Kvalita dat a informací základní omezení IT ve veřejné správě

Rozměr: px
Začít zobrazení ze stránky:

Download "Kvalita dat a informací základní omezení IT ve veřejné správě"

Transkript

1 Kvalita dat a informací základní omezení IT ve veřejné správě Jaroslav Král, Michal Žemlička Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra softwarového inženýrství Malostranské nám. 25, Praha 1 Abstrakt Efektivnost využití informačních technologií silně závisí na kvalitě dat. V aplikacích se mnohdy mlčky chybně předpokládá, že potřebná data jsou vždy k dispozici za rozumnou cenu, v dostatečné kvalitě a za rozumnou cenu. V poslední dekádě význam kvality dat značně zesílil. Důvodem je potřeba podpory managementu a rozvoj manažerských informačních systémů. Ty musí využívat data a informace různé kvality dostupné např. na Internetu. Problémy kvality dat jsou tématem řady konferencí, pokusů o standardizaci (ISO) a dokonce i zákonů (viz US zákon Data Quality Act). Kvalita dat a informací není u nás dostatečně legislativně ošetřena. To je zásadní nedostatek, který do značné míry vylučuje možnost vyžadování, sledování, a kontrolu kvality dat a informací. To neumožňuje obranu proti takovým opatřením, které kvalitu dat a informací, především dostupnost, zbytečně zhoršují. Budou uvedeny příklady nepříznivých důsledků současného stavu pro celou informatiku. Klíčová slova Aspekty kvality dat a informací, legislativa kvality dat, nedostupnost informací a řízení státu. 1 Úvod Kvalita dat a informací je problém, jehož složitost je často, především ve veřejné správě, podceňována. Kvalita dat a informací je vícedimensionální pojem, protože má i takové aspekty, jako je včasnost, dostupnost a důvěryhodnost. Význam aspektů kvality roste i v podnikové sféře. I tam se stále více pracuje s daty a informacemi, která nemusí být přesná či věrohodná. Rozvoj internetu tento problém velmi zesílil. Nízká kvalita dat státní správy a především nedořešení problému dostupnosti informací, která jsou ze zákona veřejná byť byla odvozena z neveřejných dat, významně omezuje uplatnění práva občanů na informace a také zásadně snižuje efektivnost řízení podniků a především státu. Příkladem jsou problémy s registrem občanů. To, že u nás není kvalita dat a informací dostatečně legislativně ošetřena, je zásadní nedostatek, který do značné míry vylučuje možnost vyžadování, sledování, a kontrolu kvality dat a informací. To neumožňuje obranu proti takovým opatřením, která kvalitu dat a informací (především jejich dostupnost) zbytečně zhoršují. Budou uvedeny atributy kvality dat, kterých se to především týká, a budou uvedeny příklady hrozivých důsledků současného stavu pro celou informatiku. Ukážeme, jak zásadním a někdy nečekaným způsobem ovlivňuje kvalita dat (přesnost, včasnost, dostupnost, konsistence, atd.) cíle a způsoby implementace informačních systémů a architekturu informačních systémů. Ukážeme také, jak to zbytečně omezuje funkce těchto systémů. Jinými slovy, současná situace výrazně snižuje kvalitu využití informačních technologií, což je nevýhodné pro stát a pro IT odborníky zvláště. Dlouhodobě to vede k rozsáhlým ztrátám a ohrožuje to i prosperitu ekonomiky a státu. IT veřejnost by se měla ve svém zájmu výrazně zasadit o změnu této situace. SYSTEMS INTEGRATION

2 JAROSLAV KRÁL, MICHAL ŽEMLIČKA 2 Od technologie k funkcím Teorie a praxe databází přinesla výsledky, o kterých mnozí pochybovali, zda budou vůbec možné. Je si ovšem třeba uvědomit, že jádrem těchto mnohdy zázračných výsledků je převážně řešení problému jak data ukládat, vyhledávat a prezentovat. Otázka, jaké kvality jsou data uložená v databázi (přízemně řečeno, zda se jedná o numera nebo hausnumera), zůstávala stranou zájmu. Existovalo pro to několik důvodů: Prvé aplikace databází se převážně týkaly operativy, jako je účetnictví nebo skladové hospodářství. Tam bylo z podstaty věci a zavedenými postupy zajištěno, že data musela být správná kvalitní, jinak byla nepoužitelná. Bez vyřešení problému, jak data ukládat, vyhledávat a prezentovat, nemělo řešení otázky kvality dat smysl. Nebyl dostatečně rozvinut pojmový aparát umožňující specifikovat různé aspekty a dimenze kvality dat. Nebyl v podstatě potřeba. Jak uvidíme, není pro to v tomto směru ještě dnes, přes značný pokrok, dosud dostatečně jasno a je nutný další výzkum zaměřený na kvalitu informací závisejících na daných datech. Chyběly metody a způsoby zápisu atributů kvality dat do metadat a vědomí důsledků statistických vlastností a jiných metrik kvality datových souborů pro aplikace využívající data určité kvality. Situace se v poslední dekádě dramaticky změnila, neboť v devadesátých letech byla v podstatě vyřešena problematika vývoje operativní části informačních systémů včetně jejich datové vrstvy. Pokrok v praxi využívání databází vyřešil problém systémové podpory práce s daty. Pokrok v efektivnosti indexování se snížil technologie narazily na své hranice. Hlavním problémem informačních systémů se stala podpora managementu. Příkladem je e-government a e-komerce. Management musí často používat hromadná data, která mohou pocházet z různých zdrojů a která jsou různě spolehlivá, různě přesná, různě dostupná a která mají různou dobu platnosti. Pro řadu aplikací mají rozhodující význam statistické charakteristiky kvality dat. Pokrok jazyků pro zápis metadat umožnil, aby mohly být údaje o kvalitě dat rozumným způsobem dosažitelné a dostatečně flexibilní. Data v komerci a managementu mohou díky pokroku v komunikacích pocházet z velmi různých zdrojů. Taková data mohou být různé kvality, a přesto mohou být cenná a musí být používána. Někdy obsahuje krátký drb více informace než dlouhá oficiální zpráva a spousta dat. Kvalitou (dat) je podle ISO 8402 [ISO86]: Characteristics of an entity as a whole that give the capability to satisfy explicit and implicit needs: Quality of an entity is a subjective concept dependent on requirements that the user of the entity requests in an implicit or explicit manner. Quality is a multidimensional concept tied to various characteristics. Kvalita dat je poměrně nový problém, jehož formulace a cesty řešení se rychle vyvíjí. Není ustálen názor, do jaké míry mají být metriky kvality závislé na potřebách jednotlivých aplikací. Jedním z problémů volby atributů kvality dat je volba optimálního kompromisu mezi obecností a použitelností. Kvalita informací se odvozuje od kvality dat, jedná se ale o specifický problém, který je předmětem intensivního výzkumu (viz níže). Typickou úlohou je řešení problému, jaká je kvalita informací využívajících data různé kvality. 216 SYSTEMS INTEGRATION 2006

