Praktické příklady měření a interpretace chemické é výměny a relaxací. rychlostních konstant k. Měření

Rozměr: px
Začít zobrazení ze stránky:

Download "Praktické příklady měření a interpretace chemické é výměny a relaxací. rychlostních konstant k. Měření"

Transkript

1 Praktické příklady měření a interpretace chemické é výměny a relaxací A. Chemická výměna 1. Dynamická NMR - teplotně závislá 1D spektra. Výměnná spektroskopie - EXY (EXchange pectroscopy) Měření rychlostních konstant k Rychlost reakce závisí na G reakce, které je teplotně závislé. Rychlost reakce se zvýší při zvyšování teploty T. NMR spektra budou vypadat takto: B. Měření pohyblivosti pomocí 13 C relaxací T T C Při koalescenční teplotě se rychlost o výměny k mezi jednotlivými stavy stává srovnatelná s rozdílem chemických posunů (v Hz), při při T c : c : k = π(δν)/ Chemická výměna ovlivňuje jak posun, tak tvar signálu a tedy má vliv na příčnou relaxaci

2 diast ereotopic H diast ereotopníh ch chiral(hel irální(heli tudium rotační bariéry kolem vazby aromát- karben η -chelatovaný (N,N-diallylamino)(aryl)karben wolframu A B C b c rozpouštědlo: CDCl 3, 500 MHz zabržděná rotace o-ph 308 K diastereotopní H chirální (helikální) 98 K 88 K Motivace: tanovení původu bariéry rotace ze dvou předpokládaných možností: 73 K 1) sterická interakce mezi aromatickým kruhem a karbenovou částí, ) překryv aromatického π-systému s elektronově chudým karbenovým uhlíkem, který způsobuje zvýšení řádu vazby. 3,5 4,6 63 K 43 K B A C b c a Hana Dvořáková, Tomáš Tobrman, Dalimil Dvořák, MC Taipei 001

3 Praktické aspekty měření Měří se základní 1D homonukleární spektra při různých teplotách. Metodicky velmi jednoduché. Je nutné zajistit: přesnou kalibraci teploty (standardní vzorek MeH K, ethylenglykol K), stejně kvalitní naladění magnetu v celém rozsahu teplot. nutný vysoký poměr signál/šum. Zpracování spekter a výpočty (pokrač.) Rychlostní konstanty chemické výměny se získají fitováním pološířek a poloh příslušných rezonancí (např. program g-nmr). U pomalé výměny: ν = k/π, v přechodné oblasti je závislost složitá. právné nafitování signálů je překvapivě moc citlivé na kvalitu zpracování spekter!!! Zpracování spekter a výpočty co je jednodušší měření, o to jsou těžší výpočty. Nezbytné je velmi pečlivé zpracování spekter: Fourierova transformace - bez LB a jiných apodizací, fázování, kvalitní odečtení pozadí (baseline correction) Získají Získajíse se rychlostní konstanty při při každé každé měřicí měřicí teplotě. teplotě. k -1 [s ] T [K]

4 Důležité poznámky: 308 K 98 K 88 K 73 K Relativné přesně se rychlostní konstanty získají jen při teplotách, kdy je rozšíření čáry >> než přirozená šířka čáry (bez chemické výměny), tj. v relativně malém rozmezí kolem teploty koalescence. Přirozená šířka čáry není a priori známa -může se mezi jednotlivými signály lišit. A navíc se mění s teplotou, což běžný výpočet zanedbává. k -1 [s ] k = k T B h e H RT - + T [K] R 63 K 43 K G aktivační volná energie ( G = H -T ) H aktivační enthalpie aktivační entropie k B h R T Boltzmannova konstanta x 10-4 J/K Planckova konstanta x Js univerzální plynová konstanta J/K/mol teplota v K

5 Výsledek bdobná měření byla provedena pro různě substituované (R) deriváty. Konformační výměna v kalix[4] [4]arenech A Pr Pr Pr Pr 1-3 Tetrapropoxythiakalix[4]aren - konický konformer, 1 H spektrum v C D Cl 4, teplota 373 K electron acceptors electron donors R Η kj/mol J/mol/K G 98 kj/mol CF ± ± C CH ± ± H 59.8 ± ± Cl 55.8 ± ± CH ± ± CH ± ± Bráněná rotace je enthalpicky řízená reakce. Měření různých derivátů prokázalo, že bariéra rotace je vyšší pro substituenty, které jsou akceptory elektronů. Původ bariéry rotace je tedy sterická interakce mezi aromatickým kruhem a karbenovou částí. B Pr Pr Pr Pr Pr Pr Pr Pr dpovídá spektrum statické struktuře A nebo dynamické rovnováze B?

6 343 K D EXY (EXchange pectroscopy) t 1 t m F E E F E,F E F 33 K 3,5 4 pektra při nižších teplotách dokazují, že se jedná o dynamickou rovnováhu B. Počet signálů ve spektru souvisí se symetrií molekuly - čím vyšší symetrie, tím větší počet degenerovaných signálů. inverze Během směšovacího času času t m dochází k přenosu magnetizace vlivem chemické výměny. V D spektru jsou v obou dimenzích chemické posuny, mezi vyměňujícími se spiny jsou krospíky. Velikost krospíků závisí na rychlosti chemické výměny. ekvence je totožná s NEY - ve spektru budou též krospíky v důsledku NE. Ha Hb Hb δ (f 1 ) 5 F E 4 3 E F Hc Hc Ha Pr Pr Pr Pr Pr Pr Pr Pr chemická výměna mezi polohami E F δ (f ) Poznámka: 1D EXY je totožná s 1D NEY (diferenční NE). Výběr 1D nebo D sekvence je dán jen počtem počtem krospíků, které chceme analyzovat - v 1D excitujeme jediný signál jako zdroj chemické výměny, ve D sekvenci takto slouží všechny signály.

