Matrice může být mimo matrici minerální (cement), tvořena i matricí polymerní a smíšenou. Existují asfaltové betony, kde úlohu matrice plní asfalt.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Matrice může být mimo matrici minerální (cement), tvořena i matricí polymerní a smíšenou. Existují asfaltové betony, kde úlohu matrice plní asfalt."

Transkript

1 1/85

2 1.0 ÚVOD Učebnice nauka o materiálech má sloužit nově zavedenému předmětu Nauka o materiálech, který je obsažen v rámcovém vzdělávacím programu Geotechnika a navazujících školních vzdělávacích programech Těžba a zpracování ropy a zemního plynu a Těžba a zpracování kamene. Důvodem zavedení předmětu je skutečnost, že obor materiálového inženýrství se postupně vyděluje z obecných poznatků. Vývoj nových materiálů je neobyčejně dynamický a ukazuje se, že zevrubná znalost technických materiálů představuje velmi důležitou kompetenci u stupně vzdělání střední s maturitou. Technické materiály dnes nejsou vyvíjeny pouze s ohledem na užitné vlastnosti, ale nově se zde objevuje aspekt udržitelného rozvoje, kdy se předpokládá, že každý výrobek či stavba v budoucnu doslouží a bude nutné materiál posuzovat nikoli jako odpad, ale surovinový zdroj. Tzv. R materiály jsou zajímavou skupinou materiálů a vývoj technologií jejich dalšího využití je předmětem výzkumu na všech úrovních. Technický a technologický vývoj je naprosto nemyslitelný bez vývoje nových materiálů. Věk informačních technologií je podmíněn vývojem materiálů, které jsou schopny plnit požadavky na integrované obvody, počítačové paměti apod. s exponenciálním růstem jejich parametrů. U klasických materiálů se hledají další možnosti zlepšení jejich užitných vlastností a vývoj se ubírá k materiálům, které se obnovují v přírodě a po skončení jejich životnosti nekontaminují životní prostředí. V době globalizace dochází i k horečné normotvorné činnosti, která umožňuje zlepšit komunikaci v technické praxi. Proto se kniha, až na výjimky u slitin železa, vyhýbá označování některých materiálů, protože v krátké budoucnosti dojde ke změnám. Změny jsou výrazné i v oblasti zkoušení materiálů, zejména kamene. Škola pro tento účel vydává speciální učebnici Úvod do zkoušení kameniva. Je to proto, že řada zkoušek je do nových podmínek netransformovatelná, protože mají úplně jiný princip. Zkoušení materiálů a hledání jejich vlastností nebo prohlašování shody je rovněž novým aspektem technického rozvoje. Učebnice zařazuje do materiálů i zeminy a kámen, což není úplně obvyklé. S ohledem na orientaci rámcového vzdělávacího programu jsou i tyto materiály používány ke stavbám hrází, svahování, uložišť odpadu apod. Velkou perspektivu zaměstnanosti má i environmentální geotechnika, kdy sledujeme cíl sanovat vytěžené přírodní prostředí a dát mu jinou funkci v designu krajiny. Přeji všem, kteří budou tuto učebnici užívat, aby získali ucelené široké vědomosti o materiálech užívaných v oboru i mimo něj. Získané vědomosti by následně měly motivovat absolventy k vyhledávání bližších a speciálních informací v následné praxi, kterou život přinese. Josef Moravec 2/85

3 2. 0 BETON Beton je i přes výrazný nástup jiných stavebních materiálů, nejpoužívanějším stavebním materiálem. Z hlediska jeho zařazení se jedná o kompozitní materiál. Pro účely této učebnice byl však z této skupiny vyňat a bude mít, s ohledem na své použití, vlastní kapitolu. Poznámka:Kompozit je každý materiálový systém, který je složen z více (nejméně dvou) fází, z nichž alespoň jedna z fází je pevná s makroskopicky rozeznatelným rozhraním mezi fázemi. Má vlastnosti, jež nemohou být dosaženy kteroukoli složkou (fází) samostatně, ani prostou sumací. (Bareš) Pro vysvětlení obecné definice kompozitů aplikované na beton je dobré si vysvětlit pojem fáze, který znamená: - pevné fáze. V betonu se vyskytují většinou dvě. Jedna z nich nese rozptýlené částice fáze druhé. Nesoucí fáze se odborně nazývá fází disperzní a tvoří matrici (matrix). Nejrozšířenější matricí je tzv. cementový kámen. Druhou pevnou fází je nejčastěji kamenivo, které je fází rozptýlenou, tedy dispergovanou, - kapalná fáze je voda v pórech betonu. Její podíl je vyšší v čerstvém betonu, který má vždy určitou tekutost pro jeho zpracování. Po vytvrdnutí čerstvého betonu vzniká konstrukční a stavební materiál beton, - plynná fáze je vzduch v pórech betonu. 2.1 HISTORIE BETONU Matrice může být mimo matrici minerální (cement), tvořena i matricí polymerní a smíšenou. Existují asfaltové betony, kde úlohu matrice plní asfalt. Praktická aplikace betonu sahá až do roku asi 3600 před našim letopočtem. Tuto informaci má lidstvo od Plinia staršího, který zaznamenal existenci sloupů z umělého kamene. Další zmínku o betonu lze nalézt v díle Deset knih o architektuře, kde autor Marcus Vitruvius Pollio popisuje jakéhosi předchůdce cementu, vzniklého smícháním sopečného tufu s vápnem. Takto vzniklý matriál tuhnul i pod vodou. V antice byl beton použit na stavbě římského Pantheonu. Jeho kopule má průměr 49 m. Dokonce beton je zde objemově vylehčen podle polohy jeho použití na vlastní kopuli. S určitou nadsázkou lze konstatovat, že beton byl po dlouhou dobu zapomenut od zániku Říma až do roku Velký rozmach použití betonu se však datuje až od počátku dvacátého století. 2.2 ROZDĚLENÍ BETONU Beton jako kompozitní stavební materiál lze rozdělit do více skupin podle různých kritérií. Podle vyztužení betonu jej dělíme na: - beton prostý - beton železový (železobeton) - beton předpjatý - vlákonobeton - síťobeton 3/85

4 Podle objemové hmotnosti rozdělujeme beton na: - lehký beton (LC) měrná hmotnost kg.m -3 - těžký beton (HC) měrná hmotnost kg.m -3 - obyčejný beton Podle použití betonů dělíme tyto na: - silniční beton - vodostavební beton - lehký beton - těžký beton - hutný lehký beton - beton pro masivní konstrukce - čerpaný beton - pohledový beton - architektonický beton - recyklovaný beton - pěnobeton Mimo toto dělení ještě rozeznáváme betony: - vysokohodnotný (vysokopevnostní) beton - samozhutňující beton 2.3 BETON PODLE VÝZTUŽE Z dalších možných dělení stojí za zmínku ještě beton asfaltový, kde matrici tvoří asfalt. Výsledkem je pro silničáře tzv. obalovaná směs PROSTÝ BETON Prostý beton je beton, který nepoužívá žádnou výztuž. Konstrukce z prostého betonu musí respektovat základní vlastnosti betonu. Tou je vysoká pevnost v tlaku a nízká pevnost v tahu. Pevnost v tahu je běžně 10x menší než pevnost v tlaku. Proto použití prostého betonu je možné pouze tam, kde se tahová napětí nevyskytují nebo jenom v nepatrné míře. Jeho základní použití je na nenáročné konstrukce namáhané v tlaku a to malým zatížením. Technologie zpracování je jednoduchá. Pevnostní charakteristika betonu je patrna z obrázku č. 1. Z betonových výrobků z prostého betonu jsou nejčastěji dlaždice a kostky. V případě zpracování prostého betonu litím jsou to malé opěrné zdi, nenáročné patky apod. 4/85

5 σ [MPa] TAH ε [-] TLAK σ [MPa] Obr. 1 Diagram namáhání prostého betonu v tahu a tlaku ŽELEZOVÝ BETON Je prostý beton, který je vyztužený ocelovými pruty nebo sítěmi. Ocel v tomto kompozitu představuje další pevnou fázi, která má stejnou pevnost v tahu i tlaku, jak je patrné z obrázku č. 2. σ [MPa] TAH ε [-] TLAK σ [MPa] Obr. 2 Diagram namáhání oceli v tahu a tlaku 5/85

