Jak s d tmi pracovat: Probíraná témata:

Rozměr: px
Začít zobrazení ze stránky:

Download "Jak s d tmi pracovat: Probíraná témata:"

Transkript

1 Matematika pro šikovné druháky Jarmila Ranošová, Allianz pojišťovna a.s., ZŠ Chodov, Praha Abstract The article describes lessons of mathematics taught by the author one hour weekly for selected group of 7-8 years old childern (the second class of elementary school) gifted for mathematics. Taught topics, key points and remarkable reaction of children are discussed. The following points, important in math but normally not considered enough in school, arose naturally in the lessons: Question of good definition, paradox, conflict of denotation, preference of the non-expected solution, preference of the simpliest soulution, meaning of the same, different ways to answer the question how many, using letter as replacing of picture, solution of small problem as the key to solution of big problem, role of picture as help and obstacle. Úvod V tomto materiálu jsou popsány hodiny matematiky, které jsem vedla od poloviny ledna do konce června 2007 každé úterý pro vybrané děti druhých tříd ZŠ Chodov a to pro ty, které byly diagnostikovány jako mimořádně nadané při vyšetření PhDr. Jitkou Fořtíkovou, Ph.D., psycholožkou Centra nadání, nebo jsou za takové považovány svými třídními učitelkami. Jedno z těchto dětí je má dcera Hedvika. Chci poděkovat Dagmar Marvanové, Hedviččině třídní učitelce v 1. a 2. ročníku a RNDr. Janu Hovorkovi, řediteli ZŠ Chodov, a všem ostatním učitelům za rozhodnutí věnovat se mimořádně nadaným dětem a popřát škole, ať se jí to daří. Rozšířenou verzi tohoto materiálu jsem psala pro třídní učitelky dětí a vnitřní potřebu školy. Další náměty pro práci s takto starými dětmi lze nalézt třeba v literatuře uvedené na konci článku. Děti, které navštěvovaly mé hodiny: Hodiny navštěvovalo 15 dětí, z nichž podle mého názoru 8 dětí - Hedvika, Patrik, Kuba, Deborka, Jirka, Martin, Ondra, Maruška, opravdu je mimořádně nadaných na matematiku, u některých dalších si nejsem jista, další děti jsou děti pilné a milé, ale nikoliv mimořádně nadané. Děti, které jsem uvedla se ovšem od sebe pozoruhodně liší a je zajímavé pozorovat, jak rozdílné mohou být děti nadané na matematiku, jak rozdílné části nadání na matematiku má a i to, že mimořádně nadaný žák na matematiku může mít jen některé části tohoto nadání. (Řád x chaos, originální myšlení, preference nejjednoduššího řešení, preference nečekaných řešení, promýšlení do hloubky, rychlost.) Jak s dětmi nepracovat Ve třídě se nikdo nehlásí, jen Hedvika. Ale Hedviku vyvolat učitel/ka nechce, musí to naučit i ostatní děti. Co někdy řekne učitelka: Tak někdo jiný než Hedvika. Hedvika pak doma pláče, že paní učitelka ji nemá ráda, ostatní má, ale jí ne. Jak na to přišla? Protože jenom jí paní učitelka říká: Ty ne, Hedviko. Ty ne. Někdo jiný. Nadané děti jsou někdy sociálně pozadu a nerozumí motivaci v jednání ostatních. A když už Hedvika vezme motivaci učitelky v úvahu, vymyslí svoje řešení. Třeba: No tak budu schválně odpovídat nějakou dobu špatně, aby paní učitelku začalo zajímat, jestli to umím i já. Řešením je třeba nechat chytré děti napsat odpověď na papír, zkontrolovat, pochválit a pak vyvolat někoho jiného. Učitel/ka neví, co dítě chce, dítě jí něco vysvětluje, používá termíny, které ani nemá znát, protože se budou brát až někdy na druhém stupni. Učitel/ka nemá tušení, je-li to dobře nebo ne, je to v každém případě velice zmatené. 27

2 Co někdy řekne učitel: Nevyrušuj, teď děláme něco jiného. Nejdříve si to rozmysli, a pak mluv. Podívej se, jak jsi to načmáral. Místo vyrušování raději trénuj krasopis, to je to, co opravdu potřebuješ, každé písmenko jinam. Tohle si vzorně opiš. Trénuj rýsování, koukni na svůj trojúhelník, pravý úhel není pravý, tyhle strany se neprotínají ve vrcholu, bez toho se v matematice neobejdeme! Samozřejmě, je zapotřebí vést děti k čitelnému písmu a pečlivému rýsování. Nicméně je opravdu řada profesionálních matematiků, kteří to neumí a naštěstí neuvěřili, že se bez těchto schopností v matematice neobejdou. V popsané situaci je lepší projevit zájem, tvářit se zaujatě, projevit nadšení. Učitel/ka může říci: To je ale opravdu zajímavé! (Aniž by řekl/a, jestli je to správně nebo ne!) V klidu si to doma promyslet a třeba se poradit s jiným učitelem (třeba z vyššího stupně). Dítě někdy po projevení zájmu už další reakci nečeká, protože samo v tom má zmatek a není jej schopno utřídit a často stojí o pozornost více než o konkrétní odpověď. Dejte najevo, že posloucháte. Samozřejmě, že to má své hranice. Potřebujeme taky učit, ne trávit čas diskuzemi, které třeba z větší části nikam nevedou. Je to tedy o pedagogickém umění najít tu správnou rovnováhu. Dítě jako ohrožení, učitel se dítěte podvědomě bojí, má pocit, že dítě svými poznámkami podkopává jeho autoritu, Dítě jako dostihový kůň, učitel se dítěti věnuje a očekává od něj úspěchy ze soutěží, vytváří na dítě tlak, za neúspěch dítě třeba podvědomě sankciuje. Jak s dětmi pracovat: Podle důležitosti: Atmosféra ve třídě jak se tam dítě cítí, jak se cítí mezi spolužáky, jak vnímá svůj vztah s učitelkou, sociální vazby, počet dětí ve skupině. Jakým způsobem se učí tvůrčí způsob/memorování nazpaměť, hluboké porozumění/povrchní znalost. Co se učí. Nadané děti mají oproti ostatním výhodu, že se běžné učivo naučí rychleji než děti průměrné a tedy oproti nim mají čas navíc, ve kterém mohou dělat něco dalšího. K čemu máme v matematice čas navíc s nadanými dětmi využít? Můžeme s nimi procvičovat probírané učivo, zadat jim více stejných příkladů, jaké počítají ostatní, tím je možná zabavíme, ale nezaujmeme. Můžeme je naučit něco navíc, to je sice pěkné, ale pravděpodobně se to pak budou učit ještě někdy později, nicméně tuto možnost považuji za dobrou. Nebo jim můžeme dávat různé trikové úkoly, hádanky, i tuto možnost považuji za velmi dobrou, zvláště pokud opravdu dáme dětem čas nad úkoly přemýšlet, trik neprozrazujeme přímo, ale, pokud je pro děti moc těžký spíše, nabízíme lehčí podobné úkoly s nápovědou. Nebo, a tuto možnost považuji za nejlepší, využijeme času k tomu, aby porozuměli probíranému učivu do hloubky a připravili hlubší porozumění toho, co se budou v budoucnu učit. Lze to udělat třeba tak, že dětem nabízíme různá prostředí, kde mohou získávat vlastní zkušenosti a kde matematické zákonitosti se třídou společně objevíme. (Viz. [5].) Objev, co jen to jde v takovém případě přenecháváme dětem, učiteli pak patří především role organizátora, je zodpovědný za atmosféru, za motivaci, za to, aby objevené pravidlo ve třídě zveřejnil, upevnil a procvičil.. (Viz. metodická příručka k [3].) Naším cílem je podporovat nadané dítě, nebát se jej, pokud z něj padají moudra, o kterých nemáme tušení, necítit se jim v ohrožení. Netlačit na jeho výkon, neudělat si z dítěte dostihového koně, na jehož dobré výsledky, třeba z různých soutěží, bude škola či učitel tlačit a za neúspěch dítě sankciovat. Cílem je zájem dítě, nikoliv školy či učitele, dobrá škola se pozná mimo jiné i podle toho, že zájem dítěte klade nad svůj. Probíraná témata: Čtverec, čtverec na čtverečkovaném papíru, stejné a různé v různém kontextu, krokování, krokování různé délky kroků, vlastnosti operace, hra bum, prásk, hra nim, hmotnost, objem, počet, práce s váhou, kalibrace hmotnosti, vyřešení úkolu pro malý počet jako klíč k řešení 28

