Relaxace a chemická výměna

Rozměr: px
Začít zobrazení ze stránky:

Download "Relaxace a chemická výměna"

Transkript

1 Relaace a chemická výměna ecitace relaace Relaační doby Metody měření relaačních dob Relaační mechanismy Dipól-dipólová relaace Nukleární verhauserův efekt Příklad dynamika trisacharidu hemická výměna + příklady Pár definic Abychom mohli pochopit relaace, je nutné zavést statistický soubor spinů. To je v prai celý vzorek pro NMR měření, čili cca 0 23 spinových systémů. Takový soubor se popisuje pomocí statistické fyziky ( např. Boltzmannovo rozdělení obsazení energetických hladin). Hodnoty fyzikálních veličin v takovém souboru mohou fluktuovat. Magnetizace vzorku, kterou měříme je hustota magnetického dipólového momenu = vektorový součet příspěvků jednotlivých jader / objem vzorku. Proto precese kolem statického magnetického pole neprobíhá pro každý ekvivalentní spin přesně stejnou úhlovou rychlostí, a tedy nemáme nekonečně úzké čáry ve spektru.

2 Detailnější pohled na relaaci jaderné magnetizace Podélná relaace snižování energie souboru jaderných spinů a jeji přenos na mřížku. Příčná relaace ztráta koherence precese mezi jednotlivými spiny Průběh relaace v čase: z M z M y T = 2 s T 2 = 2 s Ω/2π = Hz y M y brázek upraven podle knihy: M. H. Levitt: Spin Dynamics: Basics of Nuclear Magnetic Resonance, Wiley, hichester M z M y t t Relaační jevy Relaace je proces navracení spinového systému do rovnováhy (nebo do stacionárního stavu). Fenomenologicky jsou zavedeny dva základní druhy relaace, které se popisují jako eponenciální v čase. To je ve skutečnosti zjednodušení, které platí jen za speciálních podmínek!!!!! Podélná (= longitudinální, spin-mřížková) relaace (T ): Týká se komponenty M z spinové magnetizace, která je rovnoběžná s magnetickým polem v ose z. - Spinový systém ztrácí energii energie se přenáší na okolí (mřížku) ve formě tepla. - Dipolární interakce s ostatnimi spiny, interakce s paramagnetickými částicemi, apod... y M z z Příčná (= transversální, spin-spinová) relaace (T 2 ): z Týká se komponent magnetizace M y, které leží v rovině <y>. - Spin-spinové interakce rozfázují M y -přispívá též nehomogenita magnetického pole. - nemůže být větší než T. y M y

3 Detailnější pohled na příčnou relaaci Rozfázování = ztráta koherence. Důvody: Fluktuace silových polí působících na jednotlivé spiny (síly mohou mít původ ve vzorku samotném nebo v okolí). Statické nehomogenity magnetického pole. y Platí T 2 T (pro běžné vzorky) rozfázování obecně T 2 2T M,y M 0 t Pokles,y-magnetizace M,y při volné precesi: M,y = M 0 ep(-t/t 2 ) NMR spektrum vzniká jako Fourierova transformace FIDu, a tedy rychlost poklesu FIDu ovlivňuje tvar spektra. Detailnější pohled na příčnou relaaci (pokrač.) Po Fourierově transformaci F (M (t)) dostaneme Lorentzovu křivku se šířkou ν (Hz) v polovině výšky: Velikost chemického posunu určuje pozici čáry. Relaace určuje její tvar!!!! ν 0/2π ν=/πt 2 Příspěvek nehomogenity magnetického pole /T 2n se nazývá nehomogenní rozšíření a většinou není zajímavý a snažíme se ho odstranit shimování magnetického pole, vhodný tvar vzorku, kvalitní kyvety apod. Změna značení: /T 2 * = /T 2 + /T 2n Rychlost poklesu FIDu je nyní dána /T 2 *. Potenciálně zajímavá informace je skryta jen ve složce /T 2 (homogenní rozšíření). Vždy, když budete chtít ze spektra odečítat pološířky čar, si vzpomeňte, že obsahují nehomogenní rozšíření, které je těžké oddělit pološířka je levná, ale mnohdy nepřesná informace!!!!

4 Spinové echo y t echo /2 t echo /2 Vektorová analýza po 90 pulzu (v rotující soustavě souřadné): z M,y y t echo/2 y y 80 y t echo /2 y rozfázování refokusace Dojde ke kompenzaci statických nehomogenit mag. pole (nehomogenní rozšíření). Úbytek M,y je v důsledku fluktuací lokálních polí vmístě každého spinu. M 0 M,y M,y = M 0 ep(-t/t 2 ) t Metody měření relaačních dob Nejlepší metoda pro měření T 2 je sekvence PMG (arr, Purcell, Meiboom, Gill) mnohonásobné spinové echo s konstantním echočasem a proměnným počtem cyklů n y t echo /2 t echo /2 Typické nastavení pro 3 : t echo = ms délka pulzu << t echo << /2J H n (Heteronukleární případ decoupling) Komplikace Spinové echo je ovlivněno J-interakcí zejména homonukleární Velké množství pulzů nutnost velmi přesné kalibrace pulzů, jinak vznikají artefakty. Shrnutí Přesné měření T 2 patří ve skutečnosti mezi obtížné eperimenty. Spinové echo se velmi často používá jako segment pulzních sekvencí s jiným určením.

5 Inversion recovery Podélná relaační doba T návrat po inverzi (inversion recovery) mi Analýza pomocí vektorového modelu: z z z z y 80 y mi y 90 y FT Během směšovací periody mi necháme z-složku magnetizace relaovat. Postupně v následných eperimentech měníme délku mi. Inversion recovery (pokračování) Když vyneseme závislost intenzity signálu na směšovacím čase mi, dostaneme eponenciální závislost. intensity mi I(mi) = I * ( - 2 * e -mi/ T ) Velmi robustní metoda získaná hodnota T závisí velmi málo na přesné kalibraci pulzů (jen její statistická přesnost). Případně je vhodné nahradit faktor 2 ve vzorci proměnným parametrem. Měřit raději T než T 2!!!!

6 K čemu je vůbec detailní znalost relaací dobrá? a) ptimalizace NMR eperimentů: optimální nastavení relaační periody, která determinuje celkovou délku eperimentu s více skeny. b) Nové informace o vzorku. tázky: Proč je někdy relaační doba krátká, jindy dlouhá? Jak souvisí relaační doby s velikostí molekuly, vzdáleností jednotlivých spinů, s druhem rozpouštědla? Relaační mechanismy B o = 0 B o > 0 Zeemanova interakce + isotropní ch. posun B o > 0 ostatní interakce, pro které H 0 β α E=hν E = hj/2 E = hj/2 Každá interakce (působení) je charakterizována svým energetickým příspěvkem k celkové energii systému (veličině popisující příspěvek k energii systému se ve fyzice říká hamiltonián, H). Základní interakcí, která je zodpovědná za jev NMR je Zeemanova interakce. Jejím důsledkem je eistence 2 hladin (pro spin ½) a možnost přechodů mezi nimi za současné absorpce a emise radiofrekvenčního el.-mag. záření na kruhové frekvenci ω =-γ B 0 ( ω = 2πν) Interakce, které jsou v čase konstantní H(t) = konst 0, způsobují dodatečný posun nebo štěpení resonancí. Jsou to např. isotropní složka magnetického stínění (způsobuje chemický posun) a nepřímá spin-spinová (J-coupling).