3 KVALITA DAT A INFORMACÍ ZÁKLADNÍ OMEZENÍ IT VE VEŘEJNÉ SPRÁVĚ 2.1 Subjektivní a objektivní metriky kvality dat Podobně jako u metrik kvality softwarových systémů je i u metrik kvality dat vhodné rozlišovat metriky dvojího typu: Objektivní metriky, tj. metriky, které lze vždy znovu vypočítat z dat, kterých se týkají. Objektivní metriky jsou obvykle číselné. Mezi objektivní metriky patří takové vlastnosti, jako existence okrajových či nevalidních dat, chybějící data, atp. Subjektivní metriky jsou metriky hodnotící způsob, jakým data vznikla, případně kvalitu zdroje dat. Subjektivní jsou např. metriky hodnotící důvěryhodnost dat, stupeň jejich utajení, dostupnost, atd. Subjektivní metriky odpovídají metrikám interním (in process metrics, např. doba řešení, pracnost) podle ISO 9126 [ISO91]. Proces zjišťování subjektivních metrik je nutno standardizovat. To je většinou zajišťováno předpisy, které specifikují atributy (a dimenze skupiny metrik) kvality dat, a postupy, které je nutno při sběru dat a při jejich čištění dodržovat. Přívlastek subjektivní má v případě metrik kvality dat jisté oprávnění, poněvadž tyto metriky většinou nevznikají měřením nějakého procesu, ale de facto subjektivním hodnocením vlastností dat experty založeném na zkušenostech a nikoliv na měření v běžném slova smyslu. Z definice tohoto typu metrik plyne, že při vymezování typů subjektivních metrik závisí na potřebách konkrétního uživatele a někdy dokonce jediné konkrétní aplikace. Hranice mezi subjektivními a objektivními metrikami není striktní. Pokud máme dostatečně rozsáhlý soubor, můžeme jeho střední hodnotu a směrodatnou odchylku vypočítat. V opačném případě (např. při problémech s dostupností dat) můžeme použít i kvalifikovaný odhad, tj. postupovat jako v případě subjektivních metrik. Fakt, že se takto postupovalo, by měl být zaznamenán. 3 Čištění a optimalizace dat Pod čištěním dat (data cleansing) rozumíme procesy zlepšování kvality a použitelnosti dat. Příkladem pravidel čištění dat je dotazník popsaný v [DoE05]. Jádro zlepšování kvality dat je založeno na poměrně sofistikovaných metodách vyvinutých v rámci matematické statistiky. Nejčastěji používané postupy jsou: Vylučování okrajových dat ( chyby měření ). Jde o postup, kdy se ze souboru vylučují data, která jsou zjevně nesprávná: úmyslně změněná, chybně zanesená (překlepy), chybně změněna. Jestliže například v dostatečně velkém souboru existuje číslo x, které splňuje podmínku, že x >> M n-1 +3σ n-1, kde M n-1 je průměr a σ n-1 směrodatná odchylka souboru, ze kterého bylo vyloučeno x, pak je lépe x ze souboru vyloučit. Existuje na to velmi rozvinutá teorie a postupy, které se používají především při dolování dat a také při zpracování výsledků měření v přírodních a technických vědách. Doplňování chybějících dat. V tomto případě se do souboru doplní chybějící data, aby bylo možno soubor rozumně zobrazovat (například časové řady) a přitom nedošlo k chybným výsledkům (k významným změnám charakteristik daného souboru). K dispozici jsou dávno existující algoritmy. Vyloučení duplicitních dat. Sjednocení formátů, vylučování dat s nevhodným formátem. Parciální replikace. Pokud se data používají pouze pro statistické analýzy (a to je při podpoře managementu obvyklé), lze soubory dat replikovat pouze částečně (aniž dojde k závažnější chybě). To, jak velké procento dat je třeba replikovat, závisí především na rozptylu dat a kvalitě algoritmu, který provádí výběr dat k replikaci. Úspory mohou být dramatické. SYSTEMS INTEGRATION

4 JAROSLAV KRÁL, MICHAL ŽEMLIČKA 4 Příklady metrik kvality dat Z toho, na čem jsou založena hodnocení kvality dat, vyplývá, že nejen proces vyhodnocování metrik, ale i jejich definice závisí do značné míry na potřebách konkrétního uživatele a dokonce na potřebách konkrétní aplikace. Různí uživatelé proto využívají různé soubory metrik. Detailnější rozbor metrik kvality dat lze nalézt v [PLW02], kde se doporučují i takové metriky, jako je srozumitelnost a snadnost zobrazení (srv. tab. 1). Kasnakoglu a Mayo v [KM04] navrhují pro hodnocení kvality statistických dat použití následujících často používaných metrik: Relevantnost (Relevance) míra, do jaké míry data splňují účel, pro který jsou používána. Přesnost (Accuracy) jak přesná jsou používaná data (měřeno obvykle statistickými charakteristikami pro chybu, např. směrodatná odchylka). Včasnost (Timeliness) za jakou dobu lze data aktualizovat. Dostupnost (Accessibility) jak jsou již existující data dostupná. Bariéry dostupnosti mohou být technologické, např. kapacita sítě, legislativní, např. nedořešená ochrana osobních dat, či procesní, např. nevhodné či nedostatečné informace. Porovnatelnost (Comparablity) metrika hodnotící možnost porovnávat, ale také spojovat data z různých zdrojů. Problémy mohou být s jednotností formátů či metod pořizování dat. Příkladem problému daného typu jsou obtíže při vytváření registru občanů (formát adresy). Koherence (Coherence) metrika vyjadřuje, do jaké míry byla data vytvořena podle z hlediska výsledku stejných pravidel. Britský statistický úřad k těmto metrikám doplňuje metriku Úplnost (Completeness) udávající jaká část potenciálních dat je zachycena v databázi (viz [HM01]), případně zda statistické charakteristiky dat nejsou ovlivněny výběrovými efekty. Kategorie Vnitřní, intrinsická (Intrinsic) Dostupnost (Accessibility) Kontextuální (Contextual) Reprezentační (Representational) Dimenze Přesnost (Accuracy) Objektivnost (Objectivity) Důvěryhodnost (Believability) Reputace (Reputation) Dostupnost (Accessibility, též Availability) Bezpečnost přístupu (Access security) Relevantnost (Relevancy) Přínos (Value added) Včasnost (Timeliness) Úplnost (Completeness) Rozsah (Amount of data) Interoperabilita (Interoperability) Srozumitelnost (Easy of Understanding) Výstižná a stručná reprezentace (Concise representation) Konsistentní reprezentace (Consistent representation) Tabulka 1: Dimense a atributy metriky dat podle [WZL01]. Podrobný popis významu jednotlivých metrik lze nalézt v [PLW02] 218 SYSTEMS INTEGRATION 2006