3 úkolu s velkým počtem, pověst o vynálezci šachu, velká čísla, princip inkluze a exkluze, kombinatorika. Čtverec, čtverec na čtverečkovaném papíru, stejné a různé v různém kontextu Začínáme se dvěma plyšovými čertíky, které jsme si pojmenovali Antonín a Bartoloměj. Čertíci našli sýr, ukazuji čtverec papíru. Jaký tvar má tenhle sýr? Jde o šikovné děti, všichni se shodnou, že je to čtverec. Co ještě má tvar čtverce? Pojmenováváme různé reálné předměty, které mají tvar čtverce. A co když ten sýr nakloním? Pořád čtverec. Otočím, postavím na špičku. Předvádím různé polohy čtverce. Děti se shodnou, že jde pořád o čtverec a k reálným předmětům přidají značku hlavní silnice je to čtverec, postavený na špičku. Otázka dobré definice: Co je to čtverec?, ptám se. Tahle diskuse je zajímavá. Víme, co je čtverec, i když nemáme rozmyšlené vysvětlení, definici, co to čtverec je. Tohle je čtverec, je první odpověď a nějaké dítě zvedne sýr. Aha! Říkám, je to bílé a je to z papíru. Ne, volají děti, může to mít i jinou barvu. Ozývají se první vysvětlení: Má čtyři strany. Aha, kreslím na tabuli obecný čtyřúhelník. Je to čtverec? Zamítnuto. Proč ne? Všechny strany musí být stejné. Takhle?, kreslím kosočtverec. Není to čtverec. Ale, jak vysvětlit proč ne? Kuba přichází se zajímavým vysvětlením: Čtverec je strana krychle. Je to pravda. Je to dobré vysvětlení? No jo, ale jak bychom vysvětlili, co je krychle? Těleso, které má všechny stěny čtverce. Jak můžeme vědět, co to je, když nevíme, co je čtverec. Takže je to pravda, ale jako vysvětlení se to moc nehodí. Vracíme se k tomu, že má všechny strany stejné, ale že to nestačí. Adam, který má starší sestru a něco od ní pochytil, říká, že to bude čtverec, když bude mít pravé úhly. Co je to úhel děti nevědí a zatím s tím nechci začínat, Adam má taky jen mlhavou představu. Děti navrhují, že není nakloněný, ale je hezky rovný. S tímhle vysvětlením se spokojíme. (Ještě je dobré diskutovat, že leží v rovině a není pokroucený do prostoru.) Potřeba základních pojmů a axiomů: Hlásí se Jirka a ptá se, co jsou to strany. Že když bychom k vysvětlení, co je to krychle, chtěli vědět, co jsou čtverce, tak teď bychom měli chtít vědět, co jsou strany. Chválím Jirku za vynikající otázku a říkáme si, že strany jsou úsečky. Jirka se hlásí znovu, říká, že takhle se ale můžeme ptát pořád, my to nějak vysvětlíme a přijde nějaký šťoural a bude chtít vysvětlit něco z těch slov, která jsme použili. Velice Jirku chválím za výborný postřeh. Jde o velmi nosnou a důležitou poznámku, ke které se chci někdy v budoucnu vrátit. Takové pozorování vedlo v matematice k zavedení základních pojmů a axiomů a to že se na celou věc dokázal takto podívat druhák je pozoruhodné. Dohodneme se teď ale, že my už do toho šťourat nebudeme, protože už jsme si dostatečně vysvětlili, co je čtverec. Stejné (Eukleidovy základy): Čertíci našli sýr, ukazuji znovu čtverec papíru, a začali se o něj hádat. Antonín jej sice viděl dřív, ale Bartoloměj jej dřív zvedl. Komu tedy sýr patří? Hraji čertovskou hádku a záhy předávám čertíky dvěma dětem, aby v hádce pokračovaly. Vezmu si zase čertíky sama, jako Antonín zkouším navrhnout, ať sýr zahodí a radši zůstanou kamarádi. Děti se smějí a navrhují spravedlivé rozdělení. Jde o nosné dobře srozumitelné téma, rozdělit se s někým spravedlivě je i pro malé děti obvyklá zkušenost. Téma je podle mého názoru vhodné i pro mladší děti než druháky. Co to znamená spravedlivě? Na půl, volají děti. Co je Euklides: Základy, Kniha první Zásady: 1. Veličiny témuž rovné i navzájem rovny jsou. 2. Když se přidají veličiny rovné k rovným, i celky jsou rovny. 3. A odejmou-li se od rovných rovné, zbývající části rovny jsou. 4. A když se přidají k nerovným rovné, celky jsou nerovny. 5. A dvojnásobky téhož vespolek rovny jsou. 6. A polovičky téhož vespolek rovny jsou. 7. A co se navzájem kryje, navzájem rovno jest. 8. A celek větší než díl. 9. A dvě přímky místa neomezují. 29 to na půl? Jak poznáme, že jsou to stejné části? Rozdávám každému několik papírových čtverečků a nechávám děti rozstřihnout nebo roztrhnout je na půl. Objevují se návrhy rozdělení na dva obdélníky a dva trojúhelníky, vystřihněme to, dáme na sebe a vidíme, že jsou stejné. Takové pojetí stejného se objevuje v Euklidových Základech.

4 Pro učitele, který ví něco o historii matematiky, je zajímavé pozorovat, jak se před ním v hlavách jeho dětí, některý historický matematický objev opakuje. (A pomáhat tomu.) Tady jsme objevili zásadu 7: co se navzájem kryje rovno jest. Bartoloměj ale začíná trucovat. Nechce ani obdélník, ani trojúhelník. Našel čtverec a chce čtverec. Můžeme Bartolomějovi nějak vyhovět a zároveň sýr rozdělit na polovinu? To je těžší a dětem chvíli trvá jak na to. V antice tuto úlohu řešili pro čtverec s celočíselnou stranou a výsledný poloviční čtverec měl mít zase celočíselnou stranu. K téhle úloze se ve výuce časem vrátíme. Další hodinu si kreslíme ještě jiné možnosti, jak by si čertíci mohli rozdělit sýr. Děti přišly na nápad, že když už mám nakreslené rozdělení na poloviny, třeba na obdélníky a z Antonínovy poloviny nějaký kousek odebereme a dáme Bartolomějovi, zůstane dělení spravedlivé, když kousek té samé velikosti jinde zase odebereme Bartolomějovi a přidáme Antonínovi. Velice nápad chválím a děti zkouší různé varianty takového dělení. Jde vlastně o Euklidovu zásadu 3 a 4! Děti nakreslily mnoho pozoruhodných spravedlivých dělení s využitím tohoto pravidla. Místo bílého papíru rozdávám papír čtverečkovaný a zadávám úkol nakreslit čtverec na čtverečkovaný papír. Objevují se tři skupiny řešení: standardní řešení - třeba 3x3, nebo 4x4 malé čtverečky. Preference neočekávaného řešení: Kuba a některé další děti, kreslí čtverec v jiné poloze - tady, by mohlo jít o děti, které nevidí, že by jim podkladové čtverečky mohly pomoci (čekala bych u dětí méně šikovných na matematiku), nebo u dětí s originálním způsobem myšlení, podvědomě se řídícím citátem J.R.Jiméneze: "Dají-li vám nalinkovaný papír, pište napříč. Považuji toto řešení za kvalitní. Jde o nosné téma, ke kterému se časem vrátím. Jak na čtverečkovaném papíře nakreslit čtverec s vrcholy ve vrcholech podkladových čtverečků, mřížových bodech, ale strany měl s malými čtverečky nerovnoběžné. Takové kreslení může vést k vlastnímu objevu Pythagorovy věty. Preference nejjednoduššího řešení: Deborka nakreslila jen malinké čtverečky. Překvapilo mne to a zvažovala jsem, co to znamená. Přesvědčila jsem se ale, že Deborce je jasné, že čtverce by mohly být jiné, ba i otočené. Deborka si stála za svým řešením jako za nejlepším možným. Pravděpodobně se Deborka snaží splnit zadání s nejmenšími prostředky. Je to kvalitní přístup, v matematice oceňujeme, když něčeho dosáhneme nejjednodušší možnou cestou. Dítě, které takto pracuje systematicky je ovšem třeba úkolovat tak, aby s nejúspornějším řešením nevystačilo. Dané řešení by mohlo ovšem znamenat i dítko v matematice opožděné, které jinou možnost nevidí, nebo dítě, které nepochopilo zadání. (Podobně jako předchozí řešení.) S podobnými studenty jsem se setkala i když jsem učila na MFF UK, jak jen to šlo, řešili problém metodami probíranými ve středoškolské matematice, takovým studentům je třeba hledat úkoly, kde s nejjednoduššími metodami nevystačí. Nebo se s nim alespoň přátelsky domluvit, že chcete vidět, že umí použít i metody, které právě probíráte, přestože by se bez nich mnohdy obešli. Dětem jsem za domácí úkol dala, kreslit čtverce (alespoň 6) na čtverečkovaném papíře a počítat, kolik obsahují malých čtverečků. S tímhle úkolem si děti poradily různě, v každém případě mi řekly, že to je otrava. Ano, to byl důvod, pro který jsem to zadala: pokud si nakreslíme čtverec, řekněme 8x8 a teď po jednom počítáme čtverečky, moc nás to bavit nebude a taky je pravděpodobné, že se spleteme. Ale může nás to vést k tomu, že si počítání zorganizujeme: třeba si velké čtverce vybarvíme na menší části a spočítáme, kolik je ve které části a výsledek sečteme. Na tomhle jsme se s dětmi dohodli a pak už byl úkol zajímavější. 30

5 Část dětí vybarvovala řady nebo sloupce, jak jsem očekávala; sčítání stejných čísel, počtů čtverečků ve sloupcích, je vlastně násobení, a násobení se zrovna děti na hodinách učí! Takže, kdo umí násobit, zná odpověď hned. Úlohu lze použít jako motivační k násobení. U ostatních zvítězila tvořivost nad systematičností a jednoduchostí, a ty si buď počítání také zjednodušily, třeba tak, že rozdělily čtverec na menší čtverce, nebo nezjednodušily, a pak to byl zajímavý příklad na sčítání. Zlomky: Deborka rozdělila čtverec 5x5 na 25 malinkých čtverečků, pak ještě prostřední čtvereček rozdělila na 4 malinké čtverečky. Také Patrik rozdělil i některé malé čtverečky a to na trojúhelníčky a obě děti se tak velmi přirozeně dostaly ke zlomkům. Algebraické výrazy: Můžeme si nakreslit třeba i takové rozdělení jako na vedlejším obrázku a vlastně jsme nakreslili vzorec ( a + b) = a + 2ab + b, nebo rozdělení jako na 2 druhém obrázku a máme (2n 1) = n. Tyto obrázky mají velmi blízko k figurálním číslům, dalšímu tématu antické matematiky. Můžeme čtverec rozdělit jako na třetím obrázku a vlastně děti připravovat na objev obsahu trojúhelníku. Takové rozdělení jsem zkusila, ale vyhradila jsem si na to málo času a děti se, až na Hedviku, nedostaly za nejjednodušší příklady. K tématu se znovu vrátím, objevení obsahu trojúhelníku považuji za vhodné téma pro třetí třídu. Počet celých čtverečků v trojúhelníku: Když jsme toto téma společně začali, děti dobře porozuměly tomu, že jeden malý čtvereček rozdělený úhlopříčkou je pořád jeden čtvereček. V okamžiku, kdy jsme se snažili odpovědět na otázku, kolik čtverečků vlastně obsahuje trojúhelník, porozuměla Deborka úloze tak, že je třeba zjistit, kolik je tam neporušených čtverečků a pak je odpověď samozřejmě jiná.otázka Deborky je smysluplná, jsem ráda, že se takové porozumění objevilo. Úkol čtenářům: Formulujte Deborčinu úlohu obecně a vyřešte. Řešení prosím pošlete em na adresu autorky kde čeká nejúspěšnějšího řešitele odměna. Zkušenost:i jsme pak zúročili při povídání o velkých číslech, kdy jsme vybarvovali A3 milimetrový papír a zjišťovali, kolik je na něm malých čtverečků. Kroky Myšlenku dát dětem na prvním stupni kroky jako jedno ze základních prostředí jsem slyšela teprve v létě 2006 na Exodu od prof. M. Hejného, který jí má ve svých připravovaných učebnicích matematiky už v knížce pro 1. třídu. Myšlenka kroku je 1 v matematice neobyčejně nosná, a to i v jejich opravdu pokročilých partiích, v diferenciálním počtu, náhodných procesech. Je zajímavé sledovat, jak nejbanálnější hry jako je Člověče, nezlob se nebo dětská hra Honzo, vstávej pomáhají v dětech budovat matematické představy. Takže jsem po vzoru prof. Hejného zkusila do výuky zařadit krokování a obohatila je svým prostředím, kroky různé velikosti ze hry Honzo, vstávej. Začali jsme ovšem obyčejnými kroky a nechali jsme krokovat robota. U robota se snadněji vysvětluje, že kroky mají být vždy stejné a že příkazy je nutno zadávat jednoznačně. Dětem jsem neříkala, jak mají úkoly řešit, jen jsem se starala o to, aby rozuměly, co je problém, na co se ptáme. Výbuch: Po měsíci, kdy jsme se s kroky prvně setkali, tedy v našem případě 4. vyučovací hodinu,jsme si pak povídali, jak vlastně krokové úlohy ešíme. Patrik velice názorně na tabuli předvedl, že šipky vedoucí opačným směrem navzájem vybuchnou a nezbude nic, přičemž 31