7 Relaační mechanismy (pokračování) Pro relaaci mají význam ty interakce (nebo jejich složky), které rychle fluktuují v čase H(t) konst. Pokud mají střední hodnotu H(t) = 0, nepřispívají k frekvenci, ani nezpůsobují štěpení čáry. Některé z těchto interakcí mohou být i velmi silné. Jejich význam pro relaaci tak závisí na jednak na jejich síle (amplitudě) a jednak na charakteristických frekvencích jejich fluktuací. Interakce Přímá dipól-dipólová (DD) Paramagnetická (paramg.) Anisotropie chemického stínění (SA) Kvadrupolární (Q) (Spin-rotační) (Skalární (J)) Anisotropie chemického stínění (SA) B 0 B i (t) brázek z knihy: M. H. Levitt: Spin Dynamics: Basics of Nuclear Magnetic Resonance, Wiley, hichester Velikost a směr indukovaného pole B i (t) závisí na orientaci molekuly vzhledem k B 0. Střední hodnota indukovaného pole určuje (isotropní) chemický posun: δ = B i (t) / B 0 Fluktuující (anisotropní) složka (B i (t) - B i ) způsobuje relaaci. Velikost ~ 0 khz. Příspěvek k relaaci závisí na B 02, má větší význam ve velkých magnetických polích.

8 Kvadrupolární interakce Multipólový rozvoj rozložení elektrického náboje v jádře: Bodový náboj Dipól = 0 Kvadrupól Interakce s gradientem elektrického pole v místě jádra. brázky z knihy: M. H. Levitt: Spin Dynamics: Basics of Nuclear Magnetic Resonance, Wiley, hichester Velikost a směr gradientu elelektrického pole fluktuuje v důsledku molekulárního pohybu. Velikost ~ -00 MHz Dipól-dipólová relaace Přímá interakce mezi dvěma magnetickými dipóly Volně přes prostor (dosah cca 0.5 nm) není ovlivněna chemickými vazbami, na rozdíl od nepřímé dipól-dipólové interakce. µ 3 Velikost: 0 γ Iγ Sh Kdip = ( ) r 2 IS 8π Praktická poznámka: Relaační doby a velikost krospíků závisí na K dip2 ~ r IS -6 r IS < 0.5 nm H H dipól - dipólová interakce mezi magnetickými dipóly

9 Dipól-dipólová relaace (pokračování) Příklad: jádra a 2 v rigidní molekule, magnetický spin 2 se nachází v magnetickém poli spinu (a opačně). Rotační pohyb molekuly způsobuje změnu pole B dip (t) v místě spinu B 0 B dip (t) Zdroj fluktuací: pohyb spojnice dvou dipólů vzhledem k B 0, tedy náhodný rotační pohyb molekul a jejich částí (tzv. rotační difúze). Nulová střední hodnota dipól dipólové interakce je v kapalných vzorcích způsobena právě rychlým rotačním pohybem. U pevných vzorků nebo u velkých molekul je velmi efektivní ve zkracování T 2 (rozšíření čar), v případě nedokonalého středování i vliv na chemický posun. Velikost ~ 20 khz Srovnej s nepřímou dipólovou interakcí J ~ 00 Hz brázek z knihy: M. H. Levitt: Spin Dynamics: Basics of Nuclear Magnetic Resonance, Wiley, hichester Dipól-dipólová relaace (pokračování) Z DD-relaace můžeme zjistit: I) Střední vzdálenost dvou dipólů. II) harakteristiky molekulárních rotačních pohybů (např. rotační korelační časy) potřebujeme odhadnout typ pohybu (izotropní rotace rigidní kulové molekuly (adamantan) atd.). Závislost T, T 2 na rotačním korelačním času τ. brázek z publikace: P. J. Hore: Nuclear Magnetic Resonance, ford University Press, ford 995. Speciálním případem je i paramagnetická relaace (paramg.). Dipólová interakce magnetického momentu jádra s elektronovým magnetickým momentem v radikálech, paramagnetických iontech kovů apod. Magnetický moment elektronu je zhruba 000 větší než jaderný. Velikost ~ -00 MHz Srovnání relaačních mechanismů Q (jen I > ½) ~ (paramg.) >> DD > SA

10 Nukleární verhauserův Efekt (NE) NE je typický případ, kde selhává představa mono-eponenciální podélné relaace jedná se o tzv. křížovou relaaci, kdy změna stavu jednoho spinu (způsobená uměle nebo i jeho vlastní podélnou relaací) ovlivňuje stav spinu druhého a naopak. NE je nedílnou součástí podélné relaace. Jedná se o skutečný přenos z-magnetizace = energie. V důsledku toho potom ve spektru vidíme změněné intenzity. Nukleární verhauserův Efekt (NE) pokrač. Příklad: relaace izolovaného spinového páru H - 3 po převrácení spinu H do směru -z. (B 0 = 9,4 T, r H = 0,09 nm, τ = 0 ps). relativní intenzita signálu H čas (s) H H bez cross-relaace 3 3 bez cross-relaace Pokud budeme měřit podélnou relaaci za přítomnosti NE, nebude mono-eponenciální.

11 Energetický diagram dvouspinového systému IS: Saturace spinu I ββ ββ W I W 2IS W0IS W S βα W I W 2IS W0IS W S βα αβ W I W I W S αα W S αα W je pravděpodobost přechodu mezi hladinami. Pro systém v rovnováze máme W I a W S přechody, které jsou jednokvantové. W 0IS a W 2IS jsou nul- and dvou kvantové přechody. Intenzita pozorovaného signálu spinů I,S je dána rozdílem populací jejich stavů α, β. Nukleární verhauserův Efekt (NE) pokrač. NE homonukleární např. mezi jádry H Přechodné: RF pulzem vybudíme selektivně jeden spin interagujícího páru a pozorujeme přenos magnetizace na druhý spin. Množství přenesené magnetizace = energie závisí na délce směšovacího času = NE je relaační proces, takže k přenosu dochází v průběhu určitého času, ne okamžitě. NE heteronukleární např. mezi 3 a H Stacionární: po dlouhou dobu selektivně ozařujeme jednoho partnera ( H) a následně změříme signál druhého spinu ( 3 ). Tak se normálně měří 3 spektra: 90 y 3 H ozařování dekapling Navýšení 3 intenzity v ideálním případě: NE = + 0,5 γ H /γ 3 Využití: Navýšení signálu málo citlivých jader (γ > 0!). Protože je to projev DD interakce, závisí na r 6 - určení vzdálenosti spinů, a tedy určení konformace molekuly v prostoru. Získání dynamické informace o rotačních pohybech molekuly.