7 EXY - výměnná spektroskopie EXY - výměnná spektroskopie - pokrač. Měření rychlosti chemické výměny analýzou pološířek v 1D spektrech je komplikováno náhodným překryvem aromatických signálů kruhů E. Proto je výhodnější EXY (v tomto případě D). 5 F E 4 3 E1 F1 F1 -E1 E1 F1 F1 -E1 Pr Pr Pr Pr F3,5-E F4-E E F3,5-F4 F4 F3,5-E F4-E E F3,5 F3,5-F4 F3,5 Toto spektrum: 37.5 K, t m = 00 ms Krospíky: chemická výměna: F3,5-E, F4-E, F1 -E1 NE: F3,5-F4 F4 Integrace krospíků i diagonálních píků ve D spektru: Diagonální píky vždy slouží jako reference. Pro stanovení rychlosti chemické výměny A B potřebujeme relativní velikost krospíku I(A-B) vzhledem k velikosti I(A) (zdroje ch. výměny). Krospíky, symetrické vzhledem k diagonále, jsou vždy stejné (pokud ne, je to artefakt) I(A-B) = I(B-A). Můžeme použít jen dobře separované signály (signál E je nepoužitelný!)

8 EXY - výměnná spektroskopie - pokrač. Změříme spektra pro několik hodnot směšovacího času t m. becně (tj. v případě nesymetrické výměny, ([A] [B]) (I(A) I(B)) jsou rychlostní konstanta dány: I(A-B) / I(A) = k(a B) * t m I(A-B) / I(B) = k(b A) * t m Tento vzorec platí jen pro počáteční nárůst, který je lineární. dchylka od linearity je způsobena členy s vyššími mocninami t m (t m, t m3, t m4, ), které jsou pro dostatečně malé t m zanedbatelné (tzv. spinová difúze). EXY - výměnná spektroskopie - pokrač. V našem případě je chemická výměna symetrická ([E]=[F]) a tedy jako reference postačí diagonální signály F a nepotřebujeme překývající se aromatické signály E. k(e F) =.51 s -1 Podobně se změří rychlostní konstanta při jiných teplotách a spočítají se aktivační parametry. 8 I(A-B) / I(A) Inte nz ita F3,5 - E E-F3,5 F4-E E-F4 rychlostní konstanta (s -1 ) teplota (K) směšovací čas I(A-B) = F3,5-E; F4-E I(A) = F3,5; F4 směšovací časy: 10, 0, 50, 100, 00 ms G H = 56.0 kj/mol aktivační volná energie při 337 K = 43.7 kj/mol aktivační enthalpie = -51 J/mol/K aktivační entropie

9 rovnání EXY a měření pološířek signálu +EXYje přesnější než měření pološířek signálu, + EXY nevadí složitá reakční schémata, - EXY je mnohem pracnější - pro jeden bod teplotní závislosti je třeba změřit řadu spekter (třeba 5), x obě metody pokrývají rozdílný rozsah rychlostí chemických výměn: EXY - pomalá výměna, která příliš nerozšiřuje čáry (nesmí docházet k překryvu), měření pološířek je nejpřesnější, když chemická výměna rozšiřuje čáru maximálně, tj. v oblasti koalescence (oblast přechodu mezi pomalou a rychlou výměnou). = Z hlediska časových režimů chemické výměny jsou tyto metody komplementární. = Měření rychlé výměny, která znatelně nerozšiřuje signál je obtížné. Pomoci může měření relaxační doby T.

10 Případ, kdy je použití EXY nezbytné: komplikovanější reakční schéma. EXY - výměnná spektroskopie - pokrač. Chemická výměna konformérů tetraethyletheru thiakalix[4]arenu. 1,3-alt (A) k AP k PA paco (P) k PC k CP k CP k PC k CC k CC pinched cone (C) Různé konformery mají různou koncentraci a symetrii - výměna proto vesměs není symetrická. Jednotlivé rychlostní konstanty jsou odlišné (celkem 5 různých konstant). EXY - výměnná spektroskopie B 4 5 A 3 C paco 1,3-alt-3 1' ' CHCH3 cone cone-1, paco-a3 X paco-a1 paco-c4, paco-b3 1,3-alt-4 paco-b4 paco-c1 paco-c3 paco-a4 paco-a5 cone-3 cone-4 // 1,3-alt 1,-alt 1,3-alt-1 paco-a1 paco-b1 paco-c // paco-a cone- 1,3-alt- paco-b 1 H spektrum tetraethoxythiakalix[4]arenu v CDCl 3 při 303 K. Koncentrace jednotlivých konformérů jsou různé, vzájemně se vyměňující se signály mají rozdílnou míru degenerace. Je to nesymetrická chemická výměna.

11 EXY - výměnná spektroskopie 1,3-alt-3 paco-a5 paco-a3 paco-b3 paco-c3 paco-c4, paco-b4 paco-a4 1,3-alt-4 EXY - výměnná spektroskopie Závislost relativní intenzity krospíků na směšovacím čase. 0,06 intenzita 0,05 0,04 0,03 0,0 0,01 paco C 3,5-1,3-alt 3,5 paco A 3,5-1,3-alt 3,5 paco B 3-1,3-alt 3,5 paco B 5-1,3-alt 3,5 paco B 4-1,3-alt 4 fit 0 0 0,5 1 1,5 směšovací čas (s) k PA = 0,038 s -1 při 98 K 1 H NEY (EXY) spektrum aromatické oblasti tetraethoxythiakalix[4]arenu v C D Cl 4 při 98 K, t m = 1.5 s. Kladné píky (červené) = diagonála a chemická výměna, záporné píky (modré) = NE. Koncentrace jednotlivých konformérů jsou různé, vzájemně se vyměňující se signály mají rozdílnou míru degenerace. Je to nesymetrická chemická výměna. Ve spektru jsou vidět jen signály 1,3-alt a paco konformérů. cone je rozšířený v blízkosti koalescenční teploty chemické výměny pinched cone - pinched cone.