5 KVALITA DAT A INFORMACÍ ZÁKLADNÍ OMEZENÍ IT VE VEŘEJNÉ SPRÁVĚ Americký úřad Federal Highway Administration v doporučení [FfDQ] používá tyto metriky kvality dat: Přesnost, Úplnost (kolik procent všech potenciálních údajů je v databázi), Platnost (Validity kolik procent dat vyhovuje sémantickým omezením), Včasnost, Dostupnost (Accessibility), Pokrytí (Coverage do jaké míry soubor dat má vlastnosti blízké vlastnostem potenciálně nekonečného souboru, z něhož byl vybrán, tj. zda nedochází k výběrovým efektům). Toto doporučení obsahuje numerické postupy výpočtu variant jednotlivých metrik jako směrodatná odchylka, průměrná relativní chyba, atd. Viz též [UNESCO]. Rozsáhlá doporučení zaměřená na statistické atributy kvality lze nalézt v dokumentech organizace OSN Foods and Argiculture Organization (FAO). 4.1 Včasnost, přesnost a úplnost dat a servisně orientovaná architektura softwaru Tento příklad vychází ze zkušeností se systémy řízení malosériových výrob, má ale širší platnost. Výrobní systémy obvykle obsahují řízení autonomních výrobních subsystémů, které nazveme dílny. Výrobní úkoly jsou dílně zadávány z podnikové úrovně ve formě datové struktury plánu, který obsahuje jednotlivé výrobní úkoly. Výrobní úkoly jsou tvořeny posloupnostmi nebo obecněji sítěmi výrobních operací, které jsou rozepsány na jednotlivá pracoviště vícestupňovým procesem, jehož podstatná část je na podnikové úrovni. Cílem plánu je dodržet s co nejmenšími náklady termíny výrobních úkolů při maximálním využití kapacit dílny (např. málo prostojů a jiné požadavky na optimalizaci výroby). Poněvadž se jedná o malosériovou výrobu diskrétního typu nedaří se obvykle plán plnit. Důvody pro to jsou dva: 1. Data, z nichž plán vychází, jsou nedostatečně přesná a ne vždy úplná. Ne všechny stroje mohou být v daném okamžiku ve stavu, s jakým počítal plán (poškozené nářadí a jiné poruchy, které stroj nevyřadí, ale diskvalifikují ho pro určité operace, indispozice obsluhy, opotřebení stroje). To znamená, že jsou nepříznivě ovlivněny metriky úplnost, relevantnost a přesnost. 2. Plánovací algoritmy jsou algoritmicky náročné a nemohou proto aktualizovat data dostatečně rychle. To navíc znamená, že nemohou být spouštěny často (on-line), např. kdykoliv vznikne nečekaná situace, jako výpadky, nemoci obsluhy, problémy s materiálem a nářadím atd. Je tedy nepříznivě ovlivněna metrika včasnost. Praxe ukázala, že řešení může být založeno na následujícím jednoduchém principu. Plán vytvořený plánovacími moduly je uložen do datového úložiště, které je on-line využíváno řídícím systémem dílny. Plán může být upravován mistrem dílny. Podniková úroveň a řídící systém dílny se při tom chovají jako služby servisně orientovaného systému, tj. jako uzly peer-to-peer sítě. V našem příkladě jsou třeba zásahy dispečera především v těchto případech: Nečekané/vzácné události nevyplatí se je zahrnovat do rozvrhování (Vonásek je nešika, Pepa včera oslavoval, dodavatel to nestihl). Omezení kvality dat: o Nedostupná, neznámá, nepřesná (mají velký rozptyl). o Zřídka potřebná (nevyplatí se je sbírat). Potřeba on line využívat inteligenci lidí jako permanentní součást procesů. Nedostatečná kvalita dat si v diskutovaném případě vynutila, aby se v systému orientovaném na služby upustilo od požadavku, aby se komunikace uskutečňovala výhradně prostřednictvím prosté výměny zpráv (s využitím skrytých front zpráv). Komunikace se musela uskutečňovat pomocí obdoby datového úložiště, podobně jako při funkcionální dekompozici v klasických strukturovaných architekturách softwarových systémů. Řešení založené na podstatném zlepšení kvality dat nebylo ekonomicky schůdné. Kvalita dat tedy může i dost nečekaným způsobem ovlivnit způsob řešení a architekturu systému. Poznamenejme, že obdobu datového úložiště je nutné použít místo implicitních front požadavků na služby ve všech těch případech, kdy se požaduje, aby do komunikace SYSTEMS INTEGRATION

6 JAROSLAV KRÁL, MICHAL ŽEMLIČKA mohl zasahovat člověk, nebo kdy je nutné použít inteligentnější variantu komunikace mezi službami (např. komunikace s využitím přístupu publish-subscribe), než je ta, která je realizovatelná výměnou zpráv řízenou některou variantou obsluhy front, např. existence více možných adresátů zprávy (ve výše uvedeném příkladě existence záměnných pracovišť). Právě diskutovaný příklad ukazuje na zásadní význam skutečnosti, že SOSS není obvykle jen informační, ale také řídící systém. Filtrace Formátování Zdroje dat Datová úložiště Aplikace Aplikace1 Údržba Čištění Data Informace Obrázek 1: Vztah mezi daty a informacemi 5 Kvalita dat a kvalita informací V poslední době se prosazuje názor, že kvalita informace je specifický problém, který musí zohledňovat fakt, že informace je, podobně jako aplikace, které informace vyhodnocují, entita s životním cyklem. V různých etapách životního cyklu mohou být požadavky na kvalitu informací různé (včasnost proti přesnosti v různých etapách životního cyklu). V této oblasti probíhá intensivní výzkum. Na téma kvality informací se koná řada konferencí, viz např. Information Quality Conference na Kritické poznámky k jeho zavádění lze nalézt v [Red01, WRRI]. Kvalita informací závisí nejen na kvalitě dat, ale také na kvalitě zpracování (vyhodnocování) dat prováděném při vytváření informací (obr. 1). To jistě není překvapující zjištění. Má však řadu kriticky důležitých praktických důsledků. Poněvadž procedury vyhodnocování informací mají různé vlastnosti a informace samotné složitým způsobem závisí na datech, z nichž se vyhodnocují, je třeba problém závislosti kvality informací vyhodnotit pro každý typ informací znovu. Hodnocení musí zohledňovat kvalitu dat i kvalitu aplikace, která informace vyhodnocuje. Je možné zohledňovat i důvěryhodnost autora/majitele příslušné aplikace. Tento přístup by měl být stanoven legislativně. Není vždy pravda, že informace nemůže být kvalitnější než data, ze kterých je generována. Příkladem může být vylučování okrajových dat (ne vždy je žádoucí to provádět v datovém úložišti). Data mají kromě atributů kvality také další vlastnosti, týkající se práv přístupu. Mohou být v různé míře neveřejná až tajná. Stupeň utajení informací generovaný z těchto informací je obecně jiný. Jaký je v konkrétním případě, je nutné vyhodnotit (subjektivně, s případnou pomocí nějaké teorie) jak je to s právem přístupu. Údaj o bydlišti občana je chráněn zákonem o ochraně osobních údajů, počet obyvatel majících trvalý pobyt v určitém místě ochraně nepodléhá. Tato evidentní skutečnost má však velmi důležitý důsledek, který současná legislativa nedostatečně zohledňuje. Informace o počtu obyvatel dané lokality je veřejná. Při jejím výpočtu je však nutné neveřejná data o bydlišti jednotlivých osob. Nejjednodušší způsob, jak tento problém řešit, je autorizace aplikace, která generuje informaci o počtu obyvatel, zda vyhovuje podmínce, že nezveřejňuje neveřejné informace, 220 SYSTEMS INTEGRATION 2006