12 Nukleární verhauserův Efekt (NE) pokrač. Podrobnější úvahy o rychlosti rotace molekuly a jejího vlivu na velikost NE Vždy se týká rychlosti rotace spojnice příslušného spinového páru (pro různé páry v molekule mohou mít spojnice různou rychlost). Jak rychlé pohyby ovlivní DD interakci? I) na rezonanční frekvenci každého ze spinů V kombinaci Larmorovou precesí vedou k lineární kombinaci pravděpodobností přechodu na I) na rezonanční frekvenci každého ze spinů II) na součtu obou frekvencí III) na rozdílu obou frekvencí IV) T 2 - také na nulové frekvenci tj. velmi pomalé pohyby. Nukleární verhauserův Efekt (NE) pokrač. Výsledný vliv příspěvků má vliv na polaritu homonukleárního NE ( H H): ) Malé molekuly - ωτ c << (v prai: ω Η = 0 9 s -,τ c = 0 - s) molekula rotuje rychle, NE je kladné, tzv. limita etrémního zúžení. 2) Velké molekuly - ωτ c >> (v prai: ω Η = 0 9 s -, τ c = 0-8 s) molekula rotuje pomalu, NE je záporné. 3) Středně velké molekuly NE je nulové nebo velmi malé. NE navýšení Závislost homonukleárního NE na ωτ c (pro stacionární případ) ω o τ c - NE

13 Metoda měření přechodného NE RF pulsem vybudíme selektivně jeden spin interagujícího páru a pozorujeme přenos magnetizace na druhý spin. Množství přenesené magnetizace závisí na délce směšovacího času t m. eperiment I 80 t m selektivní inverze 90 t m směšovací čas - čas, ve kterém se buduje NE Hb Ha Hc eperiment II 90 Ha Hb Hc t m eperiment I eperiment II diferenční spektrum: : odečten tení 2 fidů (spekter) Intenzita červeného signálu odpovídá navýšen ení v důsledku NE. Měření pohyblivosti pomocí 3 relaací Lokální pohyblivost trisacharidu melezitosy 6H 2 H H 2 H 5 4 H g2 2 f H 5 H H 2 H H 6 H H g3 H 2 H g 2 g 3 3f 5f 3g 2 5g 3 3g 3 5g 2 2g 2 f4 2g 3 4g 2 4g 3 f 6g 3 6g 2 6f 2f ppm NMR spektrum, D 2 /DMS 7/3, 303 K,.8 T

14 Příklad lokální pohyblivost trisacharidu melezitosy Lipari-Szabóův přístup Pro analýzu je nutný model pohybu molekuly jako celku a jejích částí. Jeden z nejúspěšnějších je Lipari-Szabóův bezmodelový přístup ( modelfree approach) Předpoklady Lipari-Szabóova modelu: relaace je modulována dvěma pohyby: globálním a lokálním oba pohyby jsou statisticky nezávislé globální reorientace je izotropní molekulární pohyb je charakterizován parametry: τ M korelační čas globálního pohybu S 2 parametr uspořádanosti (hodnota 0 - ) τ e korelační čas lokálního pohybu Lokální pohyblivost trisacharidu melezitosy T Závislost jaderné relaace na molekulárním pohybu T 2 nh = D 4 nh = D γ H η = γ J [ J( ω ω ) + 3J ( ω ) + 6J( ω + ω )] H [ 4J(0) + J( ω ω ) + 3J ( ω ) + 6J( ω ) + 6J( ω + ω )] H 6J( ωh + ω ) J( ωh ω ) ( ω ω ) + 3J ( ω ) + 6J( ω + ω ) H H H H H Dipól-dipolární interakční konstanta: D 3 ( µ / π ) γ γ r = 0 4 H H Lipari-Szabóovy spektrální hustoty: J 2 2 S τ ω τ M 2 S τ 2 + ω τ ( ) ( ) ω + M = 2 τ = τ M + τe Rotační molekulární pohyb ovlivňuje jadernou relaaci prostřednictvím spektrálních hustot J(ω) - udávají (zhruba) množství molekulárního pohybu na frekvenci ω. Pro jadernou relaaci jsou nejvýznamnější ω H, ω, (ω H + ω ), (ω H - ω ) a 0 s -. Při různém magnetickém poli B 0 se mění i kruhové frekvence ω, a tedy zkoumáme pohyby při různých frekvencích.

15 Základní princip Lokální pohyblivost trisacharidu melezitosy Reorientační molekulová dynamika moduluje jadernou relaaci. Jádra 3 v molekule cukru, která nesou přímo vázaný proton, relaují téměř výlučně vlivem přímé dipól-dipólové interakce s tímto protonem. Eperimentální metodika Měření 3 relaačních dob T, T 2 a heteronukleárního NE při různých intenzitách magnetického pole B 0. Podmínkou je režim mimo etrémní zúžení (etreme narrowing) - musí být ωτ M, aby relaační doby byly závislé na B 0. Základní pulzní sekvence: inversion recovery (T ) spinové echo - PMG (T 2 ) měření stacionárního heteronukleárního NE Lokální pohyblivost trisacharidu melezitosy Závislost relaačních rychlostí a NE pro 3 jádra cukerných kruhů (R = /T, R 2 = /T 2 ) na magnetickém poli B 0 při teplotách 303 K (a) a 323 K (b). R R 2 +η R R 2 +η 6H 2 H H 2 H 5 4 H g2 2 f H 5 H H H H g3 H 2 H H 2 H 6 Závislost relaačních rychlostí a NE pro 3 jádra eocyklických H 2 H skupin na magnetickém poli B 0 při teplotě 303 K. 6g 2 6g 3 f R R 2 +η R R 2 +η R R 2 +η

16 Dynamické charakteristiky trisacharidu melezitosy Atom T(K) τ Μ (ns) S 2 τ e (ns) -cykl ± ± 0.0-6g ± ± 0.0-6g ± ± 0.0 -f ± ± cykl ± ± 0.0-6g ± ± 0.0-6g ± ± 0.0 -f ± ± f ± ± 0.0 6H 2 H H 2 H 5 4 H g2 2 f H 5 H H H H g3 H 2 H H 2 H 6 Závěr: Jednotlivé kruhy jsou dynamicky ekvivalentní. Hydroymethylová skupina -f je podstatně méně pohyblivá než ostatní hydroymethylové skupiny. becné: Pomocí měření relaací se studuje pohyblivost jak malých tak velkých molekul a jejich funkčních skupin v časové škále s. hemická výměna zahrnuje všechny procesy, kdy sledované jádro přechází do jiného chemického okolí tj. chemické reakce, konformační změny, mezomerní přechody, tvorbu kompleu apod. K e Konformační rovnováha K B hemická rovnováha Neřadí se přímo mezi relaační mechanismy, ale velmi se jim podobá místo samotné magnetizace nám po systému putuje celé jádro, včetně svého spinu. Důsledky i popis chemické výměny jsou velmi podobné spinové relaaci. Vliv na z-složku magnetizace je matematicky téměř totožný s NE. Na rozdíl od NE má chemická výměna vliv i na příčnou složku magnetizace.

17 Měření rychlostních konstant Příklad: inverze NN-dimethylformamidu: N H N H Máme výměnu mezi červeným a modrým methylem kvůli dvojnému charakteru amidické vazby. ba methyly jsou chemicky a magneticky různé, takže NMR spektrum DMF obsahuje dva různé methylové signály: k << << ν ν To znamená, že rychlost výměny mezi dvěma místy je malá ve srovnání s relativní vzdáleností (v Hz) mezi rezonancemi obou míst (červeného a modrého): Měření rychlostních konstantk (pokračování) Rychlost reakce závisí na G inverze, které je teplotně závislé. Rychlost inverze se zvýší při zvyšování teploty T. NMR spektra budou vypadat takto: T T Při koalescenční teplotě T c se rychlost o výměny k mezi jednotlivými stavy stává srovnatelná s rozdílem chemických posunů ν (v Hz), při T c : k = π( ν)/ 2 Definice koalescence: 2.derivace signálu v bodě ½(ν A + ν B )je rovna0. hemická výměna ovlivňuje jak posun, tak tvar signálu a tedy má vliv na příčnou relaaci.