12 EXY - výměnná spektroskopie - pokrač. EXY - výměnná spektroskopie - pokrač. Při vyšší teplotě jsou v 1 H spektru pozorovatelné i signály cone konformeru. Závislost relativní intenzity krospíků na směšovacím čase 0,5 1,3-alt-4 paco-a3 paco-c4, cone-4 paco-b3 paco-b4 1,3-alt-3 paco-a5 paco-c3 cone-3,5 paco-a4 t m = 0.05 s, 363 K intenzita 0, 0,15 0,1 0,05 1,3-alt 4 - paco B 4 1,3-alt 4 - paco C 4 1,3-alt 4 - paco C 4 1,3-alt 3,5 - paco B 3; A 3,5 1,3-alt 4 - paco B 3; A 3,5 1,3-alt 3,5 - paco B 5 1,3-alt 3,5 - paco B ,0 0,04 0,06 směšovací čas (s) k PA = 4,97 s -1 při 363 K Poměrně rychlou chemickou výměnu paco 1,3-alt je potřeba měřit při velmi krátkých směšovacích časech. Za těchto podmínek nejsou měřitelné krospíky v důsledku výměny paco cone.

13 EXY - výměnná spektroskopie - pokrač. EXY - výměnná spektroskopie - pokrač. Pro měření výměny paco cone je nutné použít mnohem delších směšovacích časů. Závislost relativní intenzity krospíků na směšovacím čase 1,3-alt-3 1,3-alt-4 paco-a3 paco-c4, cone-4 paco-b3 paco-b4 paco-a5 paco-c3 cone-3,5 paco-a4 t m = 0. s, 363 K intenzita 0,8 0,7 0,6 0,5 0,4 0,3 0, paco B3 - cone 3,5 paco C3,5 - cone 3,5 paco B4 - cone 4 paco B4 - cone 4 skutečný počáteční build-up 0, ,5 1 směšovací čas (s) k PC = 0,617 s -1 při 363 K Vlivem mnohem (cca 10x) rychlejších procesů dochází k rozsáhlé spinové difúzi a počáteční lineární část výstavbové křivky prakticky neexistuje. Je vhodné/nutné použít přesný výpočet pomocí relaxační a výměnné matice - na řádcích a sloupcích jsou jednotlivé spiny, maticové prvky obsahují příslušné rychlosti chemických výměn, kros-relaxační rychlosti a na diagonále též podélné relaxační rychlosti.

14 EXY - výměnná spektroskopie - závěr k AP k PA k PC k CP k PC k CP k CC k CC 1,3-alt (A) paco (P) 98 K 363 K * k PA 0,038 4,97 k PC 0,617 pinched cone (C) * výměna k CC je při 363 K rychlá - pro vyhodnocení EXY ji není třeba uvažovat Závěr: Pomocí EXY lze studovat i systémy, ve kterých dochází k mnoha různým přenosům magnetizace (s odlišnými rychlostmi) vlivem NE a chemické výměny. Je potřebné matematicky rigorosní vyhodnocení (neplatí aproximace počátečního lineárního nárůstu). Užitečná jsou měření při různých teplotách. Aktivační parametry jednotlivých procesů se stanoví v různých teplotních režimech. Přitom se mění relativní rychlosti různých přenosů magnetizace.

15 Měření pohyblivosti pomocí 13 C relaxací Lokální pohyblivost trisacharidu melezitosy 6CH H 5 4 H g H 3 1g 1g 3 1CH H 1 f H H H H g3 CH H CH H 6 5g 3 3g 5g 3f 3g 3 1f g 6g 3 f4 g 3 5f 4g 6g 4g 3 6f Lokální pohyblivost trisacharidu melezitosy Základní princip Reorientační molekulová dynamika moduluje jadernou relaxaci. Jádra 13 C v molekule cukru, která nesou přímo vázaný proton, relaxují téměř výlučně vlivem přímé dipól-dipólové interakce s tímto protonem. Experimentální metodika Měření 13 C relaxačních dob T 1, T a heteronukleárního NE při různých intenzitách magnetického pole B 0. Podmínkou je režim mimo extrémní zúžení (extreme narrowing) - musí být ωτ M 1, aby relaxační doby byly závislé na B 0. Základní pulzní sekvence: inversion recovery (T 1 ) spinové echo - CPMG (T ) měření stacionárního heteronukleárního NE f ppm C NMR spektrum, D /DM 7/3, 303 K, 11.8 T

16 Metody měření relaxačních dob Inversion recovery Podélná relaxační doba T 1 návrat po inverzi (inversion recovery). Měření heteronukleárního NE heteronukleární stacionární NE mezi 13 C a 1 H pektrum 1 13 C 90 y 180 y (or x) 90 y 1 H ozařování dekapling t mix pektrum 13 C 90 y CPMG Příčná relaxační doba T - sekvence CPMG (Carr, Purcell, Meiboom, Gill) mnohonásobné spinové echo s konstantním echočasem a proměnným počtem cyklů n. 1 H dekapling NE se získá jako podíl intenzit signálů {(spektrum 1) / (spektrum )}. Maximální navýšení 13 C intenzity (tj. v režimu extrémního zúžení): NE = 1 + 0,5 γ H /γ C 3 90 y 180 y (or x) t echo / t echo / n