6 Umístění výztuží v objemu výrobku nebo lité konstrukce je věcí projektantů. Její poloha je v místech, kde se mohou vyskytnout malá tahová napětí. Nikdy se nevyskytuje v blízkosti neutrální osy. Ocel je materiál, který má téměř stejnou hodnotu teplotní roztažitelnosti jako beton, což je základní předpoklad pro použití v železovém betonu. Dále ocel v prostředí betonu nekoroduje, protože hodnota ph je asi 12, tedy zásadité prostředí. Výrobky z železobetonu jsou panely, trubky větších průměrů, obrubníky. V železobetonových konstrukcích, které jsou lity na stavbě se používají k betonáži patek, pilířů, pilot, podlah apod. Výztuž v podobě drátů nebo sítí může mít profil kruhový, kdy se jedná o hladké dráty. Druhou možností je ocel s hřebínky, které jsou vyválcované na povrchu drátů. Průměry výztuže jsou od 4 do 32 mm. Na ocel do železobetonu jsou kladeny požadavky na zaručenou mez kluzu. v hodnotách MPa. Dalším požadavkem je vysoká tažnost a pevnost. Tažnost proto, že ohyby výztuže do bednění se provádějí za studena. Více informací o oceli do železobetonu poskytuje tabulka PŘEDPJATÝ BETON U betonových konstrukcí, které jsou navrhovány jako velmi lehké nebo se u nich předpokládá tahové napětí, by použití ocelové výztuže nepostačovalo. Ocelová výztuž v betonové konstrukci má za cíl vyvolat u nezatížené konstrukce při tuhnutí a ztuhnutí betonu tlakové předpětí v místech, kde se po sejmutí bednění a uvedení do provozu bude vyskytovat tahové napětí. Poznámka: Pro vysvětlení pojmu předpjatý beton použijme příkladu. Máme vyrobit polotovar nosníku průřezu I pro mostní konstrukci. Takový nosník je namáhán ohybem a v dolní části ohyb vyvolává tahová napětí. V bokorysu jsou na jeho průřezu viditelné otvory, kterými se povedou předepínací kabely po celé délce nosníku. schéma zatížení druh namáhání tlak (předpětí) ohyb + tlak (předpětí) Obr. 3 Předpjatý beton 6/85

7 Celý nosník se odlije do bednění i s otvory.po zatvrdnutí betonové směsi protáhnou po délce nosníku kabely. Na čela nosníku se umístí podložky pro roznesení namáhání.dráty kabelu se napínají a vyvolají tlakové namáhání nosníku, které je po průřezu konstantní a je označeno červenou barvou. Do otvorů s předepjatými kabely se tlakem vstřikne cementová kaše, která se nechá zatvrdnout a dokonale spojí předepnuté ocelové dráty kabelu s materiálem betonu. Nosník se vyjme z bednění. Po jeho instalaci na mostní podpěry je namáhán ohybem od vlastní zátěže a od zátěže např. dopravní. Ohybové napětí je nakresleno žlutou barvou.obě napětí, tedy předpětí tlakem z výroby a napětí ohybem se sečtou (superponují).pokud je předpětí alespoň stejně veliké jako tah na dolní části nosníku při ohybu. Vůbec nedojde k namáhání tahem. 7/85

8 Obr. 4 Betonářské oceli Mezi výrobky z předpjatého betonu lze zařadit např. betonové pražce pro kolejovou dopravu, polotovary pro konstrukci nosníků mostů, celé nosníky apod. V případě výroby konstrukce z předpjatého betonu na stavbě jsou to především mostní konstrukce lité do bednění, nosné konstrukce staveb apod. 8/85

9 2.3.4 VLÁKNOBETON A SÍŤOBETON V objemu betonu mohou být rozptýlena vlákna. Někdy se tyto betony nazývají betony s mikrovýztuží. Vlákna tu však nemají úlohu jakési náhrady ocelové výztuže u železového betonu. Jejich posláním je změna křehkosti betonu a vlákna rovněž omezují jeho smršťování. Dávkování vláken se odvozuje od objemu matrice a tvoří 0,1 2% jejího objemu. Použití vláknobetonu je u podlah a desek. Vedle zvýšení houževnatosti betonu, se zvyšuje odolnost proti otěru, pevnost v rázu apod. Materiál vláken je ocel, skelná vlákna polypropylenová vlákna. Ocelová vlákna se s výhodou používají také do stříkaných betonů technologií, která se nazývá torkret. Ocelová vlákna nebo spíše drátky jsou používány v délkách mm. Průměr drátků je 0,25 1 mm. Pro dostatečné ukotvení drátků jsou tvarovány tak, aby v betonu držely. Tvarovány jsou buď zalomením, kdy se osa z přímky změní na zalomenou čáru. Další možností je zploštění konců drátků nebo jejich ohnutí. Skelná vlákna musí mít upravené složení skloviny pro chemickou odolnost v zásaditém (alkalickém) prostředí matrice betonu. Polypropylenová vlákna se používají s cílem zamezení vzniku trhlin, které vznikají v ranném stadiu tuhnutí betonu vlivem smršťování. 2.4 BETON PODLE POUŽITÍ SILNIČNÍ BETON Z názvu je zřejmé, že se jedná o materiál, který je používán u dopravních staveb, které vynikají specifickým namáháním. Specifikum spočívá v tom, že požadavek není pouze na pevnost, ale také na obrusnost jeho povrchu, odolnost proti solím jmenovitě chloridům, útlum hluku při styku s dezénem pneumatiky apod. Vedle betonů s matricí cementovou se zde vyskytuje asfaltový beton. Konstrukce betonové vozovky nebo letištní plochy se pak technologicky provádí ve dvou vrstvách, kdy na spodní vrstvu nanášíme obrusnou vrstvu pokládanou na čerstvý beton. Výsledkem je spojení dvou kompozitů. Kamenivo betonu má spojitou i přetržitou křivku zrnitosti. Maximální velikost zrna je do 32 mm. Složení betonu je logicky odvislé od zatížení komunikace. To je odvozeno od typu silnice I, II, III a IV třídy. Zvláštní požadavky jsou pak na letištní přistávací dráhy L VODOSTAVEBNÍ BETON Beton pro vodní stavby je poněkud obecnější pojem. Jeho složení a požadavky vyplývají z jeho polohy na vodním díle. Zda se jedná o část trvale pod vodou, omývanou, ze statiky konstrukce apod. Požadují se zde vlastnosti podobné jako u betonu silničního mrazuvzdornost, odolnost proti korozi, proti abrazi splavných částic a navíc také vodotěsnost. Vodostavební beton má náročnou křivku zrnitosti a maximální velikost zrna se připouští do 32 mm. Speciální požadavky jsou na konstrukci a technologii při velkých tloušťkách stěn při betonování. Tyto bez bližšího popisu souvisí s procesy hydratace betonu, vznikem tepla a délkou tuhnutí čerstvého betonu. 9/85

10 2.4.3 LEHKÝ BETON Lehký beton se vyznačuje nízkou měrnou hmotností. Vylehčení je způsobeno záměrným vytvořením dutin a pórů v textuře betonu. Jejich praktické použití je především u konstrukcí, kde se požadují dobré izolační vlastnosti. Některé konstrukce, kde hlavním zatížením je vlastní hmotnost lze také odlévat z lehkého betonu. Dutiny obecně mohou být uzavřené (polystyren) nebo otevřené (houba). V případě otevřených pórů mohou tyto betony mít funkci drenáže, kdy jsou schopné odvádět určité množství vody. Pórovitosti lze také dosáhnou použitím úzké frakce pórovitého kameniva a nízkou objemovou hmotností. Póry se tak vyskytují i v dispergované fázi kamenivu. Jinou možností je vytvoření pórů napěňovaní přísadou TĚŽKÝ BETON Těžké betony se používají na stínění rentgenového a radioaktivního záření. Velká měrná hmotnost je zajištěna použitím kameniva ze speciálních materiálů. Těmi jsou magnetit, ocel, ferrofosfor, limonit, baryt apod HUTNÝ LEHKÝ BETON Měrná hmotnost hutných lehkých betonů je snížena pouze použitím pórovitého kameniva, čímž se odlišuje od lehkého betonu, kde jsou použity jiné cesty pro snížení měrné hmotnosti. Tyto betony obvykle nedosahují vysoké pevnosti, ale při použití vhodného kameniva lze dosáhnout i relativně vysoké pevnosti kolem 100 MPa BETON PRO MASÍVNÍ KONSTRUKCE Beton pro masivní konstrukce je nutné chápat jako beton, který se odlévá do bednění, kde jsou tloušťky stěn v řádech metrů. Takové betony mají složení, které při hydrataci (tuhnutí) vyvíjí menší množství tepla. Zde se logicky volí maximální velikost zrna co dovolí konstrukce a mezery v armatuře. Takové konstrukce vyžadují někdy i chlazení při tuhnutí. Typickou masivní konstrukcí jsou hráze přehrad. Řešením je také rozdělení na lamely ČERPANÝ BETON Technologie čerpání betonu patří mezi moderní metody technologie transportu čerstvého betonu. Pokud technologie vyžaduje čerpání betonu musí mít tento zvláštní reologické vlastnosti. Těch se dosahuje složením kameniva, především vyšším podílem jemných frakcí a druhem cementu. Dále se do směsi přidávají další komponenty, které zvyšují tekutost neboli snižují viskozitu (plastifikátory) POHLEDOVÝ BETON (ARCHITEKTONICKÝ BETON) Užitnou vlastností pohledového betonu je jeho povrch, který musí vyhovovat nejenom určitým technickým parametrům, ale i hledisku estetiky. Mezi technické požadavky patří obvykle vodotěsnost a obrusnost. Mezi estetické požadavky pak barva a textura. Pro technologii výroby betonu to vyžaduje přesnost dávkování všech složek a časté zkoušky. Barvy se dosahuje přidáním přesných množství anorganických barviv. Organická barviva nepadají prakticky v úvahu. Jako barviva lze použít tyto látky: - červená Fe 2 O3 10/85