18 Měření rychlostních konstantk (pokračování) Realističtější obrázek: symetrická chemická výměna mezi dvěma stavy - závislost NMR spekter na teplotě: brázek z publikace: P. J. Hore: Nuclear Magnetic Resonance, ford University Press, ford 995. Pro chemickou výměnu rozlišujeme dva režimy vzhledem k rozdílu chemických posunů (v Hz) dvou vyměňujících stavů k << ν k >> ν pomalá výměna rychlá výměna Protože je rozdíl chemických posunů v Hz a nikoli v ppm, je tento rozdíl závislý na magnetickém poli (při 200 MHz: ppm = 200 Hz, při 500 MHz: ppm = 500 Hz), může být chemická výměna k = 350 Hz v prvním případě rychlá a v druhém pomalá. Proto při klasifikaci chemické výměny je třeba stanovit rezonanční frekvenci. Časové škály v NMR k << ν k >> ν pomalá výměna rychlá výměna Navíc, eistuje celá řada důležitých časových režimů: s molekulární rotace 0-8 s Larmorova precese > 0-7 s chemická výměna > 0-3 s spinová relaace blíbená věta: hemická výměna je rychlá v NMR škále. je bez specifikace rezonanční frekvence nesmysl! I tak ale udává jen dolní limit pro rychlostní konstantu chemickou výměnou indukovaný posun zpravidla nepřesahuje cca 5 ppm, při 500 MHz potom k > 2500 Hz. Pojem časové škály se pro různé jevy v NMR liší, proto je třeba vždy specifikovat přesně, o které škále se mluví. V případě chemické výměny např.: Rychlá výměna v časové škále dané H chemickým posunem při rezonanční frekvenci 500 MHz.

19 dia stere otopotopn ich íh chirá lní(h iral(h elici elikál Studium rotační bariéry kolem vazby aromát-karben η 2 -chelatovaný (N,N-diallylamino)(aryl)karben wolframu zabržděná rotace diastereotopní H chirální (helikální) Motivace: Stanovení původu bariéry rotace ze dvou předpokládaných možností: ) sterická interakce mezi aromatickým kruhem a karbenovou částí, 2) překryv aromatického π-systému s elektronově chudým karbenovým uhlíkem, který způsobuje zvýšení řádu vazby. 3 2 b c A b c rozpouštědlo: Dl 3, 500 MHz B o-ph 308 K 298 K 288 K 273 K 263 K 3, 5 4 2,6 243 K B A b c a Hana Dvořáková, Tomáš Tobrman, Dalimil Dvořák, MS Taipei 200

20 Praktické aspekty měření Měří se základní D homonukleární spektra při různých teplotách. Metodicky velmi jednoduché. Je nutné zajistit: přesnou kalibraci teploty (standardní vzorek MeH K, ethylenglykol K), stejně kvalitní homogenity magneticého pole (shimování) v celém rozsahu teplot. nutný vysoký poměr signál/šum. Zpracování spekter a výpočty co je jednodušší měření, o to jsou těžší výpočty. Nezbytné je velmi pečlivé zpracování spekter: Fourierova transformace - bez LB a jiných apodizací, fázování, kvalitní odečtení pozadí (baseline correction) Zpracování spekter a výpočty (pokrač.) Rychlostní konstanty chemické výměny se získají fitováním pološířek a poloh příslušných rezonancí (např. program g-nmr). U pomalé výměny: ν = k/π, v přechodné oblasti je závislost složitá. Správné nafitování signálů je překvapivě moc citlivé na kvalitu zpracování spekter!!! Získají se rychlostní konstanty při každé měřicí teplotě. k [s ] k = 200 K vysvětlení teplotní závislosti je možné použít Arrheniovu či Eyringovu rovnici k T B h - H S + e RT R T [K] G aktivační volná energie ( G = H -T S ) H aktivační enthalpie S aktivační entropie k B Boltzmannova konstanta J/K h Planckova konstanta Js R univerzální plynová konstanta J/K/mol T termodynamická teplota v K

21 Důležité poznámky: 308 K 298 K 288 K Relativné přesně se rychlostní konstanty získají jen při teplotách, kdy je rozšíření čáry >> než přirozená šířka čáry (bez chemické výměny), tj. v relativně malém rozmezí kolem teploty koalescence. Přirozená šířka čáry není a priori známa -může se mezi jednotlivými signály lišit. A navíc se mění s teplotou, což běžný výpočet zanedbává. 273 K 263 K 243 K Výsledek bdobná měření byla provedena pro různě substituované (R) deriváty. electron acceptors electron donors R Η kj/mol S J/mol/K G 298 kj/mol F ± ± H ± ± H 59.8 ± ± l 55.8 ± ± H ± ± H ± ± A B b c Bráněná rotace je enthalpicky řízená reakce. Měření různých derivátů prokázalo, že bariéra rotace je vyšší pro substituenty, které jsou akceptory elektronů. Původ bariéry rotace je tedy sterická interakce mezi aromatickým kruhem a karbenovou částí.

22 Konformační výměna v kali[4]arenech A S S Pr Pr Pr - 3 S S Pr Tetrapropoythiakali[4]aren - konický konformer, H spektrum v 2 D 2 l 4, teplota 373 K B S S S S S S S S Pr Pr Pr Pr Pr Pr Pr Pr dpovídá spektrum statické struktuře A nebo dynamické rovnováze B? 343 K F E E F E,F E F 233 K 3,5 4 Spektra při nižších teplotách dokazují, že se jedná o dynamickou rovnováhu B. Počet signálů ve spektru souvisí se symetrií molekuly - čím vyšší symetrie, tím větší počet degenerovaných signálů. F E 5 4 E 3 F S S S S S S S S Pr Pr Pr Pr Pr Pr Pr Pr chemická výměna mezi polohami E F

23 2D EXSY (EXchange SpectroscopY) t t m inverze Během směšovacího času času t m dochází k přenosu magnetizace vlivem chemické výměny. V 2D spektru jsou v obou dimenzích chemické posuny, mezi vyměňujícími se spiny jsou krospíky. Velikost krospíků závisí na rychlosti chemické výměny. Sekvence je totožná s NESY - ve spektru budou též krospíky v důsledku NE. δ (f ) Ha Hb Hb Hc Hc Ha δ (f 2 ) Poznámka: D EXSY je totožná s D NESY (diferenční NE). Výběr D nebo 2D sekvence je dán jen počtem počtem krospíků, které chceme analyzovat - v D ecitujeme jediný signál jako zdroj chemické výměny, ve 2D sekvenci takto slouží všechny signály. EXSY - výměnná spektroskopie Měření rychlosti chemické výměny analýzou pološířek v D spektrech je komplikováno náhodným překryvem aromatických signálů kruhů E. Proto je výhodnější EXSY (v tomto případě 2D). Toto spektrum: K, t m = 200 ms E F F -E Krospíky: chemická výměna: F3,5-E, F4-E, F -E NE: F3,5-F4 F3,5-E F4-E E F3,5-F4 F4 F3,5

24 EXSY - výměnná spektroskopie - pokrač. 5 F 4 E 3 S S S S Pr Pr Pr Pr Integrace krospíků i diagonálních píků ve 2D spektru: Diagonální píky vždy slouží jako reference. Pro stanovení rychlosti chemické výměny A B potřebujeme relativní velikost krospíku I(A-B) vzhledem k velikosti I(A) (zdroje ch. výměny). Krospíky, symetrické vzhledem k diagonále, jsou vždy stejné (pokud ne, je to artefakt) I(A-B) = I(B- A). Můžeme použít jen dobře separované signály (signál E je nepoužitelný!) EXSY - výměnná spektroskopie - pokrač. Změříme spektra pro několik hodnot směšovacího času t m. becně (tj. v případě nesymetrické výměny, ([A] [B]) (I(A) I(B)) jsou rychlostní konstanta dány: I(A-B) / I(A) = k(a B) * t m I(A-B) / I(B) = k(b A) * t m Tento vzorec platí jen pro počáteční nárůst, který je lineární. dchylka od linearity je způsobena členy s vyššími mocninami t m (t m2, t m3, t m4, ), které jsou pro dostatečně malé t m zanedbatelné (tzv. spinová difúze). 0.6 I(A-B) / I(A) Intenzita F3,5 - E E-F3,5 F4-E E-F4 I(A-B) = F3,5-E; F4-E I(A) = F3,5; F4 směšovací časy: 0, 20, 50, 00, 200 ms směšovací čas