6 obě šipky začmáral. V rozšiřujícím učivu dáváme přednost spíše dětské terminologii, takže místo toho, abychom říkali, že inverzní kroky se zruší nebo dávají nulový krok, říkáme teď s dětmi, že vybuchnou a nezbude z nich nic. Pak jsme prostředí kroků (dopředu dozadu) obohatili o kroky slepičí, mravenčí, sloní, a žabí. Písmenko jako značka a náhrada obrázku: Krokům bylo zapotřebí vymyslet nějaké 1 1 značky. Děti vymýšlely obrázky, ale protože nakreslit obrázek dá hodně práce, označili jsme je s, m, e (elephant), f (frog). Šipka vpravo nad písmenkem nebo u písmenka bude značit daný krok dopředu, šipka mířící vlevo dozadu. V matematice se nám tedy objevila písmenka. Nikoliv jako označení něčeho neznámého, ale jako označení něčeho známého a navíc jako náhrada obrázku. Protože jsem ale pozorovala, jak je písmenkový jazyk pro děti i při tomto použití těžký, rozhodla jsem se paralelně používat i obrázkový jazyk. K této zkušenosti jsem došla pozdě, příště bych určitě obrázky podporovala hned od začátku. Vzala jsem děti na jednu hodinu do počítačové učebny a tam jsme se naučili základy s programem malování a obrázky si nakreslili. Z nich jsem si pak vybrala a od té chvíle můžu relativně pohodlně zapisovat příklady i obrázkovou i písmenkovou řečí. Děti, jejichž obrázky jsem vybrala, jsou na to náležitě pyšné. Navíc mi tyto obrázky umožňují pracovat i s kartičkami s obrázky, podobně jako se v běžné výuce pracuje s kartičkami čísel. S kartičkami se pracuje třeba takto. Každé dítko má dvě sady kartiček a dostane informaci, že robot A dostal příkaz jít tuto hromádku kroků a robot B tuto hromádku kroků. Roboti stáli stejně, který bude teď dál? Konflikt označení: Maruška ovšem zaprotestovala, že m nemůže značit mravenčí krok, protože m znamená metr. Vedl jsme diskuzi o tom, že ano m znamená metr, ale i tak můžeme to samé písmenko použít pro něco jiného, když se postaráme, aby se nepotkaly dva významy. To je věc velmi důležitá a je dobré, že jsme na to narazili, děti si na to musí postupně zvykat. Vždyť m znamená nejen metr, ale taky hmotnost a to jsme jenom ve fyzice. Ve skupinkách děti vyzkoumaly (a kupodivu to všem skupinkám vyšlo stejně), že e=10m, tedy že 1 sloní je 10 mravenčích. Zkoumali jsme ještě vztahy mezi ostatními kroky, vyšlo 1s=2m, 3s=2f. Paradox: Takže jeden žabí je 15 mravenčích. Vyzkoušeli jsme, všichni se zdáli spokojeni a ale další hodinu (a potom ještě několikrát) se objevily pochybnosti. Maruška a Nika přišly s otázkou, jak je možné, že žabí je delší než sloní. Vždyť jen si to paní učitelko představte! Tu malou žabku a velkého slona! Jde o cennou zkušenost. V historii vědy, nejen matematiky, sehrál často velikou roli konflikt poznatku, který je zřejmý vůči poznatku, který jsme odvodili vědeckými metodami, změřili (fyzika) jsme nebo jsme k němu došli logickou úvahou (matematika). Pochopení takových paradoxů pak znamenalo hlubší porozumění, proniknutí k podstatě problém, otevření nového pole zkoumání. Zadala jsem dětem vymyslet další kroky a dětská fantazie zapracovala naplno: Děti vymýšlely kroky koňské, ufonní, čertí, husí, drůbeží, umrlčí, Použila jsem jen husí jako 3 mravenčí 1h=3m, 2f=3e a umrlčí si schovala na později. Substituce: Cenný je také Patrikův drůbeží krok, 1 drůbeží podle Patrika znamená 1 slepičí a k tomu 1 husí. Je zde tedy zavedena substituce. Přesto, že Honzo vstávej je oblíbená dětská hra a přestože jsem pracovala s vybranými dětmi, ukázalo se, že je toto prostředí pro děti těžké. Vymýšlela jsem pak úkoly a hry, abychom se s ním lépe sžili. Na příklad na číselnou osu jsem napsala písmenka, určila start a popsala cestu

7 pomocí kroků. Písmenko na konci každého úseku si děti poznamenaly a dohromady tak objevily tajné slovo. Umrlčí krok dozadu. K hlubšímu pochopení krokování jsme s dětmi hrály variantu Člověče nezlob se, říkali jsme jí Honzo, nezlob se,. Do této hry jsem se rozhodla ještě zavést Kubův umrlčí krok, umrlčí krok se jde rovnou dozadu a je velký jako tři mravenčí. Hra se hraje na plánu, kde se klikatí cesta s očíslovanými políčky (jako třeba ve hře Ptačí svatba ), start je na nule, ale políčka vedou i před start do záporných čísel, cíl je na 90, ale políčka vedou ještě dál. Na startu stojí dvě nebo více figurek. Hází se dvěma kostkami: první kostka má na sobě písmenka M, S, H, E, F, U, druhá kostka : 0, 1,1,1,2,1. První kostka říká, jaké kroky půjdeme a druhá kolikrát a kam. Tedy první kostka: mravenčí (1 políčko), slepičí (2 políčka), husí (3 políčka), sloní (10 políček), žabí (15 políček), umrlčí (3 políčka dozadu), druhá kostka: 0krát, 1krát dopředu (tahle strana je tam třikrát), 2krát dopředu, 1krát dozadu. S Hedvikou jsme doma celkem dlouho testovali, jak mají být kroky rozumně rozdělené, aby se to dobře hrálo. Součin záporných čísel: Význam všech hodů je jasný, až na kombinace s nově zavedeným umrlčím krokem: nevíme,co to znamená 1 U, 2 U, 1 U. Nad tím, že první dva kroky znamenají, že máme jít o 3 políčka dozadu a 6 políček dozadu, děti nezaváhaly. K mému překvapení se ale rychle shodli na tom, že 1 U jsou 3 kroky dopředu. Proč? No přece, paní učitelko, to nemůže být to samé jako 1 U, tak co by to tak mohlo být jiného? Jde vlastně o násobení dvou záporných čísel. A druháci, byť v jiném jazyku vidí, že je výsledek by měl být číslo kladné. Uspořádání: Zadala jsem za domácí úkol seřadit tahy podle toho, jak jsou výhodné: Děti hned volaly, že 2 F je nejvýhodnější a 1 F nejméně výhodný a jde o to seřadit ostatní možnosti, mezi těmito dvěma krajními. Děti se o to pokusily, ale pohlídat si všechny tahy dokázala jen Hedvika, Patrikovi jeden krok chyběl a nulové kroky považoval za zbytečné řadit. Na následující hodinu jsem přišla s touto tabulkou. Tabulka: Schopnost číst a vyplnit tabulku je důležitá, použití tabulky se často ve školní matematice opomíjí. Řádky tabulky jsou možné výsledky na první kostce, sloupce na druhé, do tabulky jsme zapisovali všechny možnosti, které mohou nastat. Kolik těch možností je? Políček tabulky je 6*4=24, tedy 24. Jde e o kombinatorickou úlohu, nemusí se řešit pomocí tabulky, v tomto případě jsem nezačala otázkou, kolik je možností, ale rovnou tabulkou, aby se děti potkaly i s touto metodou. Znovu počítáme, kolik je malých čtverečků v obdélníku 4x6, i když motivaci máme teď jinou. Vlastně se nám v této úloze spojuje, jak kombinatorika, kterou jsme se také zabývali, tak čtverečky v obdélníku, kterým jsme věnovali pozornost velkou, tak kroky. Matematika je jedna, k velkým zážitkům patří, když problém, který se původně zdál patřit do jedné části matematiky, vyřešíme metodami jiné části matematiky, a to se nám tady na velmi elementární úrovni povedlo. Velká čísla Do kolika umíš napočítat? Zařadit do své výuky jakékoliv povídání o velkých číslech jsem neměla v úmyslu a rozhodla jsem se tak, až když jsem viděla, jak moc to Hedviku zajímá a po té, co mi Hedvika vyprávěla, že s Patrikem závodí, kdo zná větší číslo. Udělala jsem si na jedné z hodin malinký předběžný test, z mých šikovných dětí bez zaváhání napsaly 33 M S H E F U E