11 - hnědá a černá Fe 2 O 3.FeO - žlutá (Ti, Ni, Sb)O 2 nebo (Ti, Cr, Sb)O 2 - modrá Cr 2 O3.2H 2 O a Cr 2 O RECYKLOVANÝ BETON Tendence recyklovat člověkem vytvořený materiál, podobně jako tak činí příroda, je přirozená. Recyklace tak přispívá k udržitelnému rozvoji. V případě betonu je snahou postupovat obdobně. Likvidovaná betonová konstrukce nebo výrobek musí být ze zákona podrobena jakémusi posloupnému procesu: - odpady využívat sám ve výrobním procesu, - odpady nabídnou k využití jiné právnické nebo fyzické osobě, - odpady zneškodnit. Recyklovaný beton je drcený beton z asanovaných konstrukcí, který se přidává do čerstvého betonu. Recyklovaný beton má poněkud jiné vlastnosti: - zrna recyklovaného betonu mají poměrně dobrý tvarový index, nižší měrnou hmotnost a vyšší nasákavost, - hrubá frakce drceného betonu neovlivňuje zpracovatelnost čerstvého betonu ve srovnání s přírodním kamenivem, ale drobná a jemná frakce zpracovatelnost zhorší, - je doporučeno nepoužívat drcený beton s větší frakcí než mm, jinak se vyskytuje více trhlinek, - pevnost v tlaku je u recyklovaných betonů nižší v rozmezí 4 20%, - modul pružnosti recyklovaného betonu je o 10 30% nižší než betonu z přírodního kameniva PĚNOBETON Pěnobeton je beton, kde cíleně snižujeme hmotnost. Toho lze docílit kombinací několika faktorů ve výběru komponent a technologií zpracování: - použitím pórovitého kameniva podobně jako u hutného lehkého betonu, - provzdušněním provzdušňovací přísadou, - vytvořením pěny pěnotvornou přísadou. 2.5 VÝROBKY Z BETONU Výrobek z betonu je prefabrikovaný stavební prvek. Vyrábí se ve speciálních provozech a na místo užití se transportuje. Opakem jsou betonové konstrukce, které se odlévají přímo namístě stavby. Tyto výrobky jsou vyráběny prakticky ze všech druhů betonu. Patří sem panely, silniční panely, betonové obrubníky, příkopové tvárnice, dlažba, trouby, schodiště, rámy, desky, kolektory, sloupy, mostní konstrukce, betonové pražce, stropní desky, překlady, roštové stropy, styčníky, rámy, střešní krytina, panely poprsních zdí, panely ke zpevnění svahů, protihlukové clony apod. 11/85

12 železobetonové mostní prefabrikáty mostní nosníky z předpjatého betonu rámový propust kolektorový rám uzavřený prefabrikát pro opěrné zdi dělící stěna GREFA železobetonová pilota IZP 12/85

13 Obr. 5 Příklady výrobků z betonů 2.6 SLOŽENÍ BETONU příčný řez nosníkem prefabrikovaného mostu Složení betonu je patrné ze schématu níže. Je zřejmé, že existuje téměř nekonečné množství různých kompozic pojivých složek, množství vody, druhu a zrnitosti plniva (kameniva). Směs čerstvého betonu však ovlivňují ještě poměrná zastoupení jednotlivých složek a jejich druhy. Vlastnosti materiálu jsou tedy stochastického charakteru, což volně interpretováno znamená, že k požadovaným vlastnostem se dostaneme s určitou statistickou pravděpodobností. Makroskopické vlastnosti betonu jsou vedle jeho složení a vlastností složek dány ještě technologií jeho zpracování. BETON DOPLŇUJÍCÍ SLOŽKY PŘÍSADY PŘÍMĚSI CEMENT KAMENIVO DROBNÉ HRUBÉ VODA CEMENT Cement je polydisperzní látka, která ve vodní suspenzi mění v čase svoje vlastnosti. Změna se projevuje od tekutosti suspenze až po zatuhnutí, které probíhá chemickou cestou zvanou hydratace. Zatuhnutá látka vzniklá z cementu a vody se nazývá cementový kámen, který tvoří matrici betonu. 13/85

14 Cementový kámen je pórovitá látka, která má měrný povrch 210 m 2.g -1. To znamená, že jeden gram cementového kamene má při součtu povrchu všech pórů plochu 210 m 2. Pro představu je to plocha čtverce o straně 15,5 m. Těžko si lze představit např. supertenkou fólii, která by takovou plochu pokryla a měla hmotnost jednoho gramu. Samotný cement má však měrný povrch přibližně 0,3 m 2.g -1. Z objemu 1 cm 3 cementu se vytvoří 2,2 cm 3 cementového gelu. Velikost pórů je kolem 2 nm (nanometů 10-9 m, milióntina mm). Právě tyto póry jsou příčinou obrovských měrných povrchů. Matrice cementového kamene je velmi závislá svými vlastnostmi na množství vody přidané k cementu. Pro tyto účely se zavádí pojem vodní součinitel, který je poměrem hmotnosti vody ku hmotnosti cementu. mv (hmotnost vody) w = mc (hmotnost cementu) Obecně lze konstatovat, že čím větší je hodnota vodního součinitele (více vody), tím horší jsou především mechanické vlastnosti betonu po zatvrdnutí betonu DRUHY CEMENTŮ Cementy lze dělit podle jejich složení (směsnosti) a podle jakosti. Hodnocení podle jakosti má určitá kriteria, která jsou dána normou. Dalším dělením je dělení podle použití. Podle použití dělíme cementy na: - cementy pro obecné použití - bílý cement - síranovzdorný vysokopecní cement - silniční cement - hlinitanové cementy Dělení cementů podle směsnosti dobře ilustruje následující tabulka. Cement je složen ze slinku, složky a plniva. jejich druh a množství rozhoduje o jeho zařazení a vlastnostech. druhy cementu podle směsnosti název cementu označení obsah složek v hmotnostních % slinek složka plnivo Portlanský I Portlanský II/A II/B Vysokopecní III/A III/B III/C Pucolánový IV/A Směsný IV/B V/A V/B /85

15 Složky uvedené jako hmotnostní podíl v [%] se uvádí do označení cementu. Namísto písmene je jako složka použito: S struska D křemičitý úlet P přírodní pucolán Q průmyslový pucolán T kalcitová břidlice L vápenec Cementy lze podle pevnosti dělit na tři normalizované pevnosti, kterými je pevnost v tlaku v MPa. Jsou to pevnosti 32,5 MPa, 42,5 MPa a 52,5 MPa. Způsob měření pevnosti v tlaku je mimo rámec této učebnice. Bílý cement se používá pro dekorativní účely pro architektonický a pohledový beton. Vyznačuje se mimořádně nízkým obsahem oxidů železa a manganu, které cement barví. Síranovzdorný vysokopecní cement (Prachovice) vyniká vyšší mírou odolnosti proti vlivům prostředí, kde se mohou vyskytnout sírany. Silniční cement vykazuje vyšší pevnost v tahu ohybem, malé objemové změny a vyšší odolnosti proti agresivnímu prostředí. Je to nutné s ohledem na výskyt tahových napětí u silničních betonů a chemickou agresivitou prostředí silnic např. solení. rovnoměrný. Jejich užití je v žárobetonů a děl, kde se nevyžaduje pevnost. Hlinitanový cement se vyznačuje rychlým tuhnutím. Do betonových konstrukcí se nesmí používat, protože beton ztrácí pevnostní vlastnosti. Na rozdíl od ostatních betonů, které časem měřeným lety zvyšují svoji pevnost, zde je tomu naopak. Navíc průběh ztrát pevnosti není MINERALOGIE CEMENTŮ Chemické složení cementu je různé. Z oxidů minerálů lze jmenovat CaO, SiO 2, Al 2 O 3, Fe 2 O 3, P 2 O 5, MgO, SO 3, Na 2 O+K 2 O, TiO 2. Slinkové materiály mají chemizmus velmi složitý VÝROBA CEMENTU Obecně výroba cementu technologicky závisí na jakosti vstupních surovin. Základem je vápenec, kde je nutné mít k dispozici i určité jeho znečistění (nikoli každé znečistění). Nepřípustným složením vápence je vyšší obsah dolomitu. S ohledem na čistotu vstupních surovin může být schéma obr č. 6 doplněno i jinými vstupními surovinami než je břidlice. 15/85