7 KVALITA DAT A INFORMACÍ ZÁKLADNÍ OMEZENÍ IT VE VEŘEJNÉ SPRÁVĚ a samotnou aplikaci provozovat na serveru akreditovaném pro daný účel. Pro zvýšení kontroly je možno výstup programu archivovat a případně i poloautomaticky kontrolovat. Hrozbu zneužití dat je samozřejmě žádoucí snížit i opatřeními na datové úrovni, jako je použití anonymních klíčů a kódování. Zákonem by ale mělo být stanoveno, že by to nemělo vést ke snížení dostupnosti informací, které jsou veřejné. Tento aspekt není v legislativě a hlavně v praxi dostatečně řešen. ÚOOÚ se zabývá pouze znepřístupňováním dat a není od něho vyžadováno, aby bezdůvodně nesnižoval nebo lépe zajišťoval dostupnost informací, které mohou být veřejné. Výsledek je, že IT státní správy jen velmi málo slouží k řízení státu a poskytování komplexních informací orgánům státu i občanům. Hrozivé důsledky současného stavu ukážeme na příkladě hodnocení kvality škol. Význam vzdělanosti lze jen stěží přecenit. Školství je dotováno téměř sto miliardami Kč ročně. Přesto narůstají symptomy problémů. Investoři si začínají i při vysoké nezaměstnanosti stěžovat na nedostatek kvalifikovaných pracovníků. Bližší pohled ukáže, že školy se až na výjimky nestarají o úspěšnost svých absolventů a ani rodiče se o tom mnoho nedozví. Jinými slovy chybí zpětná vazba. Situaci by pomohl zlepšit informační systém umožňující interaktivní dotazy na úspěšnost absolventů škol podle následujících jednoduchých kritériích. Jaký plat mají absolventi dané školy či oboru (nebo obojího) x roků po absolutoriu? Kolik absolventů dané střední školy úspěšně dokončilo nějakou vysokou školu (určitého typu)? Totéž pro základní školy a střední školy. Kolik absolventů zůstalo v oboru? Jaká je nezaměstnanost absolventů (škola, nebo obor, nebo obojí)? Podařilo se zjistit, že úřady a školy mají prakticky všechna data potřebná pro vyhodnocení těchto informací k dispozici. Data jsou ale skryta v systémech jednotlivých úřadů. Jsou považována za neveřejná a situace je taková, že fakticky neveřejné (možná i v elektronické podobě neexistující) jsou i výše uvedené informace o úspěšnosti absolventů. Je totiž třeba data různých úřadů integrovat. Zatím je to v podstatě možné jen pomocí rodného čísla a to ze zákona nelze, neboť je nutno chránit osobní data. Informace o příjmech jsou na pensijním úřadě a na finančních úřadech. Poměrně podrobné daje o nezaměstnanosti dokonce ve vazbě na to, co a kde kdo studoval existují na pracovních úřadech. Data jsou nekvalitní, neboť jsou nedostupná. Na úřadech existuje mnoho skrytě duplicitních dat. Ani anonymní klíče nemusí stačit, protože nelze vyloučit, že vhodným dotazem zjistím příjem konkrétního člověka. Pro výše uvedené dotazy jsou potřeba data kdy, kdo, kde, co vystudoval. Tato data na školách a snad i jinde existují, nejsou ale pro výše uvedené účely dostupná. Je samozřejmé, že by byly v principu možné nejen dotazy uvedené výše, ale i takové dotazy, jako souvislost mezi počtem hodin matematiky na střední škole nebo typem školy a úspěchem v kariéře. Zatím to není možné. Data jsou nedostupná. Státní správa by měla být povinna nejen hodnotit kvalitu dat, ale také přijímat opatření ke zlepšování kvality dat a bránit neodůvodněnému snižování kvality dat jak to dnes praktikuje ÚOOÚ. Vysoké školy by měly ze zákona spolupracovat na zpřístupňování informací o svých absolventech. Dnešní situace vede k rychlé degradaci kvality pracovní síly. Možná že není daleko situace, která je dnes už běžná na Slovensku, kde podle předsedy Slovenskej obchodnej a priemyselnej komory Mihóka mají podnikatelé problém sehnat pracovní sílu i v oblastech s 20% nezaměstnaností. Náznaky takové situace jsou i u nás. I pro nás platí slova pana Mihóka, že není možné akceptovat situaci, kdy veřejné finance dotují produkt, o který není zájem na trhu. Informatici by měli na tuto skutečnost upozorňovat a prosazovat změnu zákonů. Zatím nelze nejen v případě školství využívat potenciál IT. To ohrožuje efektivitu práce státu v případě katastrof nebo boje proti terorismu nebo, nedej bože, válečných situací. Ohrožuje to do značné míry budoucnost především informatiky. Doplatí na nevyužívání svého potenciálu, zhoršování podmínek podnikání a klesající kvalitu pracovní síly. Informatici by měli přinutit ekonomické analytiky, aby si všímali i věcí, které nastanou v delší perspektivě. Nechceme přece dopadnout tak, jako nedávno ve Francii. SYSTEMS INTEGRATION

8 JAROSLAV KRÁL, MICHAL ŽEMLIČKA 6 Závěr To, že problém hodnocení a kontroly kvality dat a informací není u nás legislativně ošetřen, je klíčový nedostatek, který zásadně snižuje efektivnost IT ve státní správě. Práce na legislativě se podle dostupných informací zaměřují spíše na ochranu dat (viz práci na anonymních klíčích, které samy o sobě nestačí zcela ochránit osobní data), než na udržování kvality informací. Tato situace má zásadní záporné důsledky pro kvalitu státní správy, stejně jako pro zodpovědné rozhodování občanů a firem. Literatura [DoE05] U.S. Department of Education: NRS State Data Quality Standards Checklist. (2005) [FfDQ] Framework for Data Quality Measurement, [FTC02] Federal Trade Commission: Data Quality Act (2002) [HM01] Haworth, M.,F. Martin, J.: Delivering and Measuring Data Quality in UK National Statistics. Office for National Statistics, UK, [ISO86] International Standard ISO/IEC 8402: Quality Management and Quality Assurance Vocabulary, International Organization for Standardization, International Electrotechnical Commission, Geneva (1986, 1994). [ISO91] International Standard ISO/IEC Information technology - Software product evaluation - Quality characteristics and guidelines for their use, International Organization for Standardization, International Electrotechnical Commission, Geneva (1991). [KM04] Kasnakoglu H., Mayo, R.: FAO Statistical Data Quality Framework: A multi-layered approach to monitoring and assessment. (2004) org/unsd/accsub/2004docs- CDQIO/1-FAO.pdf [Ker04] Kerr, K., The Development of a Data Quality Framework and Strategy for the New Zealand Ministry of Health. University of Auckland, Auckland, New Zealand. (2004). articledisplay&featureid= [PLW02] Pipino, L., Lee, Y,W., Wang, R.Y.: Data quality assessment. Communications of the ACM 45(4) (2002), [Red01] Redman, T.: Data Quality: The Field Guide, Butterworth-Heinemann, Boston, MA, [SLW97] Strong D.,M., Lee, Y,W, Wang, R.,Y.: Data quality in context. Communications of the ACM 40(5) (1997) [UNESCO] UNESCO Inst. of Statistics: Data Quality Assessment Framework (DQAF) for Education. [WRRI] The Water Resources Research Institute: The Data Quality Act: A revoluation in the role of science in policy making or a can of worms?, [WZL01] Wang, R,Y., Ziad, M., Lee, Y.,W.: Data Quality, The Kluwer International Series on Advances in Database Systems Volume 23, Springer, Berlin, SYSTEMS INTEGRATION 2006

Kvalita dat. Jaroslav Král Michal Žemlička Katedra SW inženýrství MFF UK. kvalita dat 1

Kvalita dat. Jaroslav Král Michal Žemlička Katedra SW inženýrství MFF UK. kvalita dat 1 Kvalita dat Jaroslav Král Michal Žemlička Katedra SW inženýrství MFF UK kvalita dat 1 Co je kvalita, ISO 8402 Characteristics of an entity as a whole that give the capability to satisfy explicit and implicit

Více

Informační systémy ve výuce na PEF Information Systems in teaching at the FEM

Informační systémy ve výuce na PEF Information Systems in teaching at the FEM Informační systémy ve výuce na PEF Information Systems in teaching at the FEM Edita Šilerová, Čestmír Halbich, Jana Hřebejková Cíle Předmět Informační systémy je postupně od roku 1994 zařazován na všechny

Více

Big Data a oficiální statistika. Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc.

Big Data a oficiální statistika. Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc. Big Data a oficiální statistika Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc. Obsah příspěvku Charakteristiky Big Data Výzvy a úskalí z perspektivy statistiky Výzvy z perspektivy computing

Více

Kvalita procesu vývoje SW. Jaroslav Žáček jaroslav.zacek@osu.cz

Kvalita procesu vývoje SW. Jaroslav Žáček jaroslav.zacek@osu.cz Kvalita procesu vývoje SW Jaroslav Žáček jaroslav.zacek@osu.cz Vývoj software a jeho kvalita Samotný vývoj je rozsáhlá a složitá disciplína. Většina SW projektů (v průměru 70 %) je podhodnocena či zpožděna.