17 Lokální pohyblivost trisacharidu melezitosy Pro analýzu je nutný model pohybu molekuly jako celku a jejích částí. Jeden z nejúspěšnějších je Lipari-zabóův bezmodelový přístup ( model-free approach) Předpoklady Lipari-zabóova modelu: relaxace je modulována dvěma pohyby: globálním a lokálním oba pohyby jsou statisticky nezávislé globální reorientace je izotropní molekulární pohyb je charakterizován parametry: τ M korelační čas globálního pohybu parametr uspořádanosti (hodnota 0-1) korelační čas lokálního pohybu τ e Lipari-zabóův přístup Lokální pohyblivost trisacharidu melezitosy Závislost jaderné relaxace na molekulárním pohybu T 1 1 T 1 nh = D [ J( ω H ωc ) + 3J ( ωc ) + 6J( ωh + ωc )] 4 nh = D 4J(0) + J ω H ωc + 3J ωc + 6J ωh + 6J ωh + ωc 8 γ H η = γ C J Dipól-dipolární interakční konstanta: J [ ( ) ( ) ( ) ( )] 6J( ωh + ωc ) J( ωh ωc ) ( ω ω ) + 3J ( ω ) + 6J( ω + ω ) H Lipari-zabóovy spektrální hustoty : τ 5 1+ ω τ M ( ) ( ) ω + C C 1 τ 1+ ω τ D H C 3 ( µ / π ) γ γ hr = 0 4 C H CH M = τ = τ M + τe Rotační molekulární pohyb ovlivňuje jadernou relaxaci prostřednictvím spektrálních hustot J(ω) - udávají (zhruba) množství molekulárního pohybu na frekvenci ω. Pro jadernou relaxaci jsou nejvýznamnější ω H, ω C, (ω H + ω C ), (ω H - ω C ) a 0 s -1. Při různém magnetickém poli B 0 se mění i kruhové frekvence ω, a tedy zkoumáme pohyby při různých frekvencích.

18 Lokální pohyblivost trisacharidu melezitosy Závislost relaxačních rychlostí a NE pro 13 C jádra cukerných kruhů (R 1 = 1/T 1, R = 1/T ) na magnetickém poli B 0 při teplotách 303 K (a) a 33 K (b). Dynamické charakteristiky trisacharidu melezitosy Atom T(K) τμ (ns) τe (ns) C-cykl ± ± 0.01 C-6g ± ± 0.01 C-6g ± ± 0.01 C-1f ± ± 0.0 C-cykl ± ± 0.01 C-6g ± ± 0.01 C-6g ± ± 0.01 C-1f ± ± 0.03 C-6f ± ± 0.01 R 1 R 1+η R 1 R 1+η 6CH H 5 4 H g H 3 1CH H 1 f H 5 H 3 4 H CH H 6 Závislost relaxačních rychlostí a NE pro 13 C jádra exocyklických CH H skupin na magnetickém poli B 0 při teplotě 303 K. 6g 6g 3 R 1 R R 1 R 1f R 1 R Závěr: H g3 CH H Jednotlivé kruhy jsou dynamicky ekvivalentní. Hydroxymethylová skupina C-1f je podstatně méně pohyblivá než ostatní hydroxymethylové skupiny. 1+η 1+η 1+η becné: Pomocí měření relaxací se studuje pohyblivost jak malých tak velkých molekul a jejich funkčních skupin v časové škále s.

Chemická výměna. K ex K B

Chemická výměna. K ex K B Chemická výměna K ex K B Vliv chemické výměny na NMR spektrum Pomalá vs. rychlá chemická výměna Metody měření rychlosti chemické výměny a příklady: Dynamická NMR a příklad EXY a příklady Chemická výměna

Více

Relaxace II. a chemická výměna

Relaxace II. a chemická výměna Relaxace II. a chemická výměna excitace relaxace Relaxační mechanismy pokračování Dipól-dipólová relaxace Nukleární verhauserův efekt+ příklady hemická výměna + příklady Kvadrupolární interakce Multipólový

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) LEKCE 8 Nukleární verhauserův efekt (NE) určení prostorové struktury molekul využití REY spektroskopie projevy NE a chemické výměny v jednom systému Nukleární verhauserův efekt (NE) důsledek dipolární

Více

Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů

Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Dynamické procesy & Pokročilé aplikace NMR chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Chemická výměna jakýkoli proces při kterém dané jádro mění svůj stav

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) Nukleární Overhauserův efekt (NOE) NOE je důsledek dipolární interakce mezi dvěma jádry. Vzniká přímou interakcí volně přes prostor, tudíž není ovlivněn chemickými vazbami jako nepřímá spin-spinová interakce.