8 milion všechny a miliardu veliká většina z nich. Ověřila jsem si, že velká čísla jsou pro ně přitažlivá a že otázka: Do kolika umíš napočítat? má ve druhé třídě stále svou magickou moc. Rozhodla jsem se, že dětem budu vyprávět příběh o vynálezci šachů. Způsob, který jsem zvolila, považuji stále za vhodný, ale za velmi náročný. Pravděpodobně bych spíše na velká čísla šla rovnou přes počet čtverečků na milimetrovém papíře a pověst o vynálezci šachů nechala na později. Kolik? Nemá smysl vyprávět, že něco váží hodně tun, nemá-li dítě žádnou představu tuny. Pustila jsem se tedy s dětmi do zkoumání hmotnosti, objemu a počtu. Přinesla jsem igelitový sáček s obilím (s ovšem, pšenici se mi nepodařilo koupit) a položila otázku, kolik zrní v tom sáčku je. Děti hádaly počet zrníček nebo hmotnost. Odhady počtu zrníček byly dosti divoké, ale to by takhle hádali i dospělí. Odhady hmotnosti byly realistické, většinou kolem půl kilogramu. Šikovné děti znají kilogramy i gramy. Nechala jsem děti prohlédnout závaží a pak jsme na laboratorních vahách sáček společně zvážili, navážili jsme 255 gramů obilí. Děti vážení bavilo, bavilo by je to dělat i úplně samostatně, ale pak by bylo zapotřebí mít jednu váhu na dvojici. Pak jsme si povídali, že třeba vodu měříme na litry a mililitry a odhadovali jsme, jaký objem má naše obilí. Odhady byly opět realistické, kolem půl litru, na odměrce jsme změřili, že je to 350 ml. Pak jsme se vrátili k počtu. Místo velkého problému malý: Děti by se asi bezhlavě pustily do počítání zrníček. Ale dohodli jsme se, že si z takového velkého úkolu uděláme malý a místo celého sáčku (350 ml), budeme počítat jen lžičku, odměrku, jaká se dává k sirupu na kašel a má 5 ml. Každému jsem nabrala lžičku a nechala děti počítat zrníčka. Chtěly počítat každý zvlášť, i když lepší by asi bylo dělat to po dvojicích. Tady v úkolu, který vyžaduje systém, pozornost, pečlivost a trpělivost, vynikaly jiné děti než v předchozích hodinách, nejšikovněji si práci uspořádal Martin, naopak Hedvika začínala na třikrát a Kuba rozsypal své obilí pod stůl. Děti se dopočítaly k číslům kolem 200. Při nabírání jsem byla málo ostražitá a nabírala tou odměrkou málo přesně, taky se na to odměrka ve tvaru lžičky hodí méně než odměrka ve tvaru válce. Zkontrolovala jsem, kolik kdo napočítal a uvědomila si svoji chybu. Upozornila jsem na ni děti, s Martinem jsme naplnili z jeho zrníček lžičku co nejpřesněji a dostali jsme se k číslu 140. (Doma jsem před tím napočítala se starší dcerou 130.) (Přemýšlela jsem i o odvážení nějakého malého množství, ale chtěla jsem aby si každý započítal sám, takže jsem objemu dala přednost, ale je třeba pracovat přesněji. Kvůli této nepřesnosti jsem pak ztratila možnost zabývat se více otázkou odchylek při měření a získat tak první zkušenosti s popisnou statistikou). Pak jsme už dopočítali, kolik je v tom sáčku přibližně zrníček. Lžička má objem 5 ml, obilí bylo 350 ml, je tam tedy přibližně 70*140=9 800 zrníček. Promysleli jsme si tedy, že na otázku Kolik? se dá odpovědět několika rozumnými způsoby: můžeme určit počet, hmotnost, objem. Udělala jsem zkušenost, že děti určování objemu i hmotnosti baví, zadala jsem za domácí úkol zvážit několik předmětů na kuchyňské váze nebo na osobní váze doma. Kalibrace hmotností: Rozhodla jsem se dětem nabídnout kalibraci skutečnosti, dosáhnout toho, aby věta: Předmět váží tunu., nesla pro dítě informaci: Ano, váží asi jako Fabia, Předmět váží 10 tun. Aha, dva menší sloni. Zadala jsem tedy tuto úlohu: Seřaďte podle hmotnosti a zkuste odhadnout, kolik váží: Slon, vlak Pendolino, slepice, auto Škoda Fabia, člověk, 50 haléřová mince, kráva, komár, pes dalmatin, letadlo (Antonov An- 225), mince 50 Kč, myš domácí, balíček másla, lev, velryba Plejtvák. (Řešení: 1. Komár 2 mg, 2. Mince 50 hal 900 mg, 3. Mince 50 Kč 9g a 700mg, 4. Laboratorní myš 30 g, 5. máslo 250 g, 6.Slepice 2 kg 7. Pes dalmatin 7 kg, 8. Člověk 70 kg, 9. Lev 250 kg, 10. Kráva 700 kg, 11. Škoda Fabia 1 tuna, 12. Slon 6 tun, 13. Plejtvák 130 tun, 14. Vlak Pendolino 385 tun, 15. Letadlo(Antonov An-225) 600 t.) V odhadování hmotnosti byl pozoruhodně úspěšný Ondra. Další hodinu, když jsem učila jen děti z B a C, jsme pak ještě vážily padesátníky, jako představu 1 g (900mg) a padesátikoruny. Zjistili jsme, že padesátník váží asi 1 g, a padesátikoruna asi 10 g, ale že padesátikoruna váží spíše 11 padesátníků než deset. Prozradila jsem pak přesné hmotnosti, padesátník váží 900 miligramů, 34

9 padesátikorunová mince 9 gramů a 700 miligramů. Tyhle mince, které se dětem dostanou běžně do rukou, považuji za dobrou kalibraci gramu a 10 gramů Pak jsem se pustila do legendy o vynálezci šachů: Legenda o vynálezci šachů existuje v různých verzích. Dětem jsem vyprávěla toto: Neví se, kdy a kde byly šachy vynalezeny, bylo to možná v Indie, Persii, Číně, možná 200 let před naším letopočtem, možná až kolem roku 600 našeho letopočtu. Jak je to tedy dlouho, co byly šachy vynalezeny? Děti potřebovaly obrázek časové osy a pak spočítaly bez problémů. Král, který vládl, si šachy velice oblíbil a přál si vynálezce odměnit. Přej si, co chceš, a dostaneš to. Co by sis přál ty na místě vynálezce šachů? Děti vymýšlely hromady zlata, polovinu království a princeznu za ženu. Potenciální nekonečno: Za zaznamenání stojí odpověď Hedviky: Přála bych si splnění dvou jakýchkoliv dalších přání, pak, že jedno přání vždy bude mít možnost přát si další dvě přání. Hedviku láká nekonečno, v této odpovědi je potencionálně přítomno. Jak známo, vynálezce si přál za první políčko šachovnice si přeji jedno zrnko, za druhé dvě zrníčka, za třetí 4 zrníčka, za čtvrté 8 zrníček, Jak bude řada pokračovat? Pro děti lehká ( 1) otázka. (1,2,4,16,32,64, ) Tedy za n-té políčko 2 n zrnek pšenice. Kolik zrní dostane vynálezce celkem? Odpovědi se lišily od pytle po kamion. Neznám nikoho, kdo by při prvním poslechu této legendy bez počítání odhadl, jak neuvěřitelně veliké toto číslo je. Začali ( n 1) jsme s dětmi počítat děti si všimly, že po n krocích je součet řady 2 1, tedy následující člen o jedničku zmenšený. Plánovala jsem jen přibližný výpočet s využitím 2 10 = 1024 a to je přibližně tisíc, každých 10 políček se odměna tisíckrát zvětší. Ale děti dávaly přednost přesnému výpočtu. Do výpočtu se pustily s chutí, nejšikovnější se dostaly až ke 12. až 13. políčku. Maruška, která překvapivě dobře a zručně numericky počítá, se bez chyby dostala až na 15. políčko a později mi řekla, jak ji tohle násobení bavilo. Hodinu jsme strávili náročným numerickým počítáním, Hedvika byla doma nespokojená, že ale ty opravdu velká čísla, na které se tolik těšila, pořád nikde. Po hodině jsem nápad vyprávět tenhle příběh už druhákům hodnotila jako ne zcela dobrý. Skutečná matematika: Když jsme si ale povídaly s dětmi později, braly to počítání jako opravdovou matematiku. To ostatní prý vypadá jako hraní, ale tohle a pak vše kolem velkých čísel je skutečně matematika. Takhle to údajně také hodnotili spolužáci, kteří zůstávali na hodinách a obvykle cvičili dril: Vy si s paní Ranošovou hrajete, to my se zabýváme matematikou, trénujeme násobení. Na další hodinu jsem připravila tabulku z Excelu s výpočty a povídali jsme si nad touto tabulkou. Naučili jsme se číst ta obrovská čísla, která se tam vyskytují opravdu většina dětí z té skupiny celkem snadno zvládla i ty triliony. A prošli jsme spolu, že po 10 políčkách má vynálezce 25 gramů (hmotnost menší myši), po 20 políčkách 25 kg (hmotnost dítěte), po 30 políčkách 25 tun (hmotnost větší než kamion, polovina železničního vagonu), po 40 políčkách tun (tisíc kamionů), po 50 políčkách 25 milionů tun (zhruba roční úroda pšenice Kanadě), po 55 políčkách cca 900 milionů tun, čili jeden a půl násobek roční celosvětové produkce pšenice, po 60 políčku je to nynější celosvětová úroda za 48 let a po 64 za 768 let. Potěšil mne Hedvičin postřeh, že kdyby ta šachovnice měla ještě o políčko víc a stal se ten příběh v roce 600, ještě teď by všechna pšenice patřila vynálezci. Tohle je jeden z velkých matematických příběhů a děti by se s nim měli někdy potkat. Už proto, že letadla jsou sice zákonem zakázána, ale lepší by bylo, aby lidé měli ze školy takové věci promyšlené a nedali se na žádné letadlo chytit. Ale příběh mohl ještě počkat a děti se sním mohly potkat později. Pojmenovat: Jak jsem zmínila výše, pustit se do tohohle už s druháky mně inspirovala Hedvika, kterou velice zajímají velká čísla, tak že s Patrikem soutěžili, kdo zná větší číslo, dokud ze mne doma nevymámila po trilionech, kvadriliony, i informaci o centilionech, n googolu, googolplexu, (a 10, což používají matematici) a přesvědčila, že to musím 100 povědět i ostatním. Googol je číslo 10 (1 a sto nul). Název byl vytvořen pro pobavení a je mimo výše obvyklý systém vytváření názvů. Název vymyslel v roce 1938 devítiletý Milton 35