Více

INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005

INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005 INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005 AGENDA definice IS, zavedení pojmů možnosti a rozdělení typická struktura technologie nasazení praktická ukázka

Více

Úvodní přednáška. Význam a historie PIS

Úvodní přednáška. Význam a historie PIS Úvodní přednáška Význam a historie PIS Systémy na podporu rozhodování Manažerský informační systém Manažerské rozhodování Srovnávání, vyhodnocování, kontrola INFORMACE ROZHODOVÁNÍ organizace Rozhodovacích

Více

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?

Více

5 let zkušeností s projekty OEE - přínosy pro klienty

5 let zkušeností s projekty OEE - přínosy pro klienty 5 let zkušeností s projekty OEE - přínosy pro klienty Zvýšení efektivity výroby díky datům a informacím v souvislosti s: organizačními změnami motivací výrobního týmu (operátorů, mistrů, ) Snížení objemu

Více

Procesní řízení. Hlavní zásady a praxe dodavatele Komix

Procesní řízení. Hlavní zásady a praxe dodavatele Komix Procesní řízení Hlavní zásady a praxe dodavatele Komix 1 Obsah prezentace Teoretická část (menšího objemu) orientace na zákazníka hodnocení procesu podmínky procesního řízení cyklus zlepšování procesu

Více

Je možné efektivně používat procesně orientované pracovní postupy při zdravotní péči?

Je možné efektivně používat procesně orientované pracovní postupy při zdravotní péči? Je možné efektivně používat procesně orientované pracovní postupy při zdravotní péči? Miloš Suchý 1, Martina Pátá 1, Richard Matyáš 2 1 Institut pro aplikovaný výzkum, edukaci a řízení ve zdravotnictví,

Více

INFORMAČNÍ SYSTÉM VIDIUM A VYUŽITÍ MODERNÍCH TECHNOLOGIÍ

INFORMAČNÍ SYSTÉM VIDIUM A VYUŽITÍ MODERNÍCH TECHNOLOGIÍ INFORMAČNÍ SYSTÉM VIDIUM A VYUŽITÍ MODERNÍCH TECHNOLOGIÍ Michal Brožek, Dominik Svěch, Jaroslav Štefaník MEDIUM SOFT a.s., Cihelní 14, 702 00 Ostrava, ČR Abstrakt Neustále rostoucí význam sběru dat, možnost

Více

WAMS - zdroj kvalitní ch dat pro analý zý stavu sí tí a pro nové éxpértní sýsté mý

WAMS - zdroj kvalitní ch dat pro analý zý stavu sí tí a pro nové éxpértní sýsté mý WAMS - zdroj kvalitní ch dat pro analý zý stavu sí tí a pro nové éxpértní sýsté mý Daniel Juřík, Antonín Popelka, Petr Marvan AIS spol. s r.o. Brno Wide Area Monitoring Systémy (WAMS) umožňují realizovat

Více

MANAŽER KVALITY PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ ZPŮSOBILOSTI CO 4.4/2007

MANAŽER KVALITY PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ ZPŮSOBILOSTI CO 4.4/2007 Gradua-CEGOS, s.r.o., Certifikační orgán pro certifikaci osob č. 3005 akreditovaný Českým institutem pro akreditaci, o.p.s. podle ČSN EN ISO/IEC 17024 MANAŽER KVALITY PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ

Více

PowerOPTI Řízení účinnosti tepelného cyklu

PowerOPTI Řízení účinnosti tepelného cyklu PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika

Více

3. Data management, architektury systémů.

3. Data management, architektury systémů. 3. Data management, architektury systémů. Osnova 1. Data management principy, koncepce zpracování dat 2. Architektura klient server 3. Třivrstvá architektura 4. Konfederativní systémy Výklad 1. Data management

Více

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ Podle toho, zda informační systém funguje na operativní, taktické nebo strategické řídicí úrovni, můžeme systémy rozdělit do skupin. Tuto pyramidu

Více

Potřeba vypracovat Strategický plán rozvoje ITS pro ČR

Potřeba vypracovat Strategický plán rozvoje ITS pro ČR Potřeba vypracovat Strategický plán rozvoje ITS pro ČR Poziční dokument Sdružení pro dopravní telematiku Předkládaný text je pozičním dokumentem Sdružení pro dopravní telematiku navazujícím na předchozí

Více

Příspěvek je věnován základním informacím o způsobu volby vhodné strategie řízení kontinuity činností v organizaci.

Příspěvek je věnován základním informacím o způsobu volby vhodné strategie řízení kontinuity činností v organizaci. Mgr. Monika Johaníková Ochrana & Bezpečnost 2013, ročník II., č. 3 (podzim), ISSN 1805-5656 Stanovení strategie řízení kontinuity činností Anotace Příspěvek je věnován základním informacím o způsobu volby

Více

Dominik Vymětal. Informační technologie pro praxi 2009, Ostrava 1.-2.10.2009 1

Dominik Vymětal. Informační technologie pro praxi 2009, Ostrava 1.-2.10.2009 1 Dominik Vymětal 2009, Ostrava 1.-2.10.2009 1 Procesní model Výhody Orientace na konkrétní činnosti a možnost reengineeringu Nevýhody Malá orientace na průřezové nebo opakované činnosti Modely na základě

Více

Uznávání předmětů ze zahraničních studijních pobytů

Uznávání předmětů ze zahraničních studijních pobytů Uznávání předmětů ze zahraničních studijních pobytů Podnikání a administrativa 7 Mezinárodní obchod Ekonometrie Obecná ekonomie III 8 Velkoobchod a maloobchod Management 9 Marketingové řízení Strategický

Více

Business Intelligence

Business Intelligence Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma

Více

Kvalitní data kvalitní agendy

Kvalitní data kvalitní agendy Kvalitní data kvalitní agendy Kvalita dat a její zajišťování v agendových systémech veřejné správy Připraveno pro konferenci ISSS 2010 Ing. Jiří Vácha Hradec Králové, 13.4.2010 Adastra Group Agenda Základní

Více

Posouzení vlivů Programu rozvoje Libereckého kraje 2007-2013 na životní prostředí. Veřejné projednání Liberec, 9. srpna 2007 Mgr.

Posouzení vlivů Programu rozvoje Libereckého kraje 2007-2013 na životní prostředí. Veřejné projednání Liberec, 9. srpna 2007 Mgr. Posouzení vlivů Programu rozvoje Libereckého kraje 2007-2013 na životní prostředí Veřejné projednání Liberec, 9. srpna 2007 Mgr. Michal Musil Obsah prezentace Základní informace o SEA Metodický přístup

Více

Řízení kybernetické a informační bezpečnosti

Řízení kybernetické a informační bezpečnosti Řízení kybernetické a informační bezpečnosti Martin Hanzal předseda sekce Kybernetická a informační bezpečnost AOBP CEVRO Institut, 22. dubna 2014 Sekce Kybernetická a informační bezpečnost Je nevládní,

Více

DŮVĚRYHODNÁ ELEKTRONICKÁ SPISOVNA

DŮVĚRYHODNÁ ELEKTRONICKÁ SPISOVNA DŮVĚRYHODNÁ ELEKTRONICKÁ SPISOVNA Pavel Pačes Listopad 2009 Seminář E-spis Elektronická spisovna Agendové aplikace Vzhledem k tomu, že některé dokumenty mají skartační lhůty 30, 50 i více let, je nutno

Více

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1 Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové

Více

Bezpečnostní normy a standardy KS - 6

Bezpečnostní normy a standardy KS - 6 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Bezpečnostní normy a standardy KS - 6 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova historický

Více

Základy business intelligence. Jaroslav Šmarda

Základy business intelligence. Jaroslav Šmarda Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování

