRAVKU sp.zn. sukls191580/2013 SOURHN ÚDAJŮ O PŘÍPRAVKU 1. NÁZEV PŘÍPRAVKU Aktiferrin compositum měkká tobolka 2. KVALITATIVNÍ A KVANTITATIVNÍ SLOŽENÍ Ferrosi sulfas hydricus 113,85 mg (odpovídá 34,5 mg Fe 2+

Více

Příloha č. 2 k rozhodnutí o prodloužení registrace sp.zn. sukls82168/2008 SOUHRN ÚDAJŮ O PŘÍPRAVKU. 1. NÁZEV PŘÍPRAVKU NeuroMax forte

Příloha č. 2 k rozhodnutí o prodloužení registrace sp.zn. sukls82168/2008 SOUHRN ÚDAJŮ O PŘÍPRAVKU. 1. NÁZEV PŘÍPRAVKU NeuroMax forte Příloha č. 2 k rozhodnutí o prodloužení registrace sp.zn. sukls82168/2008 SOUHRN ÚDAJŮ O PŘÍPRAVKU 1. NÁZEV PŘÍPRAVKU NeuroMax forte 2. KVALITATIVNÍ A KVANTITATIVNÍ SLOŽENÍ Thiamini hydrochloridum ( vitamin

Více

Biologický materiál je tvořen vzorky tělních tekutin, tělesných sekretů, exkretů a tkání.

Biologický materiál je tvořen vzorky tělních tekutin, tělesných sekretů, exkretů a tkání. Otázka: Druhy biologického materiálu Předmět: Biologie Přidal(a): moni.ka Druhy biologického materiálu Biologický materiál je tvořen vzorky tělních tekutin, tělesných sekretů, exkretů a tkání. Tělní tekutiny

Více

Výživa a hnojení ovocných rostlin

Výživa a hnojení ovocných rostlin Ovocné dřeviny v krajině 2007 projekt OP RLZ CZ.04.1.03/3.3.13.2/0007 Výživa a hnojení ovocných rostlin Stanislav Boček Tento projekt je spolufinancován Evropským sociálním fondem EU, státním rozpočtem

Více

Obecný metabolismus.

Obecný metabolismus. mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

Balíček k oběhovému hospodářství PŘÍLOHY. návrhu nařízení Evropského parlamentu a Rady,

Balíček k oběhovému hospodářství PŘÍLOHY. návrhu nařízení Evropského parlamentu a Rady, EVROPSKÁ KOMISE V Bruselu dne 17.3.2016 COM(2016) 157 final ANNEXES 1 to 5 Balíček k oběhovému hospodářství PŘÍLOHY návrhu nařízení Evropského parlamentu a Rady, kterým se stanoví pravidla pro dodávání

Více

Krev a míza. Napsal uživatel Zemanová Veronika Pondělí, 01 Březen 2010 12:07

Krev a míza. Napsal uživatel Zemanová Veronika Pondělí, 01 Březen 2010 12:07 Krev je součástí vnitřního prostředí organizmu, je hlavní mimobuněčnou tekutinou. Zajišťuje životní pochody v buňkách, účastní se pochodů, jež vytvářejí a udržují stálé vnitřní prostředí v organizmu, přímo

Více

Synergin E-Vital (SEV)

Synergin E-Vital (SEV) 2016 Zelinářské dny JuWital, s. r. o. Je ryze česká společnost, fungující od začátku 90. let převážně na evropském trhu Hlavním cílem společnosti bylo a je podporovat zdraví lidí, zvířat a rostlin Jsme

Více

Diferencovaná výživa dospělých osob dle charakteru práce. Vlasta Flíčková

Diferencovaná výživa dospělých osob dle charakteru práce. Vlasta Flíčková Diferencovaná výživa dospělých osob dle charakteru práce Vlasta Flíčková Bakalářská práce 2012 ABSTRAKT Bakalářská práce se zabývá problematikou diferencované výživy dospělých osob dle charakteru práce.

Více

3. STRUKTURA EKOSYSTÉMU

3. STRUKTURA EKOSYSTÉMU 3. STRUKTURA EKOSYSTÉMU 3.4 VODA 3.4.1. VLASTNOSTI VODY VODA Voda dva významy: - chemická sloučenina 2 O - přírodní roztok plynné kapalné pevné Skupenství Voda jako chemická sloučenina 1 δ+ Základní fyzikální

Více

Program pro výživu psů

Program pro výživu psů Program pro výživu psů KAPITOLA I VYŽIVOVACÍ POŽADAVKY PSA Voda Energie Bílkoviny Karbohydráty Tuky Minerály Vitamíny VYŽIVOVACÍ POŽADAVKY PSA Psi i kočky jsou savci řádu Carnivora masožraví. Z tohoto

Více