16 vápenec břidlice palivo sádrovec primární drcení sekundární drcení drcení sušení mletí suroviny homogenizace rotační pec úprava paliva mletí cementu drcení sádrovce expedice Obr. 6 Obecné schéma výroby cementů KAMENIVO Kamenivo zaujímá v kompozitu betonu 75 80% jeho objemu. Hlavní funkcí kameniva je vytvoření pevné kostry obvykle požadavkem na minimální mezerovitost. Minimální mezerovitosti se dosahuje použitím zrn různé velikosti v různém hmotnostním poměru. Vazbu hmotnostního množství a velkost zrn vyjadřuje tzv. křivka zrnitosti. Právě křivka zrnitosti činí betony rozdílnými od malt, které mají úzkou křivku zrnitosti. Kamenivo je nejčastěji přírodní zrnitá látka určená pro stavební účely. Vyloučeno však není ani umělé kamenivo, recyklovaný beton nebo dokonce ocelová zrna. Kamenivo rozdělujeme podle petrografie. Petrografické složení vypovídá o vlastnostech kameniva, které je nositelem pevnosti v kompozitu betonu. Kamenivo může být těžené, kdy jde o těžený štěrk, 16/85

17 štěrkopísek a písek. Dále může výt kamenivo drcené, které bylo vyrobeno technologií drcení. Vlastnosti takovýchto zrn jsou odlišné. Těžené kamenivo má hladší povrch, protože při rozpadu hornin bylo obvykle transportováno a došlo k ohlazení povrchu. Evropská norma dělí kamenivo na tyto skupiny: - hrubé - směs kameniva - drobné (písek) - filer zrna do 0,125 mm Pro navrhování betonů je velmi důležitá znalost granulometrie kameniva. S ohledem na obor vzdělání pro který je učebnice určena nebude této kapitole věnována větší pozornost. Pro metriku granulometrie byla zvolena jakási normová základní řada sít, kde každé následující síto má čtvercové otvory dvojnásobného rozměru. Základní řada má tedy otvory 0,063 0,125 0,25 0, Granulometrie má vést k tvorbě křivky zrnitosti. Existují ideální křivky zrnitosti, které však vycházejí z ideálního tvaru zrn, kterým by byla koule. Realita bývá upravována různými koeficienty. Zrno k propadnutí otvorem čtvercového síta musí vyhovovat tvarem a dvěma rozměry podmínce, že musí být menší než otvor v sítu. Síto však neřeší rozměr třetí. Proto se u zrn sleduje další parametr a tím je tvarový index. Kde je poměřován třetí rozměr k stávajícím dvěma. Tvarový index tedy vyjadřuje poměr největšího rozměru zrna k nejmenšímu. Ideálním tvarovým indexem pro použití v betonu je hodnota 1. Taková zrna lze opsat krychlí. Kamenivo do betonu podléhá řadě zkoušek, které spadají do zkoušení kamene a kameniva. Jejich podrobnější popis je v učebnici Úvod do zkoušení kameniva. Pro základní přehled slouží tabulka: vlastnost kategorie parametr vlastnost kategorie parametr tvar zrn F1 SI index plochosti tvar zrn schránky SC obsah živočišných schránek jemné částice f síto do 0,063 mm drcení LA hrubé drobné ráz SZ odolnost proti otěr M DE zkouška rázu mikro ohladitelnost PSV odolnost proti obrus A N nordická ohlazení pneumatikami zkouška mrazuvzdornost F hrubé kamenivo zdravost MS Podle MgSO 4 Pórovité kamenivo, které se označuje v ČR jako LIAPOR, je umělé kamenivo, které se vyrábí z jílů, které v žáru expandují nebo se spíše nadýmají. Plyny uvnitř zrna nemohou uniknout přes povrch a snižují měrnou hmotnost. Liapor se vyrábí v různých frakcích. 17/85

18 2.6.6 VODA Z technologické pohledu na výrobu, zpracování a užití betonů rozdělujeme vodu na: - záměsovou - ošetřovací Záměsová voda se dodává do čerstvého betonu při procesu míchání. Její množství ovlivňuje vodní součinitel. Požadavky na tuto vodu jsou dány normou. Obvyklé použití studniční nebo povrchové vody vyžaduje v určitých cyklech zkoušky. Vody splašková a znečistěná se používat nesmí. Ošetřovací voda slouží k ošetřování betonu po zatuhnutí, kdy je nutné udržovat beton ve vlhkém stavu. Jistou zajímavostí je možnost u prostého betonu použití i mořské vody. U ostatních betonů ji použít nelze kvůli obsahu iontů chlóru PŘÍSADY Přísady do betonu zlepšují nebo vytvářejí určité vlastnosti, kterých potřebujeme docílit pro výrobu čerstvého betonu, jeho zpracování, tuhnutí a užitné vlastnosti. Mechanizmy jejich působení jsou složité chemicko-fyzikální děje. Přísady působí především na cementovou suspenzi vzniklou smícháním cementu s vodou. Na ostatní složky betonu je působení přísad velmi omezené. Působení přísad je ovlivněno také druhem použitého cementu. Jejich dávkování se podobně jako u vody řídí poměrem hmotnosti ke hmotnosti cementu. Přísady lze rozdělit na: - plastifikační (redukují množství vody při zachování zpracovatelnosti betonů), - superplastifikační (redukují silně množství vody při zachování zpracovatelnosti betonů), - stabilizační (zadržují vodu), - provzdušňující (zvětšující v čerstvém betonu póry), - urychlující tuhnutí cementu, - urychlující tvrdnutí cementu, - zpomalující tuhnutí, - hydrofobizační (odpuzují vodu), - plynotvorné (vytvářejí póry naplněné plynem z chemické reakce), - pěnotvorné (vytvářejí v čerstvém betonu pěnu), - protikorozní (mění prostředí betonu s ohledem na parametry koroze), - biocidní (snižují riziko zasažení betonu biologickými účinky) PŘÍMĚSI Příměsi jsou, na rozdíl od přísad, práškovité látky, které se přidávají do čerstvého betonu za účelem zlepšení některých vlastností nebo k docílení vlastností zvláštních. Do příměsí řadíme také barevné pigmenty a organické polymery, které se přidávají do polymercementových betonů. Příměsi se dělí na dva typy: - inertní příměsi - pucolány 18/85

19 Poznámka: Pucolány jsou latentně hydraulické aktivní látky. Chemicky je sjedná o křemičitany. Název je odvozen od názvu lokality Puzzoli v Itálii, kde se těžil a zde byl cement také objeven a užíván. Původ pucolánu je sopečného původu. Do skupiny pucolánů patří také tras, trachyt, sopečný tuf a pemza. Pucolány mohou mít i původ organický např. křemelina rozsivková zemina, rozsivková břidlice apod. Poznámka: Latentní hydraulicita je schopnost látky tvrdnout ve vodním prostředí za normální teploty. Terminus technicus latentní hydraulicita je tzv. pucolánová vlastnost.chemicky se jedná o reakci Ca(OH) 2 ve vodném prostředí. Podobné vlastnosti jako pucolány mají látky, které se vyznačují vysokým obsahem aktivního amorfního SiO 2. Podmínkou reakce je alkalické prostředí, které v roztoku vytvoříme jinými sloučeninami. Tyto látky získáváme i z odpadů průmyslových výrob. Patří sem odpady z výroby jako jsou popílky, struska, pálené hlíny, pálené jílovité zeminy, křemičité úlety, sopečné sklo apod. Je nutné zdůraznit, že pucolány nejsou např. v každém popílku např. tepelných elektráren, kterého se produkují desetitisíce tun. Při použití těchto látek je nutné hlídat chemické složení, které se mění podle těžby v různých lokalitách a hloubkách. U pucolánů musíme také sledovat zrnitost, která souvisí s reaktivitou, protože menší frakce má větší povrch TECHNOLOGIE ZPRACOVÁNÍ ČERSTVÉHO BETONU Zpracování čerstvého betonu se z pohledu jeho technologie rozděluje na tyto složky: - míšení čerstvého betonu - transport - ukládání - zhutňování Cílem je dosažení homogenity betonu a splnění technických požadavků za přijatelných nákladů. Míšení betonů v sobě zahrnuje dávkování jeho složek, které se provádí hmotnostně (složky se váží). Technologický proces je ovlivněn typem míchačky, dobou míchání a požadovanou konzistencí čerstvého betonu. Transport betonu je dnes většinou zajištěn kontinuální dopravou nebo dopravou cyklickou. Kontinuální doprava je řešena pásovými dopravníky, šnekovými dopravníky, pneumatickou dopravou apod. Cyklická doprava je řešena domíchávači, vozíky a kontejnery. Použití dopravy závisí na možnostech dodavatele a druhu výrobku. Ukládání betonu je část technologického zpracování čerstvého betonu, kdy beton ukládáme do bednění nebo jiným způsobem k zatuhnutí a zatvrdnutí. Zhutňování se technologicky provádí mnoha způsoby, kdy nejčastěji je využíváno vibrací. jinou možností je vakuování, propichování, lisování, injektování, odstřeďování, lití, válcování, pěchování, torkretování apod. Zpracování čerstvého betonu souvisí také s hydratačním teplem. Hydratace je exotermická reakce. Hodnoty hydratačního tepla souvisí s použitým cementem: - portlandský kj. kg -1 - struskoportlandský kj. kg -1 - vysokopecní kj. kg -1 19/85