Více

MANAŽERSKÉ ROZHODOVÁNÍ. Zpracoval Ing. Jan Weiser

MANAŽERSKÉ ROZHODOVÁNÍ. Zpracoval Ing. Jan Weiser MANAŽERSKÉ ROZHODOVÁNÍ Zpracoval Ing. Jan Weiser Obsah výkladu Rozhodovací procesy a problémy Dvě stránky rozhodování Klasifikace rozhodovacích procesů Modely rozhodování Nástroje pro podporu rozhodování

Více

Co nového ve spisové službě? Národní standard pro elektronické systémy spisové služby a jeho optimalizace

Co nového ve spisové službě? Národní standard pro elektronické systémy spisové služby a jeho optimalizace Co nového ve spisové službě? Národní standard pro elektronické systémy spisové služby a jeho optimalizace Tomáš Dvořák, Archiv hl. města Prahy Radek Pokorný, Státní okresní archiv Hradec Králové DRMS Forum

Více

HODNOCENÍ VÝKONNOSTI PODNIKU VE SPOJITOSTI SE STRATEGICKÝMI CÍLY

HODNOCENÍ VÝKONNOSTI PODNIKU VE SPOJITOSTI SE STRATEGICKÝMI CÍLY 29 HODNOCENÍ VÝKONNOSTI PODNIKU VE SPOJITOSTI SE STRATEGICKÝMI CÍLY POKORNÝ Karel Abstrakt: Metoda Balanced Scorecard (BSC) její podstata, obsah a principy. Vztah BSC ke strategickému a operativnímu řízení

Více

Prognostické metody. Prognostické metody. Vybrané prognostické metody ANALÝZA DAT V REGIONALISTICE. Doc. Ing. Alois Kutscherauer, CSc.

Prognostické metody. Prognostické metody. Vybrané prognostické metody ANALÝZA DAT V REGIONALISTICE. Doc. Ing. Alois Kutscherauer, CSc. Prognostické metody ANALÝZA DAT V REGIONALISTICE Prognostické metody Doc. Ing. Alois Kutscherauer, CSc. Prognostická praxe uplatňuje velké množství různých přístupů a metod (formalizovaných, intuitivních

Více

CobiT. Control Objectives for Information and related Technology. Teplá u Mariánských Lázní, 6. října 2004

CobiT. Control Objectives for Information and related Technology. Teplá u Mariánských Lázní, 6. října 2004 CobiT Control Objectives for Information and related Technology Teplá u Mariánských Lázní, 6. října 2004 Agenda Základy CobiT Pojem CobiT Domény CobiT Hodnocení a metriky dle CobiT IT Governance Řízení

Více

SOUHRNNÉ VÝSLEDKY PROJEKTŮ

SOUHRNNÉ VÝSLEDKY PROJEKTŮ SOUHRNNÉ VÝSLEDKY PROJEKTŮ CZ.1.04/1.1.00/46.00001 Prohlubování a zvyšování úrovně odborných znalostí nelékařských zdravotnických pracovníků a jiných odborných pracovníků ve zdravotnictví se zaměřením

Více

Zdravotnická informatika z pohledu technických norem ISO a EN. RNDr. Vratislav Datel, CSc. Praha 26. dubna 2011

Zdravotnická informatika z pohledu technických norem ISO a EN. RNDr. Vratislav Datel, CSc. Praha 26. dubna 2011 Zdravotnická informatika z pohledu technických norem ISO a EN RNDr. Vratislav Datel, CSc. Praha 26. dubna 2011 Co je technická norma? Technická norma je dokumentovaná úmluva obsahující technické specifikace

Více

Thursday, September 8, 2011. Informační systém ORG Eva Vrbová ředitelka Odboru základních identifikátorů

Thursday, September 8, 2011. Informační systém ORG Eva Vrbová ředitelka Odboru základních identifikátorů Informační systém ORG Eva Vrbová ředitelka Odboru základních identifikátorů Identifikátory fyzických osob Rodné číslo Občané ČR Cizinci s trvalým pobytem v ČR Číslo zdravotního pojištěnce Strukturou kopíruje

Více

IQ - SixSigma. IQ SixSigma Software pro analýzu a sledování procesů

IQ - SixSigma. IQ SixSigma Software pro analýzu a sledování procesů IQ - SixSigma IQ SixSigma Popis: IQ-SixSigma je software vyvinutý pro analýzu a sledování procesů. Slouží ke statistickému řízení procesů (SPC Statistical Process Control). Může se jednat o technologické,

Více

PRINCIPY PRO PŘÍPRAVU NÁRODNÍCH PRIORIT VÝZKUMU, EXPERIMENTÁLNÍHO VÝVOJE A INOVACÍ

PRINCIPY PRO PŘÍPRAVU NÁRODNÍCH PRIORIT VÝZKUMU, EXPERIMENTÁLNÍHO VÝVOJE A INOVACÍ RADA PRO VÝZKUM, VÝVOJ A INOVACE PRINCIPY PRO PŘÍPRAVU NÁRODNÍCH PRIORIT VÝZKUMU, EXPERIMENTÁLNÍHO VÝVOJE A INOVACÍ 1. Úvod Národní politika výzkumu, vývoje a inovací České republiky na léta 2009 až 2015

Více

Seznámení s novým vydáním normy ISO 15197:2013. Drahomíra Springer. ÚLBLD VFN a 1.LF UK Praha

Seznámení s novým vydáním normy ISO 15197:2013. Drahomíra Springer. ÚLBLD VFN a 1.LF UK Praha Seznámení s novým vydáním normy ISO 15197:2013 Drahomíra Springer ÚLBLD VFN a 1.LF UK Praha Glukometr POCT Selfmonitoring Malý, spolehlivý, správný Zdravotnictví a jeho zásadní otázka cena kvalita dostupnost

Více

SOUBOR OTÁZEK PRO INTERNÍ AUDIT (Checklist)

SOUBOR OTÁZEK PRO INTERNÍ AUDIT (Checklist) SOUBOR OTÁZEK PRO INTERNÍ AUDIT (Checklist) Oblast 1. STRATEGICKÉ PLÁNOVÁNÍ Jsou identifikovány procesy v takovém rozsahu, aby byly dostačující pro zajištění systému managementu jakosti v oblasti vzdělávání?

Více

Logistika v údržbě. Logistika - definice

Logistika v údržbě. Logistika - definice Logistika v údržbě Řízení zásob náhradních dílů a toků materiálu Logistika - definice Logistika představuje integraci materiálového a informačního toku jedná se o integrující vědu (Filkenstein 1988) Logistika

Více

webmarketin Základní moduly aplikace

webmarketin Základní moduly aplikace webmarketin Aplikace webmarketing je komplexní online nástroj určený pro podporu a řízení marketingu a CRM ve společnosti. Její součástí jsou webové ankety, SMS kampaně nebo newslettery, které lze spravovat

Více

GIS Libereckého kraje

GIS Libereckého kraje Funkční rámec Zpracoval: Odbor informatiky květen 2004 Obsah 1. ÚVOD...3 1.1. Vztah GIS a IS... 3 2. ANALÝZA SOUČASNÉHO STAVU...3 2.1. Technické zázemí... 3 2.2. Personální zázemí... 3 2.3. Datová základna...