10 Sirotta, když se ho jeho strýc Edward Kasner ( , americký matematik) zeptal, jak by toto velké číslo pojmenoval. Milton odpověděl googol. Kasner následně googol definoval jako Kasner pak definoval také pojem googolplex, což je číslo vzniklé ze zápisu 10 googol. Dětem jsem taky prozradila, že podle Googolu se jmenuje Google, populární internetový vyhledávač, o kterém už některé děti slyšely nebo jej i použily. Vyprávěla jsem dětem i o zmatku, který je v pojmenování velkých čísel v angličtině, kdy slovo bilion může znamenat náš bilion nebo naši miliardu. Hedvika mi pak říkala, že je škoda, že taky nejsem slavný matematik, aby ona mohla vymyslet název pro velká čísla. Vyprávěla jsem to dětem při hodině a navrhla, že i když nejsem slavný matematik mohou oni název nějaké velkého čísla vymyslet. Zaujala mne Jirkova exiliarda a Hedvičin centiplex, Hedvika měla i promyšleno, že centiplex je 10 centiolion 600 a protoče centilion je 10, centiplex je o velký kus větší než googolplex. Milimetrový papír: Přinesla jsem milimetrový papír, teď jsme mohly zúročit naše zkušenosti s prací na čtverečkovaném papíru. Nakreslili jsme si čísla a na milimetrovém papíře A4, všichni to zvládli na jedničku. Na domácí úkol jsem rozdala milimetrové papíry A3 a zadala vybarvit tam co nejvíce čtverečků a napsat k tomu, kolik jich je vybarvených. Na začátku další hodiny děti samy začaly vysvětlovat, jak se dal úkol udělat s malou námahou. Velmi se mi to líbilo, vlastně si objevily obsah obdélníku a někteří i násobení čísel končících nulou. Na milimetrovém papíře A3 je maličkých čtverečků. Takže když si vybereme 10 dětí, které mají hezky splněný úkol, vidíme malých čtverečků. Už jste někdy viděli něčeho milion? Ne, tak teď jej máme před sebou. Tohle bych pro druháky příště volila jako cestu první cestu k velkým číslům, po kterých děti v tomto věku touží, vynálezce šachů bych nechala někdy na později. Kolik by to bylo, kdyby každý měl 10 takových papírů? kdyby takový papír mělo 100 dětí? Každé ze 100 dětí by mělo 100 takových papírů? Obrázek jako překážka: Patrik papír nejdříve zajímavě vybarvil, když ale měl počítat, kolik je na něm čtverečků, zjistil, že mu vybarvení spíše situaci komplikuje, spočítal si tedy kolik je to řad a sloupců a násobil. Když počítal počet řad a sloupců, počítal po centimetrech, spletl se a napočítal o jeden centimetr více, protože počítal krajní body. Po upozornění se ale rychle opravil a došel ke správnému výsledku. Je vidět, že je nutno dát dětem příležitost naučit se, kdy je třeba brát krajní body a kdy počet centimetrů, kdy krajní body bez prvního a posledního (příklady o řezání, věnovala se jim na svých hodinách D. Marvanová). Už v předchozím jsme se odvolávali na antiku. Poznamenejme tedy, že velkými čísly se zabýval i Archimédes, který počítal, kolik zrnek písku zaplní vesmír. Více než o výsledek mu šlo o to, ukázat jak sestrojit libovolně velké číslo. Nekonečno: Ve třídě se objevila otázka nekonečna. To je přece ještě větší než googolplex! Přemýšlím, zda a jak s dětmi o nekonečnu mluvit a zatím nevím. Ve třídě jsem se u slova nekonečno tvářila tajemně. Tvářit se tajemně je dobrý způsob, jak v dětech nezadusit zvědavost a zároveň nic neříci. Mnohem lepší než říkat, na to jste malí, to mu byste nerozuměli. Použití naučeného: Tohle mi později vyprávěla D. Marvanová: Děti byly na škole v přírodě v zámku, kde jim průvodkyně ukazovala rozsáhlou zámeckou knihovnu a říkala: To by vám jistě, děti, dlouho trvalo spočítat, kolik tu máme knížek. Patrik se přihlásil, že by to spočítal rychle, stačí přeci spočítat, kolik knížek je přibližně v jedné polici, kolik je polic, vynásobit to, a je hotovo. Hry V tomto roce jsme hráli nim v jednoduché variantě a hru bum prásk. Nim: Hráči střídavě říkají čísla 1, 2 nebo 3. Čísla se sčítají, kdo první dosáhne čísla 20, vyhrál. Dvě děti hrály vpředu a ostatní ukazovaly na lístečcích s čísly, které se používají normálně na hodinách matematiky, aktuální stav. Děti se velmi rychle pravděpodobně jen některé ale myšlenka se rychle rozšířila, takže jsem ani nezachytila u koho vznikla, hned na první hodině, objevily, že vyhraje ten, kdo se první dostane k 16. (Když jsem na 16 a soupeř dá 1, dám 3 a vyhrál jsem, když dá 2, dám 2 a vyhrál jsem a když dá 3 dám 1 a je to.) Pak jsme hráli hru ještě několikrát, 36

11 Hedvika objevila vítěznou strategii, ale dohodly jsme se, že ji neprozradí. Postoupit ale dále a objevit číslo 12 bylo pro ostatní děti mnohem těžší a samostatně se to povedlo jen Jirkovi, přesto, že jde jen o to stejnou úvahu zopakovat. Jirka pak také přišel na celou vítěznou strategii. Nechala jsem Jirku, předvést, že je neporazitelný a pak jsem s velkou nápovědou pomohla dětem vítěznou strategii objevit. Měli ze své neporazitelnosti opravdu radost. Další varianty hry s dětmi plánuji. Určitě si zahrajeme nim na našem plánku pro hru Honzo, nezlob se, bude se hrát hra s jednou figurkou bez kostky, každý si může jet kterýkoliv z tahů: 1 m, 1 s, 1 h, 2 s (nebo jiná série kroků), kdo se první dostane k předem zadanému číslu, vyhrál. Na téhle variantě je pěkné, že se v ní potká nim s našimi kroky. Triviální nim: U nimu mne překvapil Kuba, přesvědčil totiž Míšu, že se má hrát tak, že každý si sčítá svůj součet a kdo se první dostane k 20 vyhrál. Jde o smysluplnou hru, ovšem s velmi průhlednou strategií pro prvního hráče. Další probíraná témata Kombinatorika, princip inkluze a exkluze. Těmto tématům jsem se věnovala jen okrajově, více času se mu ve svých hodinách věnovala Dagmar Marvanová. Velmi se mi líbilo, že úkoly formulovala tak, že v nich vystupovaly děti její třídy. Děti pak opravdu snadno pochopily, že v příkladu: 15 dětí z 2A jede na školu v přírodě do Jeseníků, 9 dětí z 2A v září do Itálie, kolik je v 2.A dětí? nebude možno jen tak jednoduše sečíst. Někdy jsem tenhle postup použila také a opravdu pokud děti v příkladu měly svá jména, znamenalo to pro ně větší motivaci, ale někdy vyvolávalo diskuze typu: No ale možnost Lucka sedí s Deborkou nemáme, protože Lucka a Deborka by si spolu nesedly. Úkoly, které vymyslely děti Děti jsem nechala vymýšlet úkoly, když byly napřed a také za domácí úkol. Některé děti, zvláště Patrik, vymýšleli úkoly sami a rádi. Formulovat samostatně problém a klást (si) otázky, je velmi dobrá dovednost, kterou by měla škola rozvíjet. Otázky mají svou cenu, i tehdy, když na ně dítě neumí najít odpověď, nebo jsou neurčitě či neúplně formulované. Připomeňme jakou obrovskou roli sehrály v matematice problémy, které byly někdy i dlouhá staletí formulovány a nevyřešeny! To, že se ve vyučování tak málo objevují otázky, je veliká škoda. Zvládnutá látka: Martin (duben 2007) b1 b3 f1 4m 2 s b1 f1 =3b b je brabčí Martinův nápad na nový krok, který jsem nepřidala do oficiálního seznamu kroků, jaký je vztah brabčího ku ostatním, Martin nevysvětlil, taky jsme na společných hodinách nikdy nemíchali běžné kroky označované s kroky z Honzo vstávej a neřešili jejich vztah. Ale Martin úkol přesto vyřeší, je mu jasné, že pořadí může změnit a kroky stejného druhu sečíst. Příklad si vymyslel tak chytře, že se mu většina kroků zruší, takže výsledek nezávisí na tom, jak jsou vlastně kroky velké. Výsledek 3b uvádí bez šipky, mohlo by jít o překlep, ale protože podobně vypadá jeho výsledek u jiných příkladů, považuje Martin za jasné, že lze vynechat. Patrik (květen 2007) čtverec byl rozdělený na malý čtvereček, Patrik rozdělil každý čtvereček na dva trojúhelníčky a položil otázku, kolik je to malých trojúhelníčků, z příkladu vyzkoušel třídu a podal názorné vysvětlení řešení. Vyjádření přání: Patrik (únor 2007) m s,touha po velkých číslech, Patrik výpočet zvládl a uvedl správný výsledek. Hedvika (červen 2007) píše příklady jako m s =? Výsledek neuvádí. Toto je jiný případ než předchozí. Hedvika tím dává najevo, že nekonečnu by rád porozuměla, ale nerozumí. 37

12 Místo závěru: Paní učitelka vyprávěla dětem v 2.A, že na část dovolené odjíždím na akci Pythagoras (Pytagoras), kde si lidé, kteří mají rádi matematiku, povídají zajímavé přednášky a řeší úkoly. Ještě předposlední den školy jsme se sešly, abychom si popovídaly, jak dále bude výuka nadaných dětí vypadat. Přišel za námi Patrik, postavil se o kousek dál a řekl, že se mnou nutně potřebuje mluvit. Hele, Patriku, já nechci, abys nás poslouchal, běž dál a počkej. Patrik se ani nehnul, jenom si zacpal uši a čekal. Rozesmálo nás to a daly jsme Patrikovi slovo: Paní Ranošová, prosím vezmete mne na toho Pythagora s sebou, já bych tam opravdu moc chtěl. Literatura: [1] Peter Bero, Zuzana Berová: Matematika pre tretí ročník základných škol Orbis Pictus Istrpolitana, Bratislava 2006 (přepracované vydání z roku 2000) [2] Jiří Cihlář, Jan Melichar, Milan Zelenka: Matematika pro třetí třídu, Fortuna, Praha 1994 [3] Milan Hejný:,Darina Jirotková, Dana Slezáková-Kratochvílová Matematika pro první třídu, Fraus, Plzeň 2007 [4] Milan Hejný a kol: Teória vyučovania matematiky 2, Slovenské pedagogické nakladatelstvo, Bratislava 1990 [5] HEJNÝ, Milan. Nestandardní matematická prostředí pro děti 5-7 leté. [Non-standard mathematical environments for children 5-7 years old]. In VAGASKÝ, Martin (ed.). Zborník príspevkov z Letnej školy z teórie vyučovania matematiky PYTAGORAS Bratislava : P-MAT, 2006, s ISBN X. [6] PhDr. Jolana Laznibatová, Nadané dieťa, jeho vývin, vzdelávanie a podporovanie, Iris Bratislava 2001 [7] Josef Molnár: Matematický klokan 2006, MPS JČMF pobočka Olomouc, Olomouc 2006 [8] Josef Molnár: Matematický klokan 2005, MPS JČMF pobočka Olomouc, Olomouc 2005 [9] Josef Molnár: Matematický klokan 2004, MPS JČMF pobočka Olomouc, Olomouc