25 EXSY - výměnná spektroskopie - pokrač. V našem případě je chemická výměna symetrická ([E]=[F]) a tedy jako reference postačí diagonální signály F a nepotřebujeme překývající se aromatické signály E. k(e F) = 2.5 s - Podobně se změří rychlostní konstanta při jiných teplotách a spočítají se aktivační parametry. rychlostní konstanta (s - ) teplota (K) G = 56.0 kj/mol aktivační volná energie při 337 K H = 43.7 kj/mol aktivační enthalpie S = -5 J/mol/K aktivační entropie Srovnání EXSY a měření pološířek signálu + EXSY je přesnější než měření pološířek signálu, + EXSY nevadí složitá reakční schémata, EXSY je mnohem pracnější - pro jeden bod teplotní závislosti je třeba změřit řadu spekter (třeba 5), X Z hlediska časových režimů chemické výměny jsou tyto metody komplementární - pokrývají rozdílný rozsah rychlostí chemických výměn: EXSY - pomalá výměna, která příliš nerozšiřuje čáry (nesmí docházet k překryvu), měření pološířek je nejpřesnější, když chemická výměna rozšiřuje čáru maimálně, tj. v oblasti koalescence (oblast přechodu mezi pomalou a rychlou výměnou). Měření rychlé výměny, která znatelně nerozšiřuje signál je obtížné. Pomoci může měření relaační doby T 2.

26 EXSY - výměnná spektroskopie - pokrač. Případ, kdy je použití EXSY nezbytné: komplikovanější reakční schéma. hemická výměna konformérů tetraethyletheru thiakali[4]arenu. S S S S k AP k PA S S S S k P k P k P k P S S S S k k,3-alt (A) paco (P) S S S S pinched cone () Různé konformery mají různou koncentraci a symetrii - výměna proto vesměs není symetrická. Jednotlivé rychlostní konstanty jsou odlišné (celkem 5 různých konstant). EXSY - výměnná spektroskopie paco-a3 paco-b3 paco-3 A ' 2' H 2 H 3 B S S S S S S S S S S S S S S S S paco cone,3-alt,2-alt,3-alt-3,3-alt- cone-, paco-a2 X paco-4,,3-alt-4 paco-a paco-a paco-b4 paco-b paco- paco-2 cone-2 paco-a5 paco-a4 cone-4 cone-3,3-alt-2 paco-b2 // // H spektrum tetraethoythiakali[4]arenu v Dl 3 při 303 K. Koncentrace jednotlivých konformérů jsou různé, vzájemně se vyměňující se signály mají rozdílnou míru degenerace. Je to nesymetrická chemická výměna.

27 EXSY - výměnná spektroskopie,3-alt-3 paco-a5 paco-a3 paco-4, paco-b3 paco-b4,3-alt-4 paco-3 paco-a4 H NESY (EXSY) spektrum aromatické oblasti tetraethoythiakali[4]arenu v 2 D 2 l 4 při 298 K, t m =.5 s. Kladné píky (červené) = diagonála a chemická výměna, záporné píky (modré) = NE. Koncentrace jednotlivých konformérů jsou různé, vzájemně se vyměňující se signály mají rozdílnou míru degenerace. Je to nesymetrická chemická výměna. Ve spektru jsou vidět jen signály,3-alt a paco konformérů. cone je rozšířený v blízkosti koalescenční teploty chemické výměny pinched cone - pinched cone. EXSY - výměnná spektroskopie Závislost relativní intenzity krospíků na směšovacím čase. 0,06 intenzita 0,05 0,04 0,03 0,02 0,0 paco 3,5 -,3-alt 3,5 paco A 3,5 -,3-alt 3,5 paco B 3 -,3-alt 3,5 paco B 5 -,3-alt 3,5 paco B 4 -,3-alt 4 fit 0 0 0,5,5 směšovací čas (s) k PA = 0,0238 s - při 298 K

28 EXSY - výměnná spektroskopie - pokrač. Při vyšší teplotě jsou v H spektru pozorovatelné i signály cone konformeru.,3-alt-4 paco-a3 paco-4, cone-4 paco-b3 paco-b4,3-alt-3 paco-a5 paco-3 cone-3,5 paco-a4 0,25 Závislost relativní intenzity krospíků na směšovacím čase 0,2 intenzita 0,5 0, 0,05,3-alt 4 - paco B 4,3-alt 4 - paco 4,3-alt 4 - paco 4,3-alt 3,5 - paco B 3; A 3,5,3-alt 4 - paco B 3; A 3,5,3-alt 3,5 - paco B 5,3-alt 3,5 - paco B ,02 0,04 0,06 směšovací čas (s) k PA = 4,97 s - při 363 K t m = 0.05 s, 363 K Poměrně rychlou chemickou výměnu paco,3-alt je potřeba měřit při velmi krátkých směšovacích časech. Za těchto podmínek nejsou měřitelné krospíky v důsledku výměny paco cone. EXSY - výměnná spektroskopie - pokrač. Pro měření výměny paco cone je nutné použít mnohem delších směšovacích časů.,3-alt-4 paco-a3 paco-4, cone-4 paco-b3 paco-b4,3-alt-3 paco-a5 paco-3 cone-3,5 paco-a4 Závislost relativní intenzity krospíků na směšovacím čase intenzita 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, 0 0 0,5 směšovací čas (s) k P = 0,67 s - při 363 K paco B3 - cone 3,5 paco 3,5 - cone 3,5 paco B4 - cone 4 paco B4 - cone 4 skutečný počáteční build-up t m = 0.2 s, 363 K Vlivem mnohem (cca 0) rychlejších procesů dochází k rozsáhlé spinové difúzi a počáteční lineární část výstavbové křivky prakticky neeistuje. Je vhodné/nutné použít přesný výpočet pomocí relaační a výměnné matice -na řádcích a sloupcích jsou jednotlivé spiny, maticové prvky obsahují příslušné rychlosti chemických výměn, kros-relaační rychlosti a na diagonále též podélné relaační rychlosti.

29 EXSY - výměnná spektroskopie - závěr S S S S k AP k PA S S S S k P k P k P k P S S S S k k,3-alt (A) paco (P) 298 K 363 K * k PA 0,0238 4,97 k P 0,67 S S S S pinched cone () Závěr: Pomocí EXSY lze studovat i systémy, ve kterých dochází k mnoha různým přenosům magnetizace (s odlišnými rychlostmi) vlivem NE a chemické výměny. Je potřebné matematicky rigorosní vyhodnocení (neplatí aproimace počátečního lineárního nárůstu). Užitečná jsou měření při různých teplotách. Aktivační parametry jednotlivých procesů se stanoví v různých teplotních režimech. Přitom se mění relativní rychlosti různých přenosů magnetizace.