Více

Relaxace jaderného spinu

Relaxace jaderného spinu Relaace jaderného spinu ecitace relaace Relaační dob Metod měření relaačních dob Relaační mechanism Dipól-dipólová relaace Nukleární verhauserův efekt Příklad dnamika trisacharidu Relaační jev Relaace

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0 Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla energetické stavy jádra v magnetickém poli rezonanční podmínka - instrumentace pulsní metody, pulsní sekvence relaxační

Více

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Obecné základy nedestruktivní metoda strukturní analýzy zabývá se rezonancí atomových jader nutná podmínka pro měření spekter: nenulový spin atomového jádra

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance II. Příprava předmětu byla podpořena

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metody spektrální Metody molekulové spektroskopie NMR Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla

Více

Naše NMR spektrometry

Naše NMR spektrometry Naše NMR spektrometry Varian NMR System 300 MHz Varian INOVA 400 MHz Bruker Avance III 600 MHz NMR spektrometr magnet průřez supravodičem NMR spektrometr sonda Tvar spektra reálná část imaginární část

Více

Techniky přenosu polarizace cross -polarizace a spinová difuse

Techniky přenosu polarizace cross -polarizace a spinová difuse (3) jiri brus Techniky přenosu polarizace cross -polarizace a spinová difuse laboratory frame, spin rotating frame laboratory frame, spin Ω H B H ω, ω, ω 0, B H ω 0, Ω C B C ω B 0,, 0 ω B, B C B B,, Zvýšení

Více

Měření a interpretace NMR spekter

Měření a interpretace NMR spekter Měření a interpretace NMR spekter Bohumil Dolenský E-mail : Telefon : Místnost : www : dolenskb@vscht.cz (+420) 220 44 4110 budova A, místnost 28 http://www.vscht.cz/anl/dolensky/technmr/index.html Řešení

Více

BAKALÁŘSKÁ PRÁCE. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Veronika Deckerová

BAKALÁŘSKÁ PRÁCE. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Veronika Deckerová Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Veronika Deckerová Studium dynamického chování kalix[4]arenu pomocí NMR spektroskopie Katedra fyziky nízkých teplot Vedoucí bakalářské

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Mgr. Zdeněk Moravec, Ph.D. Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem

Více

12.NMR spektrometrie při analýze roztoků

12.NMR spektrometrie při analýze roztoků Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 12.NMR spektrometrie při analýze roztoků Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com 12.NMR spektrometrie při analýze

Více

Relaxace, kontrast. Druhy kontrastů. Vít Herynek MRA T1-IR

Relaxace, kontrast. Druhy kontrastů. Vít Herynek MRA T1-IR Relaxace, kontrast Vít Herynek Druhy kontrastů T1 T1-kl T2 GE MRA T1-IR Larmorova (rezonanční) frekvence Účinek radiofrekvenčního pulsu Larmorova frekvence ω = γ. B Proč se zajímat o relaxační časy? Účinek

Více

Autor: martina urbanová, jiří brus. Základní experimentální postupy NMR spektroskopie pevného stavu

Autor: martina urbanová, jiří brus. Základní experimentální postupy NMR spektroskopie pevného stavu Autor: martina urbanová, jiří brus Základní experimentální postupy NMR spektroskopie pevného stavu Obsah přednášky anizotropní interakce v pevných látkách techniky rušení anizotropie jaderných interakcí

Více

NMR spektroskopie Instrumentální a strukturní analýza

NMR spektroskopie Instrumentální a strukturní analýza NMR spektroskopie Instrumentální a strukturní analýza prof. RNDr. Zdeněk Friedl, CSc. Použitá a doporučená literatura Solomons T.W.G., Fryhle C.B.: Organic Chemistry, 8th Ed., Wiley 2004. Günther H.: NMR

Více

O Minimální počet valencí potřebných ke spojení vícevazných atomů = (24 C + 3 O + 7 N 1) * 2 = 66 valencí

O Minimální počet valencí potřebných ke spojení vícevazných atomů = (24 C + 3 O + 7 N 1) * 2 = 66 valencí Jméno a příjmení:_bohumil_dolenský_ Datum:_10.12.2010_ Fakulta:_FCHI_ Kruh:_ÚACh_ 1. Sepište seznam signálů 1 H dle klesajícího chemického posunu (včetně nečistot), uveďte chemický posun, multiplicitu

Více

Experimentální data pro určení struktury proteinu

Experimentální data pro určení struktury proteinu Experimentální data pro určení struktury proteinu přiřazení co největšího počtu rezonancí intenzita NOESY krospíků chemické posuvy J-vazby vodíkové můstky zbytková dipolární interakce... omezení vzdáleností

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance I. Příprava předmětu byla podpořena projektem

Více

Postup při interpretaci NMR spekter neznámého vzorku

Postup při interpretaci NMR spekter neznámého vzorku Postup při interpretaci NMR spekter neznámého vzorku VŠCT 2017, Bohumil Dolenský, dolenskb@vscht.cz Tento text byl vypracován pro projekt Inovace předmětu Semestrální práce oboru analytická chemie I. Slouží

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

LEKCE 7. Interpretace 13 C NMR spekter. Využití 2D experimentů. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm

LEKCE 7. Interpretace 13 C NMR spekter. Využití 2D experimentů. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm LEKCE 7 Interpretace 13 C MR spekter Využití 2D experimentů ppm 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm Zpracování, výpočet a databáze MR spekter

Více

ZÁKLADNÍ EXPERIMENTÁLNÍ

ZÁKLADNÍ EXPERIMENTÁLNÍ Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ

Více

Základy NMR 2D spektroskopie

Základy NMR 2D spektroskopie Základy NMR 2D spektroskopie Jaroslav Kříž Ústav makromolekulární chemie AV ČR v.v.i. puls 1D : d 1 Fourierova transformace časového rozvoje odezvy dá 1D spektrum 2D: d 1 d 1 d 1 d 0 d 0 + in 0 d 0 + 2in

Více

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR... Počet signálů C 17 18 2 O 2 MeO Počet signálů = počet neekvivalentních skupin OMe = informace o symetrii molekuly Spektrum 1 MR... Počet

Více

ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Co to je NMR? nedestruktivní spektroskopická metoda využívající magnetických vlastností atomových jader ke studiu struktury molekul metoda č.1 pro určování