Přírodní zdroje uhlovodíků

Přírodní zdroje uhlovodíků Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Říjen 2010 Mgr. Alena Jirčáková Zemní plyn - vznik: Výskyt často spolu s ropou (naftový zemní plyn) nebo

Více

STAVEBNÍ HMOTY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 26. 4. 2013. Ročník: devátý

STAVEBNÍ HMOTY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 26. 4. 2013. Ročník: devátý STAVEBNÍ HMOTY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 26. 4. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemie a společnost 1 Anotace: Žáci se seznámí s historickými

Více

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326 PROJEKT

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_E.3.13 Integrovaná střední

Více

Ropa Ch_031_Paliva_Ropa Autor: Ing. Mariana Mrázková

Ropa Ch_031_Paliva_Ropa Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: III/2 Inovace a zkvalitněni výuky prostřednictvím ICT. Název materiálu: Zpracování ropy

Více

Kamenivo. Ing. Alexander Trinner. Technický a zkušební ústav stavební Praha, s.p. pobočka Plzeň Zahradní 15, 326 00 Plzeň trinner@tzus.cz; www.tzus.

Kamenivo. Ing. Alexander Trinner. Technický a zkušební ústav stavební Praha, s.p. pobočka Plzeň Zahradní 15, 326 00 Plzeň trinner@tzus.cz; www.tzus. Kamenivo Ing. Alexander Trinner Technický a zkušební ústav stavební Praha, s.p. pobočka Plzeň Zahradní 15, 326 00 Plzeň trinner@tzus.cz; www.tzus.cz 1 2 3 Přehled nových předmětových norem (ČSN EN) 4 Nová

Více

Zpracování ropy doc. Ing. Josef Blažek, CSc. 8. přednáška

Zpracování ropy doc. Ing. Josef Blažek, CSc. 8. přednáška ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Zpracování ropy doc. Ing. Josef Blažek, CSc. 8. přednáška Vlastnosti a použití petrolejů, motorových naft, topných

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Základní škola a mateřská škola Hutisko Solanec. žák uvede základní druhy uhlovodíků, jejich použití a zdroje. Chemie - 9. ročník

Základní škola a mateřská škola Hutisko Solanec. žák uvede základní druhy uhlovodíků, jejich použití a zdroje. Chemie - 9. ročník Základní škola a mateřská škola Hutisko Solanec Digitální učební materiál Anotace: Autor: Jazyk: Očekávaný výstup: Speciální vzdělávací potřeby: Klíčová slova: Druh učebního materiálu: Druh interaktivity:

Více

Základní škola Bruntál, Rýmařovská 15

Základní škola Bruntál, Rýmařovská 15 Základní škola Bruntál, Rýmařovsk ovská 15 Praktické práce 8.. ročník Stavební směsi si (Betonová směs, s, příprava, p prava, využit ití) 28. 03.. / 2013 Ing. Martin Greško Betonová směs historie Počátky

Více

POŽÁRNĚ ODOLNÉ KOMPOZITNÍ PRVKY VYROBENÉ SPECIÁLNÍ TECHNOLOGIÍ S VYUŽITÍM DRUHOTNÝCH SUROVIN

POŽÁRNĚ ODOLNÉ KOMPOZITNÍ PRVKY VYROBENÉ SPECIÁLNÍ TECHNOLOGIÍ S VYUŽITÍM DRUHOTNÝCH SUROVIN POŽÁRNĚ ODOLNÉ KOMPOZITNÍ PRVKY VYROBENÉ SPECIÁLNÍ TECHNOLOGIÍ S VYUŽITÍM DRUHOTNÝCH SUROVIN Řešitelská organizace: Výzkumný ústav stavebních hmot a. s. Ing. Michal Frank (řešitel) FR-TI1/216 Spoluřešitelská

Více

Průmyslově vyráběná paliva

Průmyslově vyráběná paliva Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Vláknobetony. Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz www.tpm.fsv.cvut.cz

Vláknobetony. Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz www.tpm.fsv.cvut.cz Vláknobetony Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz www.tpm.fsv.cvut.cz Úvod Beton křehký materiál s nízkou pevností v tahu a deformační kapacitou Od konce 60.

Více

Ropa Kondenzované uhlovodíky

Ropa Kondenzované uhlovodíky Nejdůležitější surovina pro výrobu organických sloučenin Nejvýznamnější surovina světové ekonomiky Výroba energie Chemické zpracování - 15 % Cena a zásoby ropy (70-100 let) Ropné krize Nutnost hledání

Více

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - ovzduší V této kapitole se dozvíte: Co je to ovzduší. Jaké plyny jsou v atmosféře. Jaké složky znečišťují

Více

rostlin a přesliček metrové sloje potřeba až třicetimetrová vrstva rašelin a přesliček vázaný uhlík, vodík, dusík a síru.

rostlin a přesliček metrové sloje potřeba až třicetimetrová vrstva rašelin a přesliček vázaný uhlík, vodík, dusík a síru. VZNIK UHLÍ Uhlí vzniklo z pravěkých rostlin a přesliček v údolích, deltách řek a jiných nízko položených územích. Po odumření těchto rostlin klesaly až na dno bažin a za nepřístupu vzduchu jim nebylo umožněno

Více

GlobalFloor. Cofrastra 40 Statické tabulky

GlobalFloor. Cofrastra 40 Statické tabulky GlobalFloor. Cofrastra 4 Statické tabulky Cofrastra 4. Statické tabulky Cofrastra 4 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Použití Profilovaný plech Cofrastra 4 je určen pro

Více

Ch - Uhlovodíky VARIACE

Ch - Uhlovodíky VARIACE Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukových materiálů je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn

Více

GlobalFloor. Cofraplus 60 Statické tabulky

GlobalFloor. Cofraplus 60 Statické tabulky GlobalFloor. Cofraplus 6 Statické tabulky Cofraplus 6. Statické tabulky Cofraplus 6 žebrovaný profil pro kompozitní stropy Polakovaná strana Použití Profilovaný plech Cofraplus 6 je určen pro výstavbu

Více

BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU

BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU Sekce X: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU Rostislav Šulc, Pavel Svoboda 1 Úvod V rámci společného programu Katedry technologie staveb FSv ČVUT a Ústavu skla

Více

CENÍK PRACÍ. www.betotech.cz. platný od 1.1. 2014. BETOTECH, s.r.o., Beroun 660, 266 01 Beroun. Most Beroun. Trutnov Ostrava. Cheb. J.Hradec.