Chemická výměna. K ex K B

Chemická výměna. K ex K B Chemická výměna K ex K B Vliv chemické výměny na NMR spektrum Pomalá vs. rychlá chemická výměna Metody měření rychlosti chemické výměny a příklady: Dynamická NMR a příklad EXY a příklady Chemická výměna

Více

Relaxace jaderného spinu

Relaxace jaderného spinu Relaace jaderného spinu ecitace relaace Relaační dob Metod měření relaačních dob Relaační mechanism Dipól-dipólová relaace Nukleární verhauserův efekt Příklad dnamika trisacharidu Relaační jev Relaace

Více

NMR spektroskopie v pevné fázi

NMR spektroskopie v pevné fázi NMR spektroskopie v pevné fázi A. Charakteristika jaderného spinu v pevné fázi. B. Měření základního spektra přáškového vzorku. 2D homonukleární C korelované spektrum U- C-L-tyrosinu při 9.4 T sekvencí

Více

Praktické příklady měření a interpretace chemické é výměny a relaxací. rychlostních konstant k. Měření

Praktické příklady měření a interpretace chemické é výměny a relaxací. rychlostních konstant k. Měření Praktické příklady měření a interpretace chemické é výměny a relaxací A. Chemická výměna 1. Dynamická NMR - teplotně závislá 1D spektra. Výměnná spektroskopie - EXY (EXchange pectroscopy) Měření rychlostních

Více

Relaxace II. a chemická výměna

Relaxace II. a chemická výměna Relaxace II. a chemická výměna excitace relaxace Relaxační mechanismy pokračování Dipól-dipólová relaxace Nukleární verhauserův efekt+ příklady hemická výměna + příklady Kvadrupolární interakce Multipólový

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Nukleární magnetické rezonance (NMR) princip ZDROJ E = h. elektro-magnetické záření E energie záření h Plankova konstanta frekvence záření VZOREK E E 1 E 0 DETEKTOR

Více

ZÁKLADNÍ EXPERIMENTÁLNÍ

ZÁKLADNÍ EXPERIMENTÁLNÍ Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ

Více

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Transverzální magnetizace, která vykonává precesi

Více

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekapling Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekaplingem rozumíme odstranění vlivu J-vazby XA na na spektra jader A působením dalšího radiofrekvenčního pole ( ω X )na

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).

Více

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 2 Statistika a pravděpodobnost

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)

Více

Optika. VIII - Seminář

Optika. VIII - Seminář Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení

Více

2.3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B

2.3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B .3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B V řadě případů je užitečné znát polarizaci vlny a poměry mezi jednotlivými složkami vektoru elektrické intenzity E takzvané polarizační koeficienty,

Více

4.6.6 Složený sériový RLC obvod střídavého proudu

4.6.6 Složený sériový RLC obvod střídavého proudu 4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu

Více

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XIV Název: Relaxační kmity Pracoval: Pavel Brožek stud. skup. 12 dne 5.12.2008 Odevzdal

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) LEKCE 8 Nukleární verhauserův efekt (NE) určení prostorové struktury molekul využití REY spektroskopie projevy NE a chemické výměny v jednom systému Nukleární verhauserův efekt (NE) důsledek dipolární

Více

1.3.1 Kruhový pohyb. Předpoklady: 1105

1.3.1 Kruhový pohyb. Předpoklady: 1105 .. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň

Více

4.2.7 Voltampérová charakteristika rezistoru a žárovky

4.2.7 Voltampérová charakteristika rezistoru a žárovky 4.2.7 Voltampérová charakteristika rezistoru a žárovky Předpoklady: 4205 Pedagogická poznámka: Tuto hodinu učím jako běžnou jednohodinovku s celou třídou. Některé dvojice stihnou naměřit více odporů. Voltampérová

Více

Kvadratické rovnice pro učební obory

Kvadratické rovnice pro učební obory Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Matyáš Řehák stud.sk.:

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ

Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 7.10.2013

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: 22 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

VOLBA TYPU REGULÁTORU PRO BĚŽNÉ REGULAČNÍ SMYČKY

VOLBA TYPU REGULÁTORU PRO BĚŽNÉ REGULAČNÍ SMYČKY VOLBA TYPU REGULÁTORU PRO BĚŽNÉ REGULAČNÍ SMYČKY Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Lokální a globální extrémy funkcí jedné reálné proměnné

Lokální a globální extrémy funkcí jedné reálné proměnné Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální

Více

Úloha č. 6 Stanovení průběhu koncentrace příměsí polovodičů

Úloha č. 6 Stanovení průběhu koncentrace příměsí polovodičů Úloha č. 6 Stanovení průběhu koncentrace příměsí polovodičů Úkol měření: 1. Změřte průběh resistivity podél monokrystalu polovodiče. 2. Vypočtěte koncentraci příměsí N A, D z naměřených hodnot resistivity.

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze

Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze Analýza směsí a kvantitativní NMR NMR spektrum čisté látky je lineární kombinací spekter jejích jednotlivých

Více

Isingův model. H s J s s h s

Isingův model. H s J s s h s Ising Isingův model H s J s s h s i, j Motivován studiem fázových přechodů a kritických jevů Užíva se popis pomocí magnetických veličin i j i i Vlastnosti pomocí partiční sumy počítej: měrné teplo, susceptibilitu

Více

1 Typografie. 1.1 Rozpal verzálek. Typografie je organizace písma v ploše.

1 Typografie. 1.1 Rozpal verzálek. Typografie je organizace písma v ploše. 1 Typografie Typografie je organizace písma v ploše. 1.1 Rozpal verzálek vzájemné vyrovnání mezer mezi písmeny tak, aby vzdálenosti mezi písmeny byly opticky stejné, aby bylo slovo, řádek a celý text opticky

Více

Tepelná výměna. výměna tepla může probíhat vedením (kondukce), sáláním (radiace) nebo prouděním (konvekce).

Tepelná výměna. výměna tepla může probíhat vedením (kondukce), sáláním (radiace) nebo prouděním (konvekce). Tepelná výměna tepelná výměna je termodynamický děj, při kterém dochází k samovolné výměně tepla mezi dvěma tělesy s různou teplotou. Tepelná výměna vždy probíhá tak, že teplejší těleso předává svou vnitřní

Více

Kvadratické rovnice pro studijní obory

Kvadratické rovnice pro studijní obory Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

2.4.11 Nerovnice s absolutní hodnotou

2.4.11 Nerovnice s absolutní hodnotou .. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na

Více

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0 Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla energetické stavy jádra v magnetickém poli rezonanční podmínka - instrumentace pulsní metody, pulsní sekvence relaxační

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o.

E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o. E-ZAK metody hodnocení nabídek verze dokumentu: 1.1 2011 QCM, s.r.o. Obsah Úvod... 3 Základní hodnotící kritérium... 3 Dílčí hodnotící kritéria... 3 Metody porovnání nabídek... 3 Indexace na nejlepší hodnotu...4

Více

Tvorba trendové funkce a extrapolace pro roční časové řady

Tvorba trendové funkce a extrapolace pro roční časové řady Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení

Více

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metody spektrální Metody molekulové spektroskopie NMR Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla

Více

Ústav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.5.2 ZS 2010/2011. reg-5-2. 2010 - Ing. Václav Rada, CSc.

Ústav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.5.2 ZS 2010/2011. reg-5-2. 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 reg-5-2 10.5.2 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

15 s. Analytická geometrie lineárních útvarů

15 s. Analytická geometrie lineárních útvarů 5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý

Více

IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE

IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE Nové formy výuky s podporou ICT ve školách Libereckého kraje IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE Podrobný návod Autor: Mgr. Michal Stehlík IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE 1 Úvodem Tento

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) Nukleární Overhauserův efekt (NOE) NOE je důsledek dipolární interakce mezi dvěma jádry. Vzniká přímou interakcí volně přes prostor, tudíž není ovlivněn chemickými vazbami jako nepřímá spin-spinová interakce.