Více

LEKCE 2b. NMR a chiralita, posunová činidla. Interpretace 13 C NMR spekter

LEKCE 2b. NMR a chiralita, posunová činidla. Interpretace 13 C NMR spekter LEKCE 2b NMR a chiralita, posunová činidla Interpretace 13 C NMR spekter Stanovení optické čistoty Enantiomery jsou nerozlišitelné v NMR spektroskopii není možné rozlišit enantiomer od racemátu!!! Enantiotopické

Více

LEKCE 3b. Využití 2D experimentů k přiřazení složitější molekuly. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm

LEKCE 3b. Využití 2D experimentů k přiřazení složitější molekuly. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm LEKCE 3b Využití D experimentů k přiřazení složitější molekuly ppm ppm 10 1.0 1.5 15.0 130.5 3.0 135 3.5 140 4.0 4.5 145 5.0 150 5.5 155 6.0 6.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0.5.0 1.5 1.0 ppm 160.6.4..0

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

Spektrální metody NMR I. opakování

Spektrální metody NMR I. opakování Spektrální metody NMR I opakování Využití NMR určování chemické struktury přírodní látky, organická syntéza konstituce, konformace, konfigurace ověření čistoty studium dynamických procesů reakční kinetika

Více

LEKCE 1b. Základní parametry 1 H NMR spekter. Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)*

LEKCE 1b. Základní parametry 1 H NMR spekter. Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* Základní parametry 1 NMR spekter LEKCE 1b Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* 3.5 3.0 2.5 2.0 1.5 Základní parametry 1 NMR spekter Počet signálů ve

Více

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1. S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního

Více

Význam interakční konstanty, Karplusova rovnice. konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY

Význam interakční konstanty, Karplusova rovnice. konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY Význam interakční konstanty, Karplusova rovnice konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY Karplusova rovnice ve strukturní analýze J(H,H) = A + B cos f

Více

PODĚ KOVÁNÍ. Prohlašuji, že jsem svou diplomovou práci napsala samostatně a výhradně s použitím citovaných pramenů. Souhlasím se zapůjčováním práce.

PODĚ KOVÁNÍ. Prohlašuji, že jsem svou diplomovou práci napsala samostatně a výhradně s použitím citovaných pramenů. Souhlasím se zapůjčováním práce. U N I V E R Z I T A K A R L OVA V P R A Z E MATEMATICKO-FYZIKÁLNÍ FAKULTA D I P L O M OV Á P R Á C E Kateřina Šetková STUDIUM DYNAMIKY MAKROCYKLICKÝCH INKLUZNÍCH KOMPLEXŮ POMOCÍ NMR SPEKTROSKOPIE Katedra

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Nukleární magnetické rezonance (NMR) princip ZDROJ E = h. elektro-magnetické záření E energie záření h Plankova konstanta frekvence záření VZOREK E E 1 E 0 DETEKTOR

Více

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Na konci 80 a začátkem 90-tých let se v NMR

Více

Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze

Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze Analýza směsí a kvantitativní NMR NMR spektrum čisté látky je lineární kombinací spekter jejích jednotlivých

Více

Přednáška IX: Elektronová spektroskopie II.

Přednáška IX: Elektronová spektroskopie II. Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném

Více

Anizotropie fluorescence

Anizotropie fluorescence Anizotropie fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 6 1 Jev anizotropie Jestliže dochází k excitaci světlem kmitajícím v jedné rovině, emise fluorescence se často

Více

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet NMR spektroskopie NMR spektroskopie Nukleární Magnetická Resonance - spektroskopická metoda založená na měření absorpce elektromagnetického záření (rádiové frekvence asi od 4 do 900 MHz). Na rozdíl od

Více

Základní parametry 1 H NMR spekter

Základní parametry 1 H NMR spekter LEKCE 1a Základní parametry 1 NMR spekter Počet signálů ve spektru (zjištění počtu skupin chemicky ekvivalentních jader) Integrální intenzita (intenzita pásů závisí na počtu jader) Chemický posun (polohy

Více

Interakce fluoroforu se solventem

Interakce fluoroforu se solventem 18. Vliv solventu Interakce fluoroforu se solventem Fluorescenční charakteristiky fluoroforu se mohou měnit podle toho, jaké je jeho okolí změna kvantového výtěžku posun excitačního či emisního spektra

Více

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Uplatnění NMR spektroskopie chemická struktura kovalentní struktura konformace, geometrie molekul dynamické procesy chemické a konformační

Více

COSY + - podmínky měření a zpracování dat ztráta rozlišení ve spektru. inphase dublet, disperzní. antiphase dublet, absorpční

COSY + - podmínky měření a zpracování dat ztráta rozlišení ve spektru. inphase dublet, disperzní. antiphase dublet, absorpční y x COSY 90 y chem. posuv J vazba 90 x : : inphase dublet, disperzní inphase dublet, disperzní antiphase dublet, absorpční antiphase dublet, absorpční diagonální pík krospík + - - + podmínky měření a zpracování

Více

Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň

Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Využití magneticko-rezonanční tomografie v měřicí technice Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Osnova Podstata nukleární magnetické rezonance (MR) Historie vývoje MR Spektroskopie MRS Tomografie MRI

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Význam interakční konstanty, Karplusova rovnice

Význam interakční konstanty, Karplusova rovnice LEKCE 9 Význam interakční konstanty, Karplusova rovnice konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TCSY T E E 1 E 1 T 0 6 T E 1 T 0 88 7 0 T E 0 0 E T 0 5 108

Více

Laboratoř NMR Strukturní analýza a 2D NMR spektra

Laboratoř NMR Strukturní analýza a 2D NMR spektra Laboratoř NMR Strukturní analýza a 2D NMR spektra Místo: Laboratoř NMR, místnost A28, Kontakt: doc. Ing. Bohumil DOLENSKÝ, Ph.D., Ústav analytické chemie, Vysoká škola chemicko-technologická, Technická

Více

Program. Materiály ke studiu NMR. Data, Soubory. Seminář z Analytické chemie B. \\PYR\SCRATCH\

Program. Materiály ke studiu NMR. Data, Soubory. Seminář z Analytické chemie B.  \\PYR\SCRATCH\ Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Seminář z Analytické chemie B Tento materiál vznikl za podpory projektu CHEMnote PPA CZ..7/../48 Inovace bakalářského studijního programu

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.