CENÍK PRACÍ. www.betotech.cz. platný od 1.1. 2014. BETOTECH, s.r.o., Beroun 660, 266 01 Beroun. Most Beroun. Trutnov Ostrava. Cheb. J.Hradec. ,, 266 01 Beroun CENÍK PRACÍ platný od 1.1. 2014 Cheb Most Beroun Trutnov Ostrava J.Hradec Klatovy Brno www.betotech.cz Zkušební laboratoře akreditované ČIA ke zkoušení vybraných stavebních hmot a výrobků,

Více

Chemické složení (%): SiO 2 6 Al 2 O 3 38 42 Fe 2 O 3 13 17 CaO 36 40 MgO < 1,5 SO 3 < 0,4

Chemické složení (%): SiO 2 6 Al 2 O 3 38 42 Fe 2 O 3 13 17 CaO 36 40 MgO < 1,5 SO 3 < 0,4 Všeobecně je normálně tuhnoucí, ale rychle tvrdnoucí hlinitanový cement s vysokou počáteční pevností. Na základě jeho výrobního postupu, jeho chemického složení a jeho schopnosti tuhnutí se výrazně liší

Více

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Předmět: CHEMIE Ročník: 8. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Konkretizované tematické okruhy realizovaného průřezového tématu září orientuje se

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák:

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák: očekávané výstupy RVP témata / učivo Chemie - 1. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 7.3. 1. Chemie a její význam charakteristika

Více

Přírodopis 9. GEOLOGIE Usazené horniny organogenní

Přírodopis 9. GEOLOGIE Usazené horniny organogenní Přírodopis 9 19. hodina GEOLOGIE Usazené horniny organogenní Mgr. Jan Souček Základní škola Meziměstí Organogenní usazené horniny Vznikají usazováním odumřelých těl rostlin, živočichů, jejich schránek

Více

Montované technologie. Technologie staveb Jan Kotšmíd,3.S

Montované technologie. Technologie staveb Jan Kotšmíd,3.S Montované technologie Technologie staveb Jan Kotšmíd,3.S Montované železobetonové stavby U montovaného skeletu je rozdělena nosná část sloupy, průvlaky a stropní panely) a výplňová část (stěny): Podle

Více

Co j s o u l i t é s a m o n i v e l a č n í p o t ě r y Anhyment? Jak é m a j í v ý h o d y?

Co j s o u l i t é s a m o n i v e l a č n í p o t ě r y Anhyment? Jak é m a j í v ý h o d y? Co j s o u l i t é s a m o n i v e l a č n í p o t ě r y Anhyment? Anhyment je litá podlahová směs na bázi síranu vápenatého se samonivelačním účinkem, umožňující srovnání podlahových konstrukcí s tolerancí

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

Moderní pohonné hmoty pro pohon motorových vozidel

Moderní pohonné hmoty pro pohon motorových vozidel Moderní pohonné hmoty pro pohon motorových vozidel Ing.. Václav Pražák ČAPPO Česká rafinérská, a.s. CHEMTEC PRAHA 2002 Motorová paliva Nejdůležitější motorová paliva Automobilové benziny Motorové nafty

Více

PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení

PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení STROPNÍ KERAMICKÉ PANELY POD - Stropní panely určené pro stropní a střešní ploché konstrukce, uložené na zdivo, průvlaky nebo do přírub ocelových

Více

Chemie 8. ročník Vzdělávací obsah

Chemie 8. ročník Vzdělávací obsah Chemie 8. ročník Časový Září Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Pozorování, pokus a bezpečnost práce Úvod do chemie Vlastnosti látek (hustota, rozpustnost, kujnost, tepelná

Více

Ceníkový katalog. od 1. 4. 2015. Dejte Vaší stavbě zelenou NYNÍ V ŠEDÉ I BÍLÉ

Ceníkový katalog. od 1. 4. 2015. Dejte Vaší stavbě zelenou NYNÍ V ŠEDÉ I BÍLÉ Ceníkový katalog od 1. 4. 2015 Dejte Vaší stavbě zelenou NYNÍ V ŠEDÉ I BÍLÉ Proč Pórobeton Ostrava? Jsme ryze česká společnost s více jak 50 letou tradicí. Díky zásadní modernizaci výrobní technologie

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

Ocel je slitina Fe + C + doprovodných prvků (Si, Mn, S, P) + legujících prvků (Ni, Cr, Mo, W, Zi ), kde % obsah uhlíku ve slitině je max. 2.14 %.

Ocel je slitina Fe + C + doprovodných prvků (Si, Mn, S, P) + legujících prvků (Ni, Cr, Mo, W, Zi ), kde % obsah uhlíku ve slitině je max. 2.14 %. OCEL Ocel je slitina Fe + C + doprovodných prvků (Si, Mn, S, P) + legujících prvků (Ni, Cr, Mo, W, Zi ), kde % obsah uhlíku ve slitině je max. 2.14 %. VÝROBA OCELI Ocel se vyrábí zkujňováním bílého surového

Více

Ropa, zpracování ropy

Ropa, zpracování ropy VY_52_Inovace_246 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ropa, zpracování ropy prezentace Ročník: 8, 9 Projekt EU peníze školám Operačního programu Vzdělávání pro konkurenceschopnost

Více

1. Chemický turnaj. kategorie mladší žáci 30.11. 2012. Zadání úloh

1. Chemický turnaj. kategorie mladší žáci 30.11. 2012. Zadání úloh 1. Chemický turnaj kategorie mladší žáci 30.11. 2012 Zadání úloh Vytvořeno v rámci projektu OPVK CZ.1.07/1.1.26/01.0034,,Zkvalitňování výuky chemie a biologie na GJO spolufinancovaného Evropským sociálním

Více

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY Schválilo Ministerstvo školství mládeže a tělovýchovy dne 25. 7. 2002, č. j. 23 852/2002-23 s platností od 1. září 2002 počínaje prvním ročníkem Učební osnova

Více

Building the future TM ANHYFLOW ANHYFLOW. Anhydritový litý potěr. ... efektivní řešení podlah

Building the future TM ANHYFLOW ANHYFLOW. Anhydritový litý potěr. ... efektivní řešení podlah Building the future TM Anhydritový litý potěr... efektivní řešení podlah Tekutá směs na bázi síranu vápenatého se samonivelačním účinkem. Vyráběna a dodávána v pevnostních třídách AE20, AE25 a AE30 (pevnost

Více

Distribution Solutions WireSolutions. Ocelová vlákna. Průmyslové podlahy

Distribution Solutions WireSolutions. Ocelová vlákna. Průmyslové podlahy Distribution Solutions WireSolutions Ocelová vlákna Průmyslové podlahy WireSolutions Řešení s ocelovými vlákny WireSolutions je součástí skupiny ArcelorMittal, největšího světového výrobce oceli. Pilíři

Více

Publikace Hodnoty ypožární odolnosti stavebních

Publikace Hodnoty ypožární odolnosti stavebních Publikace Hodnoty ypožární odolnosti stavebních konstrukcí k podle Eurokódů Důvody vydání a podmínky používání v praxi Příklady zpracování tabelárních hodnot a principy jejich stanovení Ing. Roman Zoufal,

Více

Charakteristika vyučovacího předmětu Chemie

Charakteristika vyučovacího předmětu Chemie Charakteristika vyučovacího předmětu Chemie Obsahové, časové a organizační vymezení předmětu Chemie Obsah předmětu Chemie je zaměřen na praktické využití poznatků o chemických látkách, na znalost a dodržování

Více

Ing. Alexander Trinner

Ing. Alexander Trinner Stavební materiály Materiály protipožární (nátěry, nástřiky, obklady) Ing. Alexander Trinner Technický a zkušební ústav stavební Praha, s.p. pobočka Plzeň Zahradní 15, 326 00 Plzeň trinner@tzus.cz; www.tzus.cz

Více

1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 1. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Základní návrhové předpisy: - ČSN 73 1401/98 Navrhování ocelových

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Chemie - 8. ročník pozorování, pokus a bezpečnost práce Určí společné a rozdílné vlastnosti látek vlastnosti látek hustota, rozpustnost, tepelná a elektrická vodivost, vliv atmosféry na vlastnosti a stav

Více

MONTOVANÉ TECHNOLOGIE. Petr Braniš 3.S

MONTOVANÉ TECHNOLOGIE. Petr Braniš 3.S MONTOVANÉ TECHNOLOGIE Petr Braniš 3.S MONTOVANÉ SKELETOVÉ STAVBY U MONTOVANÉHO SKELETU JE ROZDĚLENA: nosná část sloupy, průvlaky a stropní panely) výplňová část - stěny PODLE UŽITNÉHO ZATÍŽENÍ SE SKELETY

Více

Ocelové konstrukce. Jakub Stejskal, 3.S

Ocelové konstrukce. Jakub Stejskal, 3.S Ocelové konstrukce { Jakub Stejskal, 3.S Výhody a nevýhody ocelových konstrukcí Výhody Vysoká pevnost vzhledem ke hmotnosti Průmyslová výroba (přesnost, produktivita, automatizace, odstranění sezónnosti,

Více

Materiál zemních konstrukcí

Materiál zemních konstrukcí Materiál zemních konstrukcí Kombinace powerpointu a informací na papíře Materiál zemních konstrukcí: zemina kamenitá sypanina druhotné suroviny lehké materiály ostatní materiály Materiál zemních konstrukcí:

Více

Řez : SLOVTHERM s.r.o., 93001 Veľké Blahovo 1097, IČO : 46362495 mail: info@slovtherm.sk Roman Ilavský tel +421 903 837 490