DOTAZNÍK PRO URČENÍ UČEBNÍHO STYLU

DOTAZNÍK PRO URČENÍ UČEBNÍHO STYLU DOTAZNÍK PRO URČENÍ UČEBNÍHO STYLU Projekt MOTIVALUE Jméno: Třida: Pokyny Prosím vyplňte vaše celé jméno. Vaše jméno bude vytištěno na informačním listu s výsledky. U každé ze 44 otázek vyberte a nebo

Více

Kapitola z diplomové práce Marie Brázdové: Využití internetu ve výuce matematiky. PedF UK v Praze, 2009. 4 Jedna z aktivit v praxi

Kapitola z diplomové práce Marie Brázdové: Využití internetu ve výuce matematiky. PedF UK v Praze, 2009. 4 Jedna z aktivit v praxi Kapitola z diplomové práce Marie Brázdové: Využití internetu ve výuce matematiky. PedF UK v Praze, 2009. 4 Jedna z aktivit v praxi Pro potřeby této práce jsem pozorovala dvě vyučovací hodiny ve dvou třídách

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení šablony/označení sady VY_32_INOVACE_04_M3 M 3

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení šablony/označení sady VY_32_INOVACE_04_M3 M 3 Záznamový arch Název školy: Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/21.2499 Číslo a název šablony klíčové aktivity: III/2 Inovace

Více

Přehled vzdělávacích materiálů

Přehled vzdělávacích materiálů Přehled vzdělávacích materiálů Název školy Název a číslo OP Název šablony klíčové aktivity Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Anotace Základní škola Ţeliv Novými

Více

{ } 1.3.2 Množina všech dělitelů. Předpoklady: 010301

{ } 1.3.2 Množina všech dělitelů. Předpoklady: 010301 1.3.2 Množina všech dělitelů Předpoklady: 010301 Pedagogická poznámka: Na začátku si rozebereme řadu z poslední Odpočítávané. Na způsob jejího generování většinou nikdo nepřijde a proto ji dostanou žáci

Více

Zpracování náslechové hospitace

Zpracování náslechové hospitace Zpracování náslechové hospitace Obor: Informační technologie ve vzdělávání Vypracoval Jan Katriniok Obsah Úvod... 3 Vyučovací hodina matematiky... 4 Přehled... 4 Přípravná fáze vyučovací hodiny... 4 Realizační

Více

1.1.24 Skaláry a vektory

1.1.24 Skaláry a vektory 1.1.4 Skaláry a vektory Předpoklady: 113 Př. 1: Vyřeš následující příklady: a) Na stole je položeno závaží o hmotnosti kg. Na závaží působí gravitační síla Země o velikosti 0 N a tlaková síla od stolu

Více

vysvětlení pravidel + rozdělení žáků do skupinek (cca 5 minut)

vysvětlení pravidel + rozdělení žáků do skupinek (cca 5 minut) Didaktika matematiky s praxí II. PhDr. Eva Bomerová Cíl hodiny: Procvičení násobení a dělení z paměti hravou formou - Lovení matematických bobříků Před začátkem vyučovací hodiny si upravíme třídu tak,

Více

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 65. ROČNÍK, 2015/2016 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste

Více

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo:

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: 1. Toník se dopravuje ze školy domů autobusem číslo 176, který jezdí vždy v celou hodinu a pak dále po každých 15 minutách. Dnes dorazil Toník

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry

Více

Vliv rodiny na rozvoj osobnosti Metodický list

Vliv rodiny na rozvoj osobnosti Metodický list Vliv rodiny na rozvoj osobnosti Metodický list práce s interaktivní tabulí - výchovné styly, vliv rodiny na vývoj osobnosti námět k diskusi - výchovné styly Obecné informace k řadě pracovních listů rozvoj.

Více

2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru

2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru ŠVP LMP Charakteristika vyučovacího předmětu Matematika Obsahové, časové a organizační vymezení vyučovacího předmětu Matematika Vzdělávací obsah předmětu Matematika je utvořen vzdělávacím obsahem vzdělávacího

Více

Určení hustoty látky. (laboratorní práce) Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055

Určení hustoty látky. (laboratorní práce) Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Určení hustoty látky (laboratorní práce) Označení: EU-Inovace-F-6-12 Předmět: fyzika Cílová skupina: 6. třída Autor:

Více

PORAĎ SI SE ŠKOLOU Lucie Michálková

PORAĎ SI SE ŠKOLOU Lucie Michálková PORAĎ SI SE ŠKOLOU Lucie Michálková Copyright 2015 Lucie Michálková Grafická úprava a sazba Lukáš Vik, 2015 1. vydání Lukáš Vik, 2015 ISBN epub formátu: 978-80-87749-89-0 (epub) ISBN mobi formátu: 978-80-87749-90-6

Více

Metodika poradenství. Vypracovali: Jiří Šupa Edita Kremláčková

Metodika poradenství. Vypracovali: Jiří Šupa Edita Kremláčková Metodika poradenství Vypracovali: Jiří Šupa Edita Kremláčková Úvod V následujícím textu je popsán způsob vedení rozhovoru s klientem, jehož cílem je pomoci klientovi prozkoumat jeho situaci, která ho přivedla

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

Matematika - 4. ročník Vzdělávací obsah

Matematika - 4. ročník Vzdělávací obsah Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání

Více

Specifický cíl: kooperace ve skupině, hledání vhodných argumentů, pochopení toho, že nemusí existovat jen jedno správné řešení

Specifický cíl: kooperace ve skupině, hledání vhodných argumentů, pochopení toho, že nemusí existovat jen jedno správné řešení Název: Výukové materiály Téma: Ochrana přírody, využití lesa Úroveň: 1. stupeň ZŠ Tematický celek: Příroda a její ochrana Předmět (obor): prvouka, přírodověda Doporučený věk žáků: 1. 5. třída Doba trvání:

Více

1.1.1 Jak se budeme učit a proč

1.1.1 Jak se budeme učit a proč 1.1.1 Jak se budeme učit a proč Předpoklady: Pedagogická poznámka: Otázky v této hodině nepromítám, ale normálně pokládám. Nechávám žákům čas a chci, aby své návrhy psali do sešitu. Pedagogická poznámka:

Více

Úloha 1A (5 bodů): vyhovuje Úloha 2A (6 bodů): Obrázek 1 Přelévání mléka

Úloha 1A (5 bodů): vyhovuje Úloha 2A (6 bodů): Obrázek 1 Přelévání mléka Kategorie mladší Úloha 1A (5 bodů): Jako první využijeme Žofinčin postřeh. Díky němu se nám totiž celá úloha podstatně zjednoduší. Žofinka říká, ať nehledáme 6 nezávislých cifer, ale pouze 3. Poznávací

Více

Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky

Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky Září Obor přirozených čísel Počítá předměty v daném souboru do 5 Vytváří soubory s daným počtem

Více

Odhad ve fyzice a v životě

Odhad ve fyzice a v životě Odhad ve fyzice a v životě VOJTĚCH ŽÁK Katedra didaktiky fyziky, Matematicko-fyzikální fakulta UK, Praha Gymnázium Praha 6, Nad Alejí 195 Úvod Součástí fyzikálního vzdělávání by mělo být i rozvíjení dovednosti

Více

Moje osobnost - co už je za mnou Metodický list

Moje osobnost - co už je za mnou Metodický list Moje osobnost - co už je za mnou Metodický list společná práce s tabulí a samostatná do sešitu, náměty pro diskuzi - časová osa mého života, co jsem se naučil v mateřské školce, film mého života podklady

Více

(ukázky tématického celku učiva zpracovaného formou žákovských projektů)

(ukázky tématického celku učiva zpracovaného formou žákovských projektů) Krabicování (ukázky tématického celku učiva zpracovaného formou žákovských projektů) Úvod hledání vhodného přístupu Moje zkušenosti z dlouhodobého vyučování na základní škole opřené o studium literatury

Více

Vyučovací předmět / ročník: Matematika / 4. Učivo

Vyučovací předmět / ročník: Matematika / 4. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

Tematický plán Matematika pro 4. ročník

Tematický plán Matematika pro 4. ročník Tematický plán Matematika pro 4. ročník Vyučující: Klára Dolanová Hodinová dotace: 4 hodiny týdně Školní rok: 2015/2016 ZÁŘÍ 1. a UČ/str. 3 9 A: Opakování osvojené matematické operace, vlastnosti sčítání

Více

2.4.13 Kreslení graf obecné funkce II

2.4.13 Kreslení graf obecné funkce II ..1 Kreslení graf obecné funkce II Předpoklady: 0, 0, 1 Stejně jako v minulé hodině budeme kreslit grafy funkcí odvozených od funkce y = f ( x), která je dána grafem na obrázku: Př. 1: Nakresli graf funkce

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky 4. ročník OPAKOVÁNÍ UČIVA 3. ROČNÍKU Rozvíjí dovednosti s danými

Více

Jedná se o slovní úlohy s tématy běžného života. Žáci řeší slovní úlohy pomocí trojčlenky.

Jedná se o slovní úlohy s tématy běžného života. Žáci řeší slovní úlohy pomocí trojčlenky. Šablona č. I, sada č. 1 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Matematika a její aplikace Matematika a její aplikace Číslo a proměnná Přímá a nepřímá úměrnost Ročník 7. Materiál slouží

Více

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,

Více

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH (Tento text je součástí výkladu k definičním oborům, tam najdete další příklady a pokud chcete část tohoto textu někde použít, můžete čerpat ze stažené kompletní verze definičních oborů ve formátu.doc.)