Více

Mřížky a vyústky NOVA-C-2-R2. Vyústka do kruhového potrubí. Obr. 1: Rozměry vyústky

Mřížky a vyústky NOVA-C-2-R2. Vyústka do kruhového potrubí. Obr. 1: Rozměry vyústky -1-1-H Vyústka do kruhového potrubí - Jednořadá 1 Dvouřadá 2 L x H Typ regulačního ústrojí 1) R1, RS1, RN1 R2, RS2, RN2 R, RS, RN Lamely horizontální 2) H vertikální V Provedení nerez A- A-16 Povrchová

Více

ELEKTROTECHNICKÁ MĚŘENÍ PRACOVNÍ SEŠIT 2-3

ELEKTROTECHNICKÁ MĚŘENÍ PRACOVNÍ SEŠIT 2-3 ELEKTROTECHNICKÁ MĚŘENÍ PRACOVNÍ SEŠIT - Název úlohy: Měření vlastností regulačních prvků Listů: List: Zadání: Pro daný regulační prvek zapojený jako dělič napětí změřte a stanovte: a, Minimálně regulační

Více

Jakub Kákona, kaklik@mlab.cz 19.11.2010

Jakub Kákona, kaklik@mlab.cz 19.11.2010 Čerpání rotační olejovou vývěvou Jakub Kákona, kaklik@mlab.cz 19.11.2010 Abstrakt 1 Úvod 1. Sledujte čerpání uzavřeného objemu rotační olejovou vývěvou (ROV) s uzavřeným a otevřeným proplachováním, a to

Více

Hodnocení způsobilosti procesu. Řízení jakosti

Hodnocení způsobilosti procesu. Řízení jakosti Hodnocení způsobilosti procesu Řízení jakosti Hodnocení způsobilosti procesu a její cíle Způsobilost procesu je schopnost trvale dosahovat předem stanovená kriteria kvality. Snaha vyjádřit způsobilost

Více

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. 9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme

Více

Aktivní filtry. 1. Zadání: A. Na realizovaných invertujících filtrech 1.řádu s OZ: a) Dolní propust b) Horní propust c) Pásmová propust

Aktivní filtry. 1. Zadání: A. Na realizovaných invertujících filtrech 1.řádu s OZ: a) Dolní propust b) Horní propust c) Pásmová propust Aktivní filtry. Zadání: A. Na realizovaných invertujících filtrech.řádu s OZ: a) Dolní propust b) orní propust c) Pásmová propust B. Změřte: a) Amplitudovou frekvenční charakteristiku napěťového přenosu

Více

Pomůcka pro demonstraci momentu setrvačnosti

Pomůcka pro demonstraci momentu setrvačnosti Pomůcka pro demonstraci momentu setrvačnosti Cílem pomůcky je pochopit význam geometrických charakteristik pro pohybové chování těles na něž působí vnější síly. Princip pomůcky je velmi jednoduchý, jde

Více

Energetický regulační

Energetický regulační Energetický regulační ENERGETICKÝ REGULAČNÍ ÚŘAD ROČNÍK 16 V JIHLAVĚ 25. 5. 2016 ČÁSTKA 4/2016 OBSAH: str. 1. Zpráva o dosažené úrovni nepřetržitosti přenosu nebo distribuce elektřiny za rok 2015 2 Zpráva

Více

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm Vlnění a akustika 1/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) =.10 3 m, 5π s 1 t. Napište rovnici vlnění, které se šíří bodovou řadou v kladném smyslu osy x rychlostí 300 m.s 1. c =

Více

Označování dle 11/2002 označování dle ADR, označování dle CLP

Označování dle 11/2002 označování dle ADR, označování dle CLP Označování dle 11/2002 označování dle ADR, označování dle CLP Nařízení 11/2002 Sb., Bezpečnostní značky a signály 4 odst. 1 nařízení 11/2002 Sb. Nádoby pro skladování nebezpečných chemických látek, přípravků

Více

DUM 11 téma: Nástroje pro transformaci obrázku

DUM 11 téma: Nástroje pro transformaci obrázku DUM 11 téma: Nástroje pro transformaci obrázku ze sady: 2 tematický okruh sady: Bitmapová grafika ze šablony: 09 Počítačová grafika určeno pro: 2. ročník vzdělávací obor: vzdělávací oblast: číslo projektu:

Více

1 Statické zkoušky. 1.1 Zkouška tahem L L. R = e [MPa] S S

1 Statické zkoušky. 1.1 Zkouška tahem L L. R = e [MPa] S S 1 Statické zkoušky 1.1 Zkouška tahem Zkouška tahem je základní a nejrozšířenější mechanická zkouška. Princip: Přetržení zkušební tyče a následné stanovení tzv. napěťových a deformačních charakteristik

Více

Mechanika tuhého tělesa. Dynamika + statika

Mechanika tuhého tělesa. Dynamika + statika Mechanika tuhého tělesa Dynamika + statika Moment hybnosti U tuhého tělesa není hybnost vhodnou veličinou pro posouzení dynamického stavu rotujícího tělesa Definujeme veličinu analogickou hybnosti, která

Více

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované

Více

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................

Více

MR zobrazování (tomografie, imaging)

MR zobrazování (tomografie, imaging) MR zobrazování (tomografie, imaging) A. Principy zobrazování pomocí signálu NMR B. Kontrast obrazu a jeho nastavení, kontrastní látky C. Ukázky tomografů D. Speciální techniky: angiografie, funkční zobrazování,

Více

Jednofázový alternátor

Jednofázový alternátor Jednofázový alternátor - 1 - Jednofázový alternátor Ing. Ladislav Kopecký, 2007 Ke generování elektrického napětí pro energetické účely se nejčastěji využívá dvou principů. Prvním z nich je indukce elektrického

Více

12.NMR spektrometrie při analýze roztoků

12.NMR spektrometrie při analýze roztoků Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 12.NMR spektrometrie při analýze roztoků Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com 12.NMR spektrometrie při analýze

Více

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r. Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr

Více

Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů

Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Dynamické procesy & Pokročilé aplikace NMR chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Chemická výměna jakýkoli proces při kterém dané jádro mění svůj stav

Více

Dvourozměrná NMR spektroskopie metody

Dvourozměrná NMR spektroskopie metody Dvourozměrná NMR spektroskopie metody Marcela Strnadová 1D-NMR: experimentální FID je funkcí jediné časové proměnné - detekčního času t 2, spektrum získané Fourierovou transformací je funkcí frekvence

Více

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208 .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

Práce v chemii řízená změna energie vycházející z děje (chemického) Energie - kynetická, solární, termální, chemická, potenciální

Práce v chemii řízená změna energie vycházející z děje (chemického) Energie - kynetická, solární, termální, chemická, potenciální Termodynamika 1 Energie Schopnost konat práci Práce v chemii řízená změna energie vycházející z děje (chemického) Energie - kynetická, solární, termální, chemická, potenciální 2 Otevřená soustava Termodynamika

Více

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501 ..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného

Více

Napínání řetězů a řemenů / Pružné elementy Napínáky řetězů a řemenů

Napínání řetězů a řemenů / Pružné elementy Napínáky řetězů a řemenů typ TE Technické vlastnosti + 32 + 32 Velký úhel nastavení 32 Progresivní pružnost Tlumení vibrací a hluku ezpečnost ve všech provozních situacích 42 C + 85 C Vysoká odolnost vůči teplotám ez nároku na

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan. Chemie obecná kinetika chemických reakcí. Datum tvorby 11.12.2013