Řez : SLOVTHERM s.r.o., 93001 Veľké Blahovo 1097, IČO : 46362495 mail: info@slovtherm.sk Roman Ilavský tel +421 903 837 490 Vážení klienti, touto cestou Vám nabízíme: V posledních 15 letech se cena plynu a elektrické energie pro domácnosti zvyšovala v průměru téměř o 10 % ročně. Náklady na vytápění bytů a rodinných domů tedy

Více

Lité izolační pěnobetony. Izolují, vyplňují, vyrovnávají

Lité izolační pěnobetony. Izolují, vyplňují, vyrovnávají Lité izolační pěnobetony Izolují, vyplňují, vyrovnávají POROFLOW POROFLOW je ideální materiál k přípravě spolehlivých podkladních vrstev podlah a plochých střech, ke stabilizaci bazénů a jímek, vyplnění

Více

CO JE TO PLYN - ČÍM TOPÍME, NA ČEM VAŘÍME

CO JE TO PLYN - ČÍM TOPÍME, NA ČEM VAŘÍME PLYNOVOD CO JE TO PLYN - ČÍM TOPÍME, NA ČEM VAŘÍME Co je zemní plyn Zemní plyn je přírodní směs plynných uhlovodíků s převaţujícím podílem metanu CH 4 a proměnlivým mnoţstvím neuhlovodíkových plynů (zejména

Více

Organická chemie-rébusy a tajenky VY_32_INOVACE_7.3.03.CHE

Organická chemie-rébusy a tajenky VY_32_INOVACE_7.3.03.CHE Autor: Předmět/vzdělávací oblast: Tematická oblast: Téma: Mgr. Iveta Semencová Chemie Organická chemie Organická chemie-rébusy a tajenky Ročník: 1. 3. Datum vytvoření: červenec 2013 Název: Anotace: Metodický

Více

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2 HOŘČÍK KOVY ALKALICKÝCH ZEMIN Pozn. Elektronová konfigurace valenční vrstvy ns 2 Hořčík Vlastnosti: - stříbrolesklý, měkký, kujný kov s nízkou hustotou (1,74 g.cm -3 ) - diagonální podobnost s lithiem

Více

PŘÍRODNÍ ZDROJE ORGANICKÝCH SLOUČENIN

PŘÍRODNÍ ZDROJE ORGANICKÝCH SLOUČENIN PŘÍRODNÍ ZDROJE ORGANICKÝCH SLOUČENIN Přírodní zdroje organických sloučenin můžeme rozdělit do 2 základních skupin: 1) RECENTNÍ (současné) např. dřevo, živočišné tkáně 2) FOSILNÍ (pravěké) ropa, zemní

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-2-20 Téma: Test obecná chemie Střední škola Rok: 2012 2013 Varianta: A Test obecná chemie Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Otázka 1 OsO 4 je

Více

Kde se vzala v Asii ropa?

Kde se vzala v Asii ropa? I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Pracovní list č. 24 Kde se vzala v Asii ropa? Pro

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více

CENÍK ZKUŠEBNÍCH PRACÍ PRO ROK 2015

CENÍK ZKUŠEBNÍCH PRACÍ PRO ROK 2015 OBSAH 1. Hodinové zúčtovací sazby, obecné položky 2. Betonářská technologie 3. Kamenivo 4. Zemní práce 5. Měření vlastností materiálů a prostředí, geometrických tvarů, tloušťky nátěrů 6. Zkoušky na mostních

Více

Suchá maltová směs je složena z anorganických pojiv (cement) a kameniva. doba zpracovatelnosti směsi Z

Suchá maltová směs je složena z anorganických pojiv (cement) a kameniva. doba zpracovatelnosti směsi Z TECHNICKÝ LIST SAKRET ZM 10 cementová malta Suchá maltová směs. Odpovídá obyčejné maltě pro zdění G třídy M 10 dle ČSN EN 998-2, ZA příloha. Odpovídá obyčejné maltě pro vnitřní a vnější omítky GP dle ČSN

Více

Vláknové kompozitní materiály, jejich vlastnosti a výroba

Vláknové kompozitní materiály, jejich vlastnosti a výroba Kap. 1 Vláknové kompozitní materiály, jejich vlastnosti a výroba Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVUT v Praze 26. října 2007 1

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling

PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling Objednavatel: M.T.A., spol. s r.o., Pod Pekárnami 7, 190 00 Praha 9 Zpracoval: Ing. Bohumil Koželouh, CSc. znalec v oboru

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Chemie - 8. ročník pozorování, pokus a bezpečnost práce Určí společné a rozdílné vlastnosti látek vlastnosti látek hustota, rozpustnost, tepelná a elektrická vodivost, vliv atmosféry na vlastnosti a stav

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice Životní prostředí a doprava Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING.

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING. 2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ SŠS Jihlava ING. SVOBODOVÁ JANA OBSAH 1. ZATÍŽENÍ 3 ŽELEZOBETON PRŮHYBEM / OHYBEM / NAMÁHANÉ PRVKY

Více

w w w. ch y t r a p e n a. c z

w w w. ch y t r a p e n a. c z CHYTRÁ PĚNA - střešní systém EKO H ROOF Jedním z mnoha využití nástřikové izolace Chytrá pěna EKO H ROOF jsou ploché střechy. Náš střešní systém je složen ze dvou komponentů, které jsou aplikovány přímo

Více

Výroba surového železa, oceli, litiny

Výroba surového železa, oceli, litiny Výroba surového železa, oceli, litiny Výroba surového železa Surové želeo se vyrábí ve vysoké peci. Obr. vysoké pece etapy výroby surového železa K výrobě surového železa potřebujeme tyto suroviny : 1.

Více

ROPA. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 14. 5. 2012. Ročník: devátý

ROPA. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 14. 5. 2012. Ročník: devátý ROPA Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 14. 5. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny; chemie a společnost 1 Anotace: Žáci se seznámí

Více

Sklo chemické složení, vlastnosti, druhy skel a jejich použití

Sklo chemické složení, vlastnosti, druhy skel a jejich použití Sklo chemické složení, vlastnosti, druhy skel a jejich použití Jak je definováno sklo? ztuhlá tavenina průhledných křemičitanů (pevný roztok) homogenní amorfní látka (bez pravidelné vnitřní struktury,

Více

TECHNICKÝ LIST BETONOVÉ DLAŽEBNÍ DESKY

TECHNICKÝ LIST BETONOVÉ DLAŽEBNÍ DESKY TECHNICKÝ LIST BETONOVÉ DLAŽEBNÍ DESKY DLAŽBA VEGETAČNÍ Dlažba vegetační dvouvrstvá betonové dlažební desky na bázi cementu a plniva (kameniva) modifikované zušlechťujícími přísadami betonové dlažební

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

Chemie 8.ročník. Rozpracované očekávané výstupy žáka Učivo Přesuny, OV a PT. Pozorování, pokus a bezpečnost práce předmět chemie,význam

Chemie 8.ročník. Rozpracované očekávané výstupy žáka Učivo Přesuny, OV a PT. Pozorování, pokus a bezpečnost práce předmět chemie,význam Chemie 8.ročník Zařadí chemii mezi přírodní vědy. Pozorování, pokus a bezpečnost práce předmět chemie,význam Popisuje vlastnosti látek na základě pozorování, měření a pokusů. těleso,látka (vlastnosti látek)

Více

Učivo. ÚVOD DO CHEMIE - vymezení předmětu chemie - látky a tělesa - chemické děje - chemická výroba VLASTNOSTI LÁTEK

Učivo. ÚVOD DO CHEMIE - vymezení předmětu chemie - látky a tělesa - chemické děje - chemická výroba VLASTNOSTI LÁTEK - zařadí chemii mezi přírodní vědy - uvede, čím se chemie zabývá - rozliší fyzikální tělesa a látky - uvede příklady chemického děje ÚVOD DO CHEMIE - vymezení předmětu chemie - látky a tělesa - chemické

Více

Antverpy, Belgie. POLYCON AURA real3d. Základní informace. Tvarové a rohové prvky POLYCON AURA real3d

Antverpy, Belgie. POLYCON AURA real3d. Základní informace. Tvarové a rohové prvky POLYCON AURA real3d Aura Antverpy, Belgie POLYCON AURA real3d Základní informace Tvarové a rohové prvky POLYCON AURA real3d Sklovláknobeton POLYCON je nehořlavý (A1) betonový kompozit, který díky svým vlastnostem, rozšiřuje

Více

Tabulka 3 Nosníky R 80 R 80 10 1) R 120 220 70 1) 30 1) 55 1) 15 1) 40 1) R 120 260 65 1) 35 1) 20 1) 50 1) 410 60 1) 25 1) R 120 R 100 R 120