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Projekt Vzdělávání pedagogů k realizaci kurikulární reformy (CZ.1.07/1.3.05/11.0026) Manuál č. 15

Projekt Vzdělávání pedagogů k realizaci kurikulární reformy (CZ.1.07/1.3.05/11.0026) Manuál č. 15 Manuál č. 15 NÁZEV HODINY/TÉMA: OPERACE S REÁLNÝMI ČÍSLY Časová jednotka (vyuč.hod.): 1h (45min.) Vyučovací předmět: Matematika Ročník: první Obor vzdělání: 3letý Použité metody: Hra s čísly, Práce s textem,

Více

Instrukce pro administrátora

Instrukce pro administrátora nomi Instrukce pro administrátora POTŘEBNÝ PODNĚTOVÝ MATERIÁL: 4 hrací kostky 1 tužka obyčejná volný papír k testu vytvořené sady obrázků I. Počty A) Auta s koly Popis úkolu: V podnětovém materiálu má

Více

Habermaaß-hra 3389A /4521N. Počítání s piráty (mini verze)

Habermaaß-hra 3389A /4521N. Počítání s piráty (mini verze) CZ Habermaaß-hra 3389A /4521N Počítání s piráty (mini verze) Počítání s piráty mini verze Vzdělávací hra pro 2 až 4 piráty ve věku od 6 do 99 let. Obsahuje variantu pro jednoho hráče. Autor: Wolfgang Dirscherl

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Zpráva z evaluačního nástroje. Strategie učení se cizímu jazyku Dotazník pro učitele základní školy

Zpráva z evaluačního nástroje. Strategie učení se cizímu jazyku Dotazník pro učitele základní školy Zpráva z evaluačního nástroje Strategie učení se cizímu jazyku Dotazník pro učitele základní školy Škola Základní škola, Třída 6. A Předmět Angličtina Učitel Mgr. Dagmar Vážená paní učitelko, vážený pane

Více

ANOTACE K VÝUKOVÉ SADĚ č. VY_32_INOVACE_01_03_MAT_Pr

ANOTACE K VÝUKOVÉ SADĚ č. VY_32_INOVACE_01_03_MAT_Pr Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast (předmět) Autor ANOTACE K VÝUKOVÉ SADĚ č. VY_32_INOVACE_01_03_MAT_Pr CZ.1.07/1.5.00/34.0705 III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

BADATELSKY ORIENTOVANÁ VÝUKA MATEMATIKY NA 1. STUPNI ZŠ

BADATELSKY ORIENTOVANÁ VÝUKA MATEMATIKY NA 1. STUPNI ZŠ BADATELSKY ORIENTOVANÁ VÝUKA MATEMATIKY NA 1. STUPNI ZŠ Helena Picková, FP TUL Projekt EduTech: Vzdělávání pro efektivní transfer technologií a znalostí v přírodovědných a technických oborech, CZ.1.07/2.3.00/45.0011

Více

Milí rodiče a prarodiče,

Milí rodiče a prarodiče, Milí rodiče a prarodiče, chcete pomoci svým dětem, aby se jim dobře počítalo se zlomky? Procvičujte s nimi. Tento text je pokračováním publikace Mami, tati, já těm zlomkům nerozumím. stupeň ZŠ, ve které

Více

Teorie her. (ii) pouze triomina typu L:? 1 Ořechynelzejístpočástech.Např.zbývá-li11ořechů,sníhráč1,2nebo3kusy.

Teorie her. (ii) pouze triomina typu L:? 1 Ořechynelzejístpočástech.Např.zbývá-li11ořechů,sníhráč1,2nebo3kusy. ½º Ö ÐÓ ½º ÐÓÚ Ö Teorie her ÐÓ ¾º ÐÓ º Ì ÖÑ ÒÓ Ð Ò ºÔÖÓ Ò ¾¼½¾ ( Ó ) ( Ó ) Vkošíkuje17ořechů.MíšasFilipemsepravidelněstřídajívtazích,začínáMíša.Vkaždém tahusníhráčminimálnějedenořechamaximálnětřetinu 1

Více

1.5.1 Číselné soustavy

1.5.1 Číselné soustavy .. Číselné soustavy Předpoklady: základní početní operace Pedagogická poznámka: Tato hodina není součástí klasické gymnaziální sady. Upřímně řečeno nevím proč. Jednak se všichni studenti určitě setkávají

Více

Monika Cihelková, Jolana Nováková, učitelství pro 1. stupeň ZŠ, 4. ročník

Monika Cihelková, Jolana Nováková, učitelství pro 1. stupeň ZŠ, 4. ročník Hodina matematiky 21. 12. 2011 Monika Cihelková, Jolana Nováková, učitelství pro 1. stupeň ZŠ, 4. ročník 1. Úvod uvítání, představení vyučujících studentek (1min.) 2. Rozcvička (3min) 3. Hra Riskuj (15min)

Více

Metodika vedení čtenářské dílny 1

Metodika vedení čtenářské dílny 1 Metodika vedení čtenářské dílny 1 Iva Procházková, Hlavní výhra Věková skupina žáků: 9 10 let Úroveň čtenáře: Čtenář průzkumník zpracování informací, hodnocení textu Cíl aktivity: Žák už při čtení předvídá,

Více

Informatika 8. třída/6

Informatika 8. třída/6 Rekurze Jedním z důležitých principů pro návrh procedur je tzv. rekurze. Nejlépe uvidíme tento princip na příkladech dvou velmi jednoduchých procedur (hvězdička označuje násobení). Rekurze vlastně označuje

Více

koncentraci jsme získali roztok o koncentraci 18 %. Urči koncentraci neznámého roztoku.

koncentraci jsme získali roztok o koncentraci 18 %. Urči koncentraci neznámého roztoku. 2.2.2 Slovní úlohy vedoucí na lineární rovnice III Předpoklady: 22 Pedagogická poznámka: Příklady na míchání směsí jsou do dvou hodin rozděleny schválně. Snažím se tak zvýšit šanci, že si hlavní myšlenku

Více

Variace. Poměr, trojčlenka

Variace. Poměr, trojčlenka Variace 1 Poměr, trojčlenka Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Poměr Poměr je matematický zápis

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Moji žáci nepíší domácí úkoly. Co se s tím dá dělat?

Moji žáci nepíší domácí úkoly. Co se s tím dá dělat? Ostravská univerzita Filozofická fakulta katedra germanistiky Rozšiřující studium německého jazyka 2005/2006 Didaktika Moji žáci nepíší domácí úkoly. Co se s tím dá dělat? 28. 4. 2006 Lucie Dostálová dostalovalucie@seznam.cz

Více

Kurz č.: KV01 Karlovy Vary 12. 12. 2006 17. 4. 2007 ZÁVĚREČNÁ PRÁCE

Kurz č.: KV01 Karlovy Vary 12. 12. 2006 17. 4. 2007 ZÁVĚREČNÁ PRÁCE Kurz č.: KV01 Karlovy Vary 12. 12. 2006 17. 4. 2007 ZÁVĚREČNÁ PRÁCE Žákovský projekt v hodinách matematiky 8.ročníku základní školy na téma: Geometrie mého okolí Karlovy Vary, 2007 Mgr. Jaroslava Janáčková

Více

Můj rok můj život Jaký byl a bude?

Můj rok můj život Jaký byl a bude? Jaký byl a bude? 2014 Lucie Valchařová, Blíží se nám konec roku a s ním nám přirozeně přichází na mysl, jaký vlastně byl ten náš rok 2014. Je skvělé přivítat nový rok s čistou hlavou a jasnými myšlenkami

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Michal Malátný z Chinaski: Jsem chodící reklama na rodičovství a manželství Neděle, 17 Květen 2015 00:33

Michal Malátný z Chinaski: Jsem chodící reklama na rodičovství a manželství Neděle, 17 Květen 2015 00:33 V poslední době se vám velmi daří. Vydali jste novou desku, sbíráte jedno ocenění za druhým a jste uprostřed vyprodaného turné. Co plánujete po jeho zakončení? 1 / 6 Turné se sice blíží ke svému závěru,

Více

Vy dnes všichni zvážíte sami sebe a také zvážíte hmotnost vybraných pomůcek na vyučování. Vše vzájemně porovnáte.

Vy dnes všichni zvážíte sami sebe a také zvážíte hmotnost vybraných pomůcek na vyučování. Vše vzájemně porovnáte. Centrum vědy a objevů Měřit hmotnost znamená zjišťovat, kolik co váží. Bez určování hmotnosti se v životě neobejdeme. Však se zkuste zamyslet ve skupině a napište na linku 10 různých druhů zboží, které

Více

Pozornost OBSAH. PhDr. Kamila Balharová, ZŠ Táborská, Praha Ilustrace: Michaela Suchoňová, ZŠ Třinec. Metodika 1. Úvod 2

Pozornost OBSAH. PhDr. Kamila Balharová, ZŠ Táborská, Praha Ilustrace: Michaela Suchoňová, ZŠ Třinec. Metodika 1. Úvod 2 NÁPRAVNÁ CVIČNÍ PhDr. Kamila Balharová, ZŠ Táborská, Praha Ilustrace: Michaela Suchoňová, ZŠ Třinec OBSAH Metodika 1. Úvod 2 2. Metodický komentář 2 2.1 Hledej rozdíly 2. Závěr 4. Zdroje Materiál Pracovní

Více

NÁVOD. SPOJUJ SLŮVKA téma: DŮM. vzdělávací hra ve 2 variantách od 7 let

NÁVOD. SPOJUJ SLŮVKA téma: DŮM. vzdělávací hra ve 2 variantách od 7 let NÁVOD SPOJUJ SLŮVKA téma: DŮM vzdělávací hra ve 2 variantách od 7 let Dílky s obrázky a anglickými slovíčky, které popisující obsah těchto obrázků jsou jednoduchou a atraktivní formou výuky pro nejmladší.

Více

Matematický projekt Součtové pyramidy

Matematický projekt Součtové pyramidy Matematický projekt Součtové pyramidy Marie Kubínová, Naďa Stehlíková Tento materiál popisuje matematický projekt Součtové pyramidy, součtové hrozny, který byl připraven pro žáky 6. a 7. ročníku ZŠ. Jeho

Více

Kamila a Petr Kopsovi. Jak se krotí tygr. Knížka pro děti, rodiče i pedagogy

Kamila a Petr Kopsovi. Jak se krotí tygr. Knížka pro děti, rodiče i pedagogy Kamila a Petr Kopsovi Jak se krotí tygr Knížka pro děti, rodiče i pedagogy Edika Brno 2015 KDYŽ CHCI ZKROTIT TYGRA, MUSÍM HO NEJPRVE POZNAT Krotitel tygrů Chci se stát kvalifikovaným krotitelem tygrů!