Více

Vyhledávání nebo nalezení informací

Vyhledávání nebo nalezení informací Vyhledávání nebo nalezení informací Vilém Sklenák sklenak@vse.cz Vysoká škola ekonomická, fakulta informatiky a statistiky, katedra informačního a znalostního inženýrství Inforum2012, 23. 5. 2012 Vilém

Více

ÚVOD DO ENERGETICKÉHO MANAGEMENTU

ÚVOD DO ENERGETICKÉHO MANAGEMENTU ÚVOD DO ENERGETICKÉHO MANAGEMENTU Karel Zubek Vsetín 18 dubna 2013 Spotřeba a výhled celosvětové spotřeby energií Světová poptávka po elektrické energii vzroste za čtvrtstoletí do roku 2035 o 70%, tedy

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Katalog služeb a podmínky poskytování provozu

Katalog služeb a podmínky poskytování provozu Příloha č. 1 Servisní smlouvy Katalog služeb a podmínky poskytování provozu Část P2_1 P2_1_Katalog služeb a podmínky poskytování provozu 1 Obsah 1 OBSAH... 2 2 DEFINICE POJMŮ... 3 3 DEFINICE SLUŽEB, KOMPONENT

Více

P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1. Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1

P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1. Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1 P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1 Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1 Vznik a historie projektového řízení Akad. rok 2015/2016, LS Projektové řízení a marketing

Více

Seznámení s projektem MPSV Podpora procesů v sociálních službách. Radek Suda Olympik hotel - konference 17. 4. 2003 Praha

Seznámení s projektem MPSV Podpora procesů v sociálních službách. Radek Suda Olympik hotel - konference 17. 4. 2003 Praha Seznámení s projektem MPSV Podpora procesů v sociálních službách Radek Suda Olympik hotel - konference 17. 4. 2003 Praha Problematické sociální jevy a vliv sociálních služeb na jejich řešení (A2) Mapování

Více

Podpora zdraví v malých a středních podnicích u nás a ve světě

Podpora zdraví v malých a středních podnicích u nás a ve světě Podpora zdraví v malých a středních podnicích u nás a ve světě MUDr. Jarmila Vavřinová Státní zdravotní ústav Centrum pracovního lékařství SZÚ červen 2007 Obsah sdělení 1. Charakteristika MSP 2. Strategie

Více

Kvalita ve veřejné správě. Ing. Mgr. David Sláma ředitel odboru strategického rozvoje a koordinace veřejné správy Ministerstvo vnitra

Kvalita ve veřejné správě. Ing. Mgr. David Sláma ředitel odboru strategického rozvoje a koordinace veřejné správy Ministerstvo vnitra Kvalita ve veřejné správě Ing. Mgr. David Sláma ředitel odboru strategického rozvoje a koordinace veřejné správy Ministerstvo vnitra Kvalita ve veřejné správě Kvalita ve veřejné správě = míra naplňování

Více

Transmisní mechanismy nestandardních nástrojů monetární politiky

Transmisní mechanismy nestandardních nástrojů monetární politiky Transmisní mechanismy nestandardních nástrojů monetární politiky Petr Šimíček Abstrakt: Cílem práce je popsat vliv nestandardního nástroje monetární politiky - kvantitativního uvolňování (QE) na ekonomiky

Více

VZDĚLÁVÁNÍ V OBLASTI KYBERNETICKÉ BEZPEČNOSTI NA UNIVERZITĚ OBRANY I. ČÁST. pplk. Ing. Petr HRŮZA, Ph.D. petr.hruza@unob.cz Univerzita obrany Brno

VZDĚLÁVÁNÍ V OBLASTI KYBERNETICKÉ BEZPEČNOSTI NA UNIVERZITĚ OBRANY I. ČÁST. pplk. Ing. Petr HRŮZA, Ph.D. petr.hruza@unob.cz Univerzita obrany Brno VZDĚLÁVÁNÍ V OBLASTI KYBERNETICKÉ BEZPEČNOSTI NA UNIVERZITĚ OBRANY I. ČÁST pplk. Ing. Petr HRŮZA, Ph.D. petr.hruza@unob.cz Univerzita obrany Brno Struktura Univerzity obrany Fakulta vojenského leadershipu

Více

ISM Online. Informační systém pro správu flotily

ISM Online. Informační systém pro správu flotily ISM Online Informační systém pro správu flotily ISM Online spojuje obchodní a technická data vozíku. ISM Online je webová aplikace s intuitivním ovládáním, která nabízí celou řadu možností reportingu.

Více

CA Business Service Insight

CA Business Service Insight SPECIFIKACE PRODUKTU: CA Business Service Insight CA Business Service Insight agility made possible Díky produktu CA Business Service Insight budete vědět, které služby jsou v rámci vaší společnosti využívány,

Více

3. Očekávání a efektivnost aplikací

3. Očekávání a efektivnost aplikací VYUŽÍVANÍ INFORMAČNÍCH SYSTÉMŮ V ŘÍZENÍ FIREM Ota Formánek 1 1. Úvod Informační systémy (IS) jsou v současnosti naprosto nezbytné pro úspěšné řízení firem. Informačním ním systémem rozumíme ucelené softwarové

Více

Otázky kurzu 4IT417 Řízení podnikové informatiky verze z 1/2/2009. 1.Podniková informatika pojmy a komponenty

Otázky kurzu 4IT417 Řízení podnikové informatiky verze z 1/2/2009. 1.Podniková informatika pojmy a komponenty Otázky kurzu 4IT417 Řízení podnikové informatiky verze z 1/2/2009 1.Podniková informatika pojmy a komponenty (1) Objasněte pojmy: IS, ICT, ICT služba, ICT proces, ICT zdroj. Jakou dokumentaci k ICT službám,

Více

Sociální inovace. Mgr. Ivo Škrabal

Sociální inovace. Mgr. Ivo Škrabal Sociální inovace Mgr. Ivo Škrabal Obsah Sociální ekonomika Sociální podnikání Inovace Sociální inovace Příklady Sociální ekonomika teorie o má za úkol hledat a vytvářet příležitosti pro osoby ohrožené

Více

CZ.1.07/1.3.49/01.0002

CZ.1.07/1.3.49/01.0002 Název projektu: Rozvoj klíčových kompetencí zástupců ředitele na školách a školských zařízeních Reg. č. projektu: Modul : Uplatnění řízení týmů a projektů v praxi Pro vyžití ve školních projektech Jde

Více

MINISTERSTVO VNITRA ČR

MINISTERSTVO VNITRA ČR Standard agendy 20.3.2016 A 3 Verze 1.0 (Návrh standardu) Úroveň: ústřední správní úřady Odbor egovernmentu MINISTERSTVO VNITRA ČR OBSAH 1 STANDARDIZACE AGEND... 2 1.1 CÍLE A DŮVODY PRO VYTVÁŘENÍ STANDARDŮ...

Více

www.galenis.cz Elektronická zdravotní dokumentace pacienta a proč Galenis?

www.galenis.cz Elektronická zdravotní dokumentace pacienta a proč Galenis? www.galenis.cz Elektronická zdravotní dokumentace pacienta a proč Galenis? Některé aspekty a otazníky kolem budování ehealth v ČR a některé odpovědi, které s budováním ehealth a elektronickou zdravotní

Více

Dlouhodobé ukládání elektronických záznamů pacienta. Markéta Bušková ECM konzultant, SEFIRA

Dlouhodobé ukládání elektronických záznamů pacienta. Markéta Bušková ECM konzultant, SEFIRA Dlouhodobé ukládání elektronických záznamů pacienta Markéta Bušková ECM konzultant, SEFIRA Agenda Přínosy a problémy elektronizace zdravotních záznamů Standardy a normy Jak na elektronické záznamy Shrnutí

Více

Vysoká škola finanční a správní, o.p.s. Katedra řízení podniku a podnikové ekonomiky. Metodické listy pro předmět ŘÍZENÍ PODNIKU 2