Více

Fyzika IV. 1) orbitální magnetický moment (... moment proudové smyčky) gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment

Fyzika IV. 1) orbitální magnetický moment (... moment proudové smyčky) gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment λ=21 cm 1) orbitální magnetický moment (... moment proudové smyčky) μ I S gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment 2 Zeemanův jev - rozštěpení spektrálních čar v

Více

Metody pro studium pevných látek

Metody pro studium pevných látek Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi

Více

Fyzika IV Dynamika jader v molekulách

Fyzika IV Dynamika jader v molekulách Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Jiří Brus. (Verze ) (neupravená a neúplná)

Jiří Brus. (Verze ) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz I v roztoku probíhá řada experimentů tak že,

Více

Magnetická rezonance (2)

Magnetická rezonance (2) NMR spektroskopie Principy zobrazování Fourierovské MRI Magnetická rezonance (2) J. Kybic, J. Hornak 1, M. Bock, J. Hozman 2008 2013 1 http://www.cis.rit.edu/htbooks/mri/ NMR spektroskopie Principy zobrazování

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Petr Dvořák

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Petr Dvořák Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Petr Dvořák Studium dynamického chování směsi H 2 O/D 2 O pomocí NMR relaxací Katedra fyziky nízkých teplot Vedoucí diplomové práce:

Více

PRAKTIKUM IV. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

PRAKTIKUM IV. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: X Název: Studium nukleární magnetické rezonance Vypracoval: Michal Bareš dne.11.7 Pracovní úkol 1) Nastavte optimální

Více

Zobrazování. Zdeněk Tošner

Zobrazování. Zdeněk Tošner Zobrazování Zdeněk Tošner Ultrazvuk Zobrazování pomocí magnetické rezonance Rentgen a počítačová tomografie (CT) Ultrazvuk Akustické vlnění 20 khz 1 GHz materiálová defektoskopie sonar sonografie (v lékařství

Více

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Transverzální magnetizace, která vykonává precesi

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Vznik NMR signálu a jeho další osud.

Vznik NMR signálu a jeho další osud. Vznik NMR signálu a jeho další osud. NMR ecitace ce Zdrojem energie pro ecitaci jader je oscilující elektromagnetické záření s frekvencí ω o generované střídavým proudem : B = C * cos (ω o t) z z β M o

Více

interakce t xx A2 A1, A4

interakce t xx A2 A1, A4 (11) Problém kvadrupolové interakce t 1 τ 9 -sel. +3 + +1 1 3 SQ - - TQ -1-1 - xx A 1 1 3 A3 A1, A4 3 1-1 - -3-4 Kvadrupolová jádra a jejich NMR spektroskopie má velký význam především pro strukturní charakterizaci

Více

projekce spinu magnetické kvantové číslo jaderného spinu - M I

projekce spinu magnetické kvantové číslo jaderného spinu - M I Spektroskopie NMR - Teoretické základy spin nukleonů, spin jádra, kvantová čísla energetické stavy jádra v magnetickém poli rezonanční podmínka - Instrumentace - vývoj technik pulsní metody, pulsní sekvence

Více

magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2)

magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2) 1 Pracovní úkoly Pulsní metoda MR (část základní) 1. astavení optimálních excitačních podmínek signálu FID 1 H ve vzorku pryže 2. Měření závislosti amplitudy signálu FID 1 H ve vzorku pryže na délce excitačního

Více

Vznik NMR signálu a jeho další osud.

Vznik NMR signálu a jeho další osud. Vznik NMR signálu a jeho další osud. NMR ecitace Zdrojem energie pro ecitaci jader je oscilující elektromagnetické záření s frekvencí w o generované střídavým proudem : B = C * cos (w o t) z z b b M o

Více

NUKLEÁRNÍ MAGNETICKÁ REZONANCE

NUKLEÁRNÍ MAGNETICKÁ REZONANCE NUKLEÁRNÍ MAGNETICKÁ REZONANCE NMR spektrometrie PRINCIP NMR Jsou-li atomová jádra některých prvků v externím magnetickém poli vystavena vysokofrekvenčnímu elmag. záření, mohou absorbovat záření určitých.

Více

Techniky měření a interpretace NMR spekter. Bohumil Dolenský VŠCHT Praha místnost A28 linka 4110

Techniky měření a interpretace NMR spekter. Bohumil Dolenský VŠCHT Praha místnost A28 linka 4110 Techniky měření a interpretace NMR spekter Bohumil Dolenský VŠCT Praha místnost A28 linka 4110 NMR je nejsilnějším analytickým nástrojem k řešení struktury organický látek královna strukturních metod.