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan. Chemie obecná kinetika chemických reakcí. Datum tvorby 11.12.2013 Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Ročník Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie obecná kinetika chemických reakcí 1. ročník Datum tvorby 11.12.2013

Více

Základy. analýzy hlavních komponent a multivariačních regresních metod pro spektrální analýzu

Základy. analýzy hlavních komponent a multivariačních regresních metod pro spektrální analýzu Základy analýzy hlavních komponent a multivariačních regresních metod pro spektrální analýzu Multivariační analýza dat použití mnoha proměnných zároveň základem tabulka - matice dat řádky - vzorky sloupce

Více

Google AdWords - návod

Google AdWords - návod Google AdWords - návod Systém Google AdWords je reklamním systémem typu PPC, který provozuje společnost Google, Inc. Zobrazuje reklamy ve výsledcích vyhledávání či v obsahových sítích. Platí se za proklik,

Více

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana (celkem 7) Polyadické - zobrazené mnohočlenem desítková soustava 3 2 532 = 5 + 3 + 2 + Číselné soustavy Číslice tvořící zápis čísla jsou vlastně

Více

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen) .8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.

Více

2.7.2 Mocninné funkce se záporným celým mocnitelem

2.7.2 Mocninné funkce se záporným celým mocnitelem .7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,

Více

Úvod. Analýza závislostí. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer

Úvod. Analýza závislostí. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Úvod Předmětem této kapitoly bude zkoumání souvislosti (závislosti) mezi

Více

INFRAČERVENÁ A RAMANOVA SPEKTROSKOPIE aneb CO NÁM MOHOU VIBRACE ŘÍCI O (BIO)MOLEKULÁCH. Vladimír Baumruk

INFRAČERVENÁ A RAMANOVA SPEKTROSKOPIE aneb CO NÁM MOHOU VIBRACE ŘÍCI O (BIO)MOLEKULÁCH. Vladimír Baumruk INFRAČERVENÁ A RAMANOVA SPEKTROSKOPIE aneb CO NÁM MOHOU VIBRACE ŘÍCI O (BIO)MOLEKULÁCH Vladimír Baumruk Univerita Karlova v Prae Matematicko-fikální fakulta Fikální ústav UK Metod vibrační spektroskopie

Více

Post-Processingové zpracování V módu post-processingu je možné s tímto přístrojem docílit až centimetrovou přesnost z běžné 0,5m.

Post-Processingové zpracování V módu post-processingu je možné s tímto přístrojem docílit až centimetrovou přesnost z běžné 0,5m. Výjimečná EVEREST technologie Aplikovaná EVEREST technologie pro dobrou ochranu vícecestného šíření GNSS signálu a pro spolehlivé a přesné řešení. To je důležité pro kvalitní měření s minimální chybou.

Více

9.2.5 Sčítání pravděpodobností I

9.2.5 Sčítání pravděpodobností I 9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava

Více

KIV/ZI Základy informatiky. MS Excel maticové funkce a souhrny

KIV/ZI Základy informatiky. MS Excel maticové funkce a souhrny KIV/ZI Základy informatiky MS Excel maticové funkce a souhrny cvičící: Michal Nykl zimní semestr 2012 MS Excel matice (úvod) Vektor: (1D) v = [1, 2, 3, 5, 8, 13] Např.: matice sousednosti Matice: (2D)

Více

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a

Více

Autor: martina urbanová, jiří brus. Základní experimentální postupy NMR spektroskopie pevného stavu

Autor: martina urbanová, jiří brus. Základní experimentální postupy NMR spektroskopie pevného stavu Autor: martina urbanová, jiří brus Základní experimentální postupy NMR spektroskopie pevného stavu Obsah přednášky anizotropní interakce v pevných látkách techniky rušení anizotropie jaderných interakcí

Více

Funkce více proměnných

Funkce více proměnných Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu

Více

1. Cizinci v České republice

1. Cizinci v České republice 1. Cizinci v České republice Počet cizinců v ČR se již delší dobu udržuje na přibližně stejné úrovni, přičemž na území České republiky bylo k 31. 12. 2011 evidováno 434 153 osob III. Pokud vezmeme v úvahu

Více

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

tvarovací obvody obvody pro úpravu časového průběhu signálů Derivační obvody Derivační obvod RC i = C * uc/ i = C * (u-ur) / ur(t) = ir = CR [

tvarovací obvody obvody pro úpravu časového průběhu signálů Derivační obvody Derivační obvod RC i = C * uc/ i = C * (u-ur) / ur(t) = ir = CR [ ZADÁNÍ: U daných dvojbranů (derivační obvod, integrační obvod, přemostěný T-článek) změřte amplitudovou a fázovou charakteristiku. Výsledky zpracujte graficky; jednak v pravoúhlých souřadnicích, jednak

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Polarita σ vazeb v organických sloučeninách V uhlovodíkových řetězcích může být atom uhlíku vázán s jiným atomem prvku s výrazně nižší nebo

Více

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Obecné základy nedestruktivní metoda strukturní analýzy zabývá se rezonancí atomových jader nutná podmínka pro měření spekter: nenulový spin atomového jádra

Více

Základní chemické pojmy a zákony

Základní chemické pojmy a zákony Základní chemické pojmy a zákony LRR/ZCHV Základy chemických výpočtů Jiří Pospíšil Relativní atomová (molekulová) hmotnost A r (M r ) M r číslo udávající, kolikrát je hmotnost daného atomu (molekuly) větší

Více

Sada: VY_32_INOVACE_4IS

Sada: VY_32_INOVACE_4IS Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_4IS Pořadové číslo: 12 Ověření ve výuce Třída: 8.A Datum: 20. 3. 2013 1 Elektrické pole Předmět: Ročník: Fyzika 8.

Více

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 25.9.2012

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 25.9.2012 Označení materiálu: VY_32_INOVACE_ZMAJA_VODARENSTVI_15 Název materiálu: Přehled vlastností a struktura materiálu Tematická oblast: Vodárenství 1. ročník instalatér Anotace: Prezentace uvádí základní vlastnosti

Více

Chemické výpočty II. Převod jednotek. Převod jednotek. Převod jednotek. pmol/l nmol/l µmol/l mmol/l mol/l. Cvičení. µg mg g. Vladimíra Kvasnicová

Chemické výpočty II. Převod jednotek. Převod jednotek. Převod jednotek. pmol/l nmol/l µmol/l mmol/l mol/l. Cvičení. µg mg g. Vladimíra Kvasnicová Převod jednotek pmol/l nmol/l µmol/l mmol/l mol/l 10 12 10 9 10 6 10 3 mol/l Chemické výpočty II Vladimíra Kvasnicová µg mg g 10 6 10 3 g µl ml dl L 10 6 10 3 10 1 L 12) cholesterol (MW=386,7g/mol): 200

Více

LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika

LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika VUT FSI BRNO ÚVSSaR, ODBOR ELEKTROTECHNIKY JMÉNO: ŠKOLNÍ ROK: 2010/2011 PŘEDNÁŠKOVÁ SKUPINA: 1E/95 LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika ROČNÍK: 1. KROUŽEK: 2EL SEMESTR: LETNÍ UČITEL: Ing.

Více

1.1.1 Kvadratické rovnice (dosazení do vzorce) I

1.1.1 Kvadratické rovnice (dosazení do vzorce) I .. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: základní početní operace Rovnicí se nazývá vztah rovnosti mezi dvěma výrazy obsahujícími jednu nebo více neznámých. V této kapitole se budeme

Více

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715 .7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více