Více

I. JAK SI MYSLÍM, ŽE MOHU BÝT PRO TÝM PROSPĚŠNÝ:

I. JAK SI MYSLÍM, ŽE MOHU BÝT PRO TÝM PROSPĚŠNÝ: Test týmových rolí Pokyny: U každé otázky (I - VII), rozdělte 10 bodů mezi jednotlivé věty podle toho, do jaké míry vystihují vaše chování. V krajním případě můžete rozdělit těchto 10 bodů mezi všechny

Více

1.1.4 Poměry a úměrnosti I

1.1.4 Poměry a úměrnosti I 1.1.4 Poměry a úměrnosti I Předpoklady: základní početní operace Poznámka: Následující látka patří mezi nejdůležitější, probírané na základní škole. Bohužel patří také mezi ty, kde je nejvíce rozšířené

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

Uběhly desítky minut a vy stále neumíte nic. Probudíte se ze svého snění a hnusí se vám představa učit se.

Uběhly desítky minut a vy stále neumíte nic. Probudíte se ze svého snění a hnusí se vám představa učit se. Kapitola 1 Nesnášíte učení? STOP Určitě valná část z vás, která otevřela tuto knihu, se potýká s problém jak se lépe učit. Sedíte nad knížkou hodiny, ale do hlavy nenacpete nic. Díváte se na písmenka,

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

Příloha č. 3 Vybrané ukazatele specifického tematického šetření

Příloha č. 3 Vybrané ukazatele specifického tematického šetření Tabulka P8 Vybrané ukazatele specifického tematického šetření Vybrané ukazatele specifického tematického šetření k hodnocení organizace vzdělávání a dovedností dětí v oblasti matematické gramotnosti v

Více

PREZENTACE ZPRACOVANÝCH DAT Z VLASTNÍHO HODNOCENÍ ŠKOLY NA GYMNÁZIU VE ŠKOLNÍM ROCE 2013/2014

PREZENTACE ZPRACOVANÝCH DAT Z VLASTNÍHO HODNOCENÍ ŠKOLY NA GYMNÁZIU VE ŠKOLNÍM ROCE 2013/2014 PREZENTACE ZPRACOVANÝCH DAT Z VLASTNÍHO HODNOCENÍ ŠKOLY NA GYMNÁZIU VE ŠKOLNÍM ROCE 2013/2014 Na co můžeme být hrdí Kde žáci a rodiče vidí naše silné stránky Kde máme prostor na zlepšení Na co nás žáci

Více

Kühnlová, H.: Kapitoly z didaktiky geografie Likavský, P. :Všeobecná didaktika gografie

Kühnlová, H.: Kapitoly z didaktiky geografie Likavský, P. :Všeobecná didaktika gografie Kühnlová, H.: Kapitoly z didaktiky geografie Likavský, P. :Všeobecná didaktika gografie Co obsahuje Plánování výuky, příprava Cíle a obsah vyučování Metody a formy výuky Učebnice (obsah, kvalita) Motivace

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 4. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace využívá při pamětném a písemném počítání komutativnost a asociativnost sčítání a násobení

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Otec je o 10 cm vyšší než matka

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Dělení desetinných čísel desetinným číslem II

Dělení desetinných čísel desetinným číslem II 1.2.22 Dělení desetinných čísel desetinným číslem II Předpoklady: 1221 Př. 1: Platí: 8 : 4 = 2. Doplň další dvojice tak, aby jsme jejich vydělením získali stejný výsledek jako u podílu 8 : 4. Jak souvisí

Více

součet druhé mocniny čísla zvětšeného o jedna a odmocniny z jeho trojnásobku

součet druhé mocniny čísla zvětšeného o jedna a odmocniny z jeho trojnásobku .7. Zápisy pomocí výrazů I Předpoklady: 70 Pedagogická poznámka: Hodina obsahuje poměrně málo příkladů, protože se snažím, aby z ní všichni spočítali opravdové maximum. Postupujeme tedy pomalu a kontrolujeme

Více

Výukový CD ROM - MATEMATIKA pro 1.třídu - Chytré dítě

Výukový CD ROM - MATEMATIKA pro 1.třídu - Chytré dítě Matematické procvičování a upevňování znalostí v oboru 0-10. Nový kamarád ve vyučování počítač. Jméno autora: Renata PÁVKOVÁ Název práce: MATEMATICKÉ procvičování a upevňování znalostí v číselném oboru

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,

Více

Hra pro 2 10 hráčů od deseti let. OBSAH HRY CÍL HRY

Hra pro 2 10 hráčů od deseti let. OBSAH HRY CÍL HRY Hra pro 2 10 hráčů od deseti let. OBSAH HRY 104 hracích karet s čísly 1 104, pravidla hry CÍL HRY Na všech kartách jsou symboly krav. Každá kráva, kterou během hry vezmete, znamená jeden minusový bod.

Více

Zpráva z evaluačního nástroje Strategie učení se cizímu jazyku

Zpráva z evaluačního nástroje Strategie učení se cizímu jazyku Zpráva z evaluačního nástroje Strategie učení se cizímu jazyku Škola Gymnázium Třída 6. Předmět Angličtina Učitel Petr Vážená paní učitelko, vážený pane učiteli, v této zprávě s výsledky se dozvíte, které

Více

Ovládni svou konkurenci. Jak se stát jasnou volbou v očích tvých zákazníků?

Ovládni svou konkurenci. Jak se stát jasnou volbou v očích tvých zákazníků? Ovládni svou konkurenci Jak se stát jasnou volbou v očích tvých zákazníků? Jak získat zákazníky tvé konkurence i když je už zavedená a ty teprve začínáš? 2 Udělej svou konkurenci nezajímavou Když začínáš

Více

Charakteristika prostředí. Přínos pro rozvoj žáka. Ukázky z učebnice

Charakteristika prostředí. Přínos pro rozvoj žáka. Ukázky z učebnice Hra simuluje cestování autobusem na pravidelné lince spojující několik zastávek. Autobus je lepenková krabice a cestující jsou plastikové lahve. Zastávky jsou jistá místa ve třídě, jako dveře, umyvadlo,

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Jazyková výchova. Materiál slouží k procvičení abecedy. Předpokládá se, že žáci již umí abecedu zpaměti.

Jazyková výchova. Materiál slouží k procvičení abecedy. Předpokládá se, že žáci již umí abecedu zpaměti. Šablona č. Ii, sada č. 2 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Český jazyk a literatura Jazyková výchova Abeceda Řazení slov podle abecedy Ročník 2. Anotace Materiál slouží k procvičení

Více

Projekt Odyssea, www.odyssea.cz

Projekt Odyssea, www.odyssea.cz Projekt Odyssea, www.odyssea.cz Příprava na vyučování s cíli osobnostní a sociální výchovy Název lekce (téma) Skládání slov, čtení s porozuměním Časový rozsah lekce 2 vyučovací hodiny výuka je rozdělena

Více

Geometrie zakřiveného prostoru aplikace s fyzikální tématikou

Geometrie zakřiveného prostoru aplikace s fyzikální tématikou Gymnázium Přírodní škola, o p s Geometrie zakřiveného prostoru aplikace s fyzikální tématikou Jan Pokorný Petr Martiška, Vojtěch Žák 1 11 2012 Obsah 1 Úvod 3 2 Teoretické základy a použité metody 4 21

Více

Jsem asertivní, mám právo... Metodický list

Jsem asertivní, mám právo... Metodický list Jsem asertivní, mám právo... Metodický list samostatná a skupinová práce - jaké pocity chci vzbuzovat v ostatních, jaké vzbuzuji, jaké vzbuzují ostatní ve mně práce s interaktivní tabulí a sešitem - asertivní

Více

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací 7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak

Více

Pořadové číslo Název materiálu Autor Použitá literatura a zdroje Metodika

Pořadové číslo Název materiálu Autor Použitá literatura a zdroje Metodika IV-2-M-I-1-9.r. Lineární funkce Mgr. Zdeňka Žejdlíková PhDr.Ivan Bušek, RNDr. Marie Kubínová,CSc.,doc. RNDr. Jarmila Novotná, Sbírka úloh z matematiky,csc.,nakladatelství Prometheus 1995, ISBN 80-7196-132-9

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Medvídek Teddy barvy a tvary

Medvídek Teddy barvy a tvary CZ Habermaaß-hra 5878 Moje první hra Medvídek Teddy barvy a tvary Moje první hra Medvídek Teddy barvy a tvary První umísťovací hra pro 1 až 4 malé medvídky od 2 let. Autor: Christiane Hüpper Ilustrace:

Více

Hry v matematice aneb Jak procvičovat probrané učivo

Hry v matematice aneb Jak procvičovat probrané učivo Hry v matematice aneb Jak procvičovat probrané učivo Mgr. Hana Tesařová, ZŠ Lysice Opakování a procvičování učiva v matematice je jednoznačně nutností. Už naši předkové tvrdili, že opakování je matkou

Více

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

Matematika I. dvouletý volitelný předmět

Matematika I. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy

Více

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01 matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami

Více

Projekt Odyssea, www.odyssea.cz

Projekt Odyssea, www.odyssea.cz Projekt Odyssea, www.odyssea.cz Příprava na vyučování s cíli osobnostní a sociální výchovy Název lekce (téma) Domácí zvířata - ptáci Časový rozsah lekce Věková skupina (ročník) 2 vyučovací hodiny proložená

Více

Usekne-li Honza 1 hlavu, narostou dva ocasy. Tento tah můžeme zakreslit následujícím způsobem: Usekne-li 2 hlavy, nic nenaroste.

Usekne-li Honza 1 hlavu, narostou dva ocasy. Tento tah můžeme zakreslit následujícím způsobem: Usekne-li 2 hlavy, nic nenaroste. Řešení 2. série Řešení J-I-2-1 1. krok: Číslici 2 ve třetím řádku můžeme dostat jedině násobením 5 4 = 20, 5 5 = 25. Tedy na posledním místě v prvním řádku může být číslice 4 nebo 5. Odtud máme i dvě možnosti

Více