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické

Více

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekapling Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekaplingem rozumíme odstranění vlivu J-vazby XA na na spektra jader A působením dalšího radiofrekvenčního pole ( ω X )na

Více

Poznámky k Fourierově transformaci

Poznámky k Fourierově transformaci Poznámky k Fourierově transformaci V těchto poznámkách jsou uvedeny základní vlastnosti jednorozměrné Fourierovy transformace a její aplikace na jednoduché modelové případy. Pro určitost jsou sdružené

Více

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014 F40 Kvantová fyzika atomárních soustav letní semestr 03-04 VIII. Vibrace víceatomových molekul cvičení KOTLÁŘSKÁ 3. DUBNA 04 Úvodem capsule o maticích a jejich diagonalisaci definice "vibračních módů"

Více

Dolenský, VŠCHT Praha, pracovní verze 1

Dolenský, VŠCHT Praha, pracovní verze 1 1. Multiplicita_INDA Interpretujte multiplety všech signálů spektra. Všechny multiplety jsou důsledkem interakce výhradně s jádry s magnetickým jaderným spinem 1/2, a nejsou významně komplikovány přítomností

Více

Měření a interpretace NMR spekter

Měření a interpretace NMR spekter Měření a interpretace NMR spekter Bohumil Dolenský E-mail : Telefon : Místnost : www : dolenskb@vscht.cz (+420) 220 44 40 budova A, místnost 28 http://www.vscht.cz/anl/dolensky/technmr/index.html Struktura

Více

Korelační spektroskopie jako základ multidimensionální NMR spektroskopie

Korelační spektroskopie jako základ multidimensionální NMR spektroskopie Korelační spektroskopie jako základ multidimensionální NMR spektroskopie Richard Hrabal Laboratoř NMR spektroskopie, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6, tel. 220 443

Více

Strukturní analýza. NMR spektroskopie

Strukturní analýza. NMR spektroskopie Strukturní analýza NMR spektroskopie RNDr. Zdeněk Tošner, Ph.D. lavova 8, místnost 020 tel. 22195 1323 tosner@natur.cuni.cz www.natur.cuni.cz/nmr/vyuka.html Literatura Böhm, Smrčková-Voltrová: Strukturní

Více

LEKCE 2a. Interpretace 13 C NMR spekter. NMR a chiralita, posunová činidla. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova)

LEKCE 2a. Interpretace 13 C NMR spekter. NMR a chiralita, posunová činidla. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) LEKCE 2a NMR a chiralita, posunová činidla Interpretace 13 C NMR spekter Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) Symetrie v NMR spektrech - homotopické, enantiotopické, diastereotopické

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Dvourozměrná NMR spektroskopie metody

Dvourozměrná NMR spektroskopie metody Dvourozměrná NMR spektroskopie metody Marcela Strnadová 1D-NMR: experimentální FID je funkcí jediné časové proměnné - detekčního času t 2, spektrum získané Fourierovou transformací je funkcí frekvence

Více

KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková

KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII Pavla Pekárková Katedra analytické chemie, Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, 611 37 Brno E-mail: 78145@mail.muni.cz

Více

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805,

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805, Vyučující: doc. Ing. Richard rabal, CSc. Ing. ana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805, e-mail hrabalr@vscht.cz Termín: každé pondělí od 8.30 do 11.30 Místo: posluchárna

Více

NMR SPEKTROSKOPIE PRO CHEMIKY

NMR SPEKTROSKOPIE PRO CHEMIKY NMR SPEKTROSKOPIE PRO CHEMIKY 1. Úvod 1.1 Historický úvod 1.2 Jazykové okénko 2. Principy NMR spektroskopie 2.1 Jaderný spin 2.2 Chemický posun 2.3 Snímání NMR signálu 2.4 Fourierova transformace 2.5 Magnetické

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

Jiří Brus. (Verze ) (neupravená a neúplná)

Jiří Brus. (Verze ) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Vodík-vodíkový korelační dvou-dimenzionální experiment byl prvně navržen Jeanem Jeenerem na letní škole v Basko Polje už v roce 1971. Po pěti letech

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

BAKALÁŘSKÁ PRÁCE. MUDr. Antonín Škoch, Ph.D. Měření příčné relaxace metodami spinového echa. Univerzita Karlova v Praze Matematicko-fyzikální fakulta

BAKALÁŘSKÁ PRÁCE. MUDr. Antonín Škoch, Ph.D. Měření příčné relaxace metodami spinového echa. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE MUDr. Antonín Škoch, Ph.D. Měření příčné relaxace metodami spinového echa Katedra fyziky nízkých teplot Vedoucí bakalářské práce:

Více

Základní parametry 1 H NMR spekter

Základní parametry 1 H NMR spekter LEKCE 6 Základní parametry 1 NMR spekter Počet signálů ve spektru (zjištění počtu skupin chemicky ekvivalentních jader) Integrální intenzita (intenzita pásů závisí na počtu jader) Chemický posun (polohy

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: X Název: Hallův jev Pracoval: Pavel Brožek stud. skup. 12 dne 19.12.2008 Odevzdal dne:

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

Stereochemie 7. Přednáška 7

Stereochemie 7. Přednáška 7 Stereochemie 7 Přednáška 7 1 ptická čistota p = [ ]poz [ ]max x 100 = ee = [R] - [S] [R] + [S] x 100 p optická čistota [R], [S] molární frakce R a S enantiomerů ee + 100 %R = ee + %S = ee + 100 - %R =

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)*

Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* Základní parametry 1 NMR spekter NMR a chiralita, posunová činidla Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* 3.5 3.0 2.5 2.0 1.5 Základní parametry 1 NMR

Více

Skoro každý prvek má nějaký stabilní isotop s nenulovým spinem. (Výjimky: Ar, Tc, Ce, Pm)

Skoro každý prvek má nějaký stabilní isotop s nenulovým spinem. (Výjimky: Ar, Tc, Ce, Pm) Gyromagnetická částice, jev magnetické rezonance Pojmy s kterýma se můžete setkat: u elektronů lze Bohrův magneton Zkoumat NMR lze jen ty jádra, které mají nenulový jaderný spin: Několik systematických

Více