Tabulka 3 Nosníky R 80 R 80 10 1) R 120 220 70 1) 30 1) 55 1) 15 1) 40 1) R 120 260 65 1) 35 1) 20 1) 50 1) 410 60 1) 25 1) R 120 R 100 R 120 Tabulka 3 Nosníky Požární odolnost v minutách 15 30 45 60 90 1 1 Nosníky železobetonové,,3) (s ustálenou vlhkostí), bez omítky, druh DP1 1.1 1.2 1.3 1.4 1.5 Nosníky monoliticky spojené se stropní deskou,

Více

ELEGOHOUSE. Izolovaný základový systém. základový systém. inovativní řešení na klíč

ELEGOHOUSE. Izolovaný základový systém. základový systém. inovativní řešení na klíč ELEGOHOUSE základový systém Izolovaný základový systém inovativní řešení na klíč Základová konstrukce je jednou z nejdůležitějších částí stavby. Vady základových konstrukcí se vždy výrazně promítají do

Více

Palivová soustava zážehového motoru Tvorba směsi v karburátoru

Palivová soustava zážehového motoru Tvorba směsi v karburátoru Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.11.2013 Název zpracovaného celku: Palivová soustava zážehového motoru Tvorba směsi v karburátoru Úkolem palivové soustavy je dopravit

Více

Nosné ocelové konstrukce z hlediska udržitelného rozvoje ve výstavbě Řešený příklad. Září 2014

Nosné ocelové konstrukce z hlediska udržitelného rozvoje ve výstavbě Řešený příklad. Září 2014 Nosné ocelové konstrukce z hlediska udržitelného rozvoje ve výstavbě Řešený příklad Září 2014 Agenda 12/10/2014 2 12/10/2014 3 Rozsah studie Cílem této studie je porovnat dopad kancelářské budovy postavené

Více

New York, USA POLYCON AURA. Vzhled. Základní INFORMACE

New York, USA POLYCON AURA. Vzhled. Základní INFORMACE Aura New York, USA POLYCON AURA Základní INFORMACE Vzhled Sklovláknobeton POLYCON je nehořlavý (A1) betonový kompozit, který díky svým vlastnostem, rozšiřuje možnosti architektonických požadavků v řešení

Více

RYCHLOST BEZ PŘÍPOJKY VODY BEZ EL. PROUDU JEDNODUCHOST REALIZACE VHODNÉ PRO PODLAHOVÉ VYTÁPĚNÍ HOSPODÁRNOST. www.anhyment.cz

RYCHLOST BEZ PŘÍPOJKY VODY BEZ EL. PROUDU JEDNODUCHOST REALIZACE VHODNÉ PRO PODLAHOVÉ VYTÁPĚNÍ HOSPODÁRNOST. www.anhyment.cz BEZ PŘÍPOJKY VODY BEZ EL. PROUDU JEDNODUCHOST REALIZACE VHODNÉ PRO PODLAHOVÉ VYTÁPĚNÍ HOSPODÁRNOST RYCHLOST www.anhyment.cz Anhyment Anhyment je litá podlahová směs na bázi síranu vápenatého se samonivelačním

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

Produkt- Titan Fuel Plus. Multifunkční zušlechťující přísada do motorové nafty zlepšující její provozní vlastnosti. Popis. Výhody.

Produkt- Titan Fuel Plus. Multifunkční zušlechťující přísada do motorové nafty zlepšující její provozní vlastnosti. Popis. Výhody. Titan Fuel Plus Multifunkční zušlechťující přísada do motorové nafty zlepšující její provozní vlastnosti Popis Multifunkční zušlechťující přísada do motorové nafty pro přeplňované i nepřeplňované vznětové

Více

BETON. S malým množstvím vody vede reakce při normální teplotě ke vzniku hydrosilikátů podle schématu:

BETON. S malým množstvím vody vede reakce při normální teplotě ke vzniku hydrosilikátů podle schématu: BETON HYDRATACE CEMENTOVÉHO BETONU Po smísení s vodou cement tuhne a postupně nabývá na pevnosti. Tuhnutí a tvrdnutí probíhá za aktivní účasti vody. Reakcí s vodou se původně bezvodé minerální fáze cementu

Více

statigrafie barevných vrstev identifikace pigmentů určení složení omítek typ pojiva a kameniva, zrnitost kameniva

statigrafie barevných vrstev identifikace pigmentů určení složení omítek typ pojiva a kameniva, zrnitost kameniva Chemicko-technologický průzkum Akce: Průzkum a restaurování fragmentů nástěnných maleb na východní stěně presbytáře kostela sv. Martina v St. Martin (Dolní Rakousko) Zadání průzkumu: statigrafie barevných

Více

TERMOMECHANICKÉ VLASTNOSTI

TERMOMECHANICKÉ VLASTNOSTI TERMOMECHANICKÉ VLASTNOSTI ŽÁROBETONŮ (ŽB) Jiří Hamáček, Jaroslav Kutzendörfer VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav skla a keramiky & ŽÁROHMOTY, spol. s r.o. Třemošná VŠCHT, Praha 2008 TERMOMECHANICKÉ

Více

Zemní plyn v dopravě. Ing. Oldřich Petržilka prezident, Česká plynárenská unie. 8.6.2010, Autotec, Brno

Zemní plyn v dopravě. Ing. Oldřich Petržilka prezident, Česká plynárenská unie. 8.6.2010, Autotec, Brno Zemní plyn v dopravě Ing. Oldřich Petržilka prezident, Česká plynárenská unie 8.6.2010, Autotec, Brno Česká plynárenská unie POSLÁNÍ: Soustavné zlepšování podmínek pro podnikání v plynárenském oboru v

Více

Vnější kontaktně zateplovací systémy Termo + s.r.o. se člení na: Obvyklé složení vnějších kontaktních zateplovacích systémů (ETICS) Oblast použití

Vnější kontaktně zateplovací systémy Termo + s.r.o. se člení na: Obvyklé složení vnějších kontaktních zateplovacích systémů (ETICS) Oblast použití Firma se také zabývá zateplovacími systémy Termo+ se sídlem v Ústí nad Labem která je součástí společnosti TERMO + holding a.s., na stavebním trhu působí od roku 1993 a orientuje se výhradně na dodávky

Více

materiál č. šablony/č. sady/č. materiálu: Autor:

materiál č. šablony/č. sady/č. materiálu: Autor: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_CH8SA_01_03_14

Více

Zkušební postupy pro beton dle ČSN EN 206

Zkušební postupy pro beton dle ČSN EN 206 Zkušební postupy pro beton dle ČSN EN 206 Tomáš Vymazal Obsah prezentace Zkušební postupy pro zkoušení čerstvého betonu Konzistence Obsah vzduchu Viskozita, schopnost průtoku, odolnost proti segregaci

Více

CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VÝPOČET HMOTNOSTI REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI

Více

01 03 06 O Jiná hlušina neuvedená pod čísly 01 03 04 a 01 03 05 A Nelze

01 03 06 O Jiná hlušina neuvedená pod čísly 01 03 04 a 01 03 05 A Nelze SEZNAM ODPADŮ, KTERÉ SE SMĚJÍ UKLÁDAT NA SKLÁDKU ORLÍK IV příloha č. 3 Odpady lze na skládce uložit na základě vlastností určených charakterem, makroskopickým popisem, složením a původem uvedených odpadů

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

EUROVIA Services, s.r.o. Centrální laboratoř U Michelského lesa 370, 140 00Praha 4 Krč

EUROVIA Services, s.r.o. Centrální laboratoř U Michelského lesa 370, 140 00Praha 4 Krč Pracoviště zkušební laboratoře: 1. CL1 Krč U Michelského lesa 370, 140 00 Praha 4 2. CL2 Klecany U Obalovny 50, 250 67 Klecany 3. CL3 Herink Herink 26, 251 70 Praha 4. CL4 Mobilní laboratoř zemin Svatopluka

Více

NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU - PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Příprava před zateplením fasády. 3. výběr typu fasádní omítky

Příprava před zateplením fasády. 3. výběr typu fasádní omítky Příprava před zateplením fasády 3. výběr typu fasádní omítky Výběr vhodné omítky závisí na požadovaných vlastnostech materiálu, podmínkách aplikace, požadavcích vyplývajících z konkrétního typu budovy,

Více

POŠKOZENÍ DLAŽBY VÍCEÚČELOVÉHO KULTURNÍHO ZAŘÍZENÍ

POŠKOZENÍ DLAŽBY VÍCEÚČELOVÉHO KULTURNÍHO ZAŘÍZENÍ POŠKOZENÍ DLAŽBY VÍCEÚČELOVÉHO KULTURNÍHO ZAŘÍZENÍ Jan Pěnčík 1, Miloš Lavický 2 Abstrakt Z četných případů poruch betonových podlah vyplývá, že se podceňuje správný návrh a provedení betonové vrstvy plovoucí

Více