Vysoká škola finanční a správní, o.p.s. Katedra řízení podniku a podnikové ekonomiky. Metodické listy pro předmět ŘÍZENÍ PODNIKU 2 Vysoká škola finanční a správní, o.p.s. Katedra řízení podniku a podnikové ekonomiky Metodické listy pro předmět ŘÍZENÍ PODNIKU 2 Studium předmětu umožní studentům základní orientaci v procesech, které

Více

ŘÍZENÍ INFORMAČNÍ BEZPEČNOSTI V ORGANIZACI. Ing. Jiřina Petříková Informační technologie pro praxi 2011 6. října 2011 r

ŘÍZENÍ INFORMAČNÍ BEZPEČNOSTI V ORGANIZACI. Ing. Jiřina Petříková Informační technologie pro praxi 2011 6. října 2011 r ŘÍZENÍ INFORMAČNÍ BEZPEČNOSTI V ORGANIZACI Ing. Jiřina Petříková Informační technologie pro praxi 2011 6. října 2011 r Bezpečnost informací Zvyšuje se cena informací v oblasti soukromého podnikání i státní

Více

Transformace dílčích datových zdrojů na jednotnou datovou platformu kontaminovaných míst, analýza potřeb uživatelů a vývoj aplikací

Transformace dílčích datových zdrojů na jednotnou datovou platformu kontaminovaných míst, analýza potřeb uživatelů a vývoj aplikací Transformace dílčích datových zdrojů na jednotnou datovou platformu kontaminovaných míst, analýza potřeb uživatelů a vývoj aplikací Jiří Šíma, AQUATEST a.s. Zpracovatelé a součinnost AQUATEST a.s. ARCDATA

Více

Indikátory Strategie vzdělávací politiky ČR do roku 2020

Indikátory Strategie vzdělávací politiky ČR do roku 2020 Indikátory Strategie vzdělávací politiky ČR do roku 2020 Indikátory Strategie vzdělávací politiky České republiky do roku 2020 (dále jen Strategie ) jsou vymezeny s ohledem na tři klíčové priority Strategie,

Více

Příloha č. 3. Charta projektu plné znění (pro jiné OSS než MŠMT)

Příloha č. 3. Charta projektu plné znění (pro jiné OSS než MŠMT) Příloha č. 3. Charta projektu plné znění (pro jiné OSS než MŠMT) Charta projektu má za cíl poskytnout úplné a pevné informační základy pro schválení projektu. Následně je Charta projektu rozpracována do

Více

POLOPROVOZ ZNALOSTNÍ DATABÁZE INTERPI DOKUMENTACE

POLOPROVOZ ZNALOSTNÍ DATABÁZE INTERPI DOKUMENTACE POLOPROVOZ ZNALOSTNÍ DATABÁZE INTERPI DOKUMENTACE INTERPI Interoperabilita v paměťových institucích Program aplikovaného výzkumu a vývoje národní kulturní identity (NAKI) (DF11P01OVV023) Zpracovali: Marie

Více

Kvalita procesu vývoje (SW) Jaroslav Žáček jaroslav.zacek@osu.cz

Kvalita procesu vývoje (SW) Jaroslav Žáček jaroslav.zacek@osu.cz Kvalita procesu vývoje (SW) Jaroslav Žáček jaroslav.zacek@osu.cz Vývoj software a jeho kvalita Samotný vývoj je rozsáhlá a složitá disciplína. Většina SW projektů (v průměru 60 %) je podhodnocena či zpožděna.

Více

Příprava RIS LK OS 1. Problematika Udržitelné spotřeby a výroby coby součást RIS LK

Příprava RIS LK OS 1. Problematika Udržitelné spotřeby a výroby coby součást RIS LK Příprava RIS LK OS 1 Problematika Udržitelné spotřeby a výroby coby součást RIS LK Definice USV Udržitelná spotřeba a výroba (USV) je založena na výrobě a službách, včetně jejich spotřeby, které zajišťují

Více

JUDr. Ivan Barančík rektor - Vysoká škola logistiky o.p.s. Přerov

JUDr. Ivan Barančík rektor - Vysoká škola logistiky o.p.s. Přerov METODY UČENÍ V PROFESNĚ ZAMĚŘENÉM VZDĚLÁVÁNÍ JUDr. Ivan Barančík rektor - Vysoká škola logistiky o.p.s. Přerov INOVACE VÝSTUPŮ, OBSAHU A METOD BAKALÁŘSKÝCH PROGRAMŮ VYSOKÝCH ŠKOL NEUNIVERZITNÍHO TYPU,

Více

VLÁDA ČESKÉ REPUBLIKY

VLÁDA ČESKÉ REPUBLIKY VLÁDA ČESKÉ REPUBLIKY USNESENÍ VLÁDY ČESKÉ REPUBLIKY ze dne 23. května 2007 č. 561 k vytvoření účetnictví státu Vláda I. schvaluje 1. vytvoření účetnictví státu s účinností od 1. ledna 2010, 2. Základní

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Řízení rizik pro jakost (Quality Risc Management - QRM) Doc.

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. 9. přednáška Normy ISO 9001, ISO 14001 a OHSAS 18001 Doc.

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

Faktory ovlivňující řízení podnikové informatiky

Faktory ovlivňující řízení podnikové informatiky Faktory ovlivňující řízení podnikové informatiky Jiří Voříšek katedra informačních technologií Vysoká škola ekonomická v Praze vorisek@vse.cz Proč toto téma? s růstem významu IT pro podnik růst významu

Více

Rozhodovací procesy 11

Rozhodovací procesy 11 Rozhodovací procesy 11 Management rizik Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 XI rozhodování 1 Management rizik Cíl přednášky 11: a přístup k řízení rizik : Ohrožení,

Více

Spolupráce veřejného a soukromého sektoru při prevenci a zvládání kybernetického kolapsu

Spolupráce veřejného a soukromého sektoru při prevenci a zvládání kybernetického kolapsu Spolupráce veřejného a soukromého sektoru při prevenci a zvládání kybernetického kolapsu Jaroslav Šmíd Tel.: 420 257 283 333 e-mail: J.Smid@nbu.cz 30.5.2013 1 30.5.2013 1 Internet hybná síla globální ekonomiky

Více

ENVIRONMENTÁLNÍ BEZPEČNOST

ENVIRONMENTÁLNÍ BEZPEČNOST ENVIRONMENTÁLNÍ BEZPEČNOST INTEGROVANÁ BEZPEČNOST ORGANIZACE Ing. ALENA BUMBOVÁ, Ph.D. Operační program Vzdělávání pro konkurenceschopnost Projekt: Vzdělávání pro bezpečnostní systém státu (reg. č.: CZ.1.01/2.2.00/15.0070)

Více

Zpráva o stavu managementu hospodaření s energií v Zentiva, k. s.

Zpráva o stavu managementu hospodaření s energií v Zentiva, k. s. Zpráva o stavu managementu hospodaření s energií v Zentiva, k. s. Obsah 1. Přínos implementace standardu ISO 50 001... 3 2. Popis současného stavu používání energií... 3 2.1. Nakupované energie... 3 2.2.

Více

JAK NA PAPERLESS. Petr Dolejší Senior Solution Consultant

JAK NA PAPERLESS. Petr Dolejší Senior Solution Consultant JAK NA PAPERLESS Petr Dolejší Senior Solution Consultant PAPERLESS CO TO VLASTNĚ JE Wikipedia - Paperless představuje fungování, kde je odstraněno nebo výrazně omezeno používání papíru. Toho se dosáhne

Více

Obsah. ÚVOD 1 Poděkování 3

Obsah. ÚVOD 1 Poděkování 3 ÚVOD 1 Poděkování 3 Kapitola 1 CO JE TO PROCES? 5 Co všechno musíme vědět o procesním řízení, abychom ho mohli zavést 6 Různá důležitost procesů 13 Strategické plánování 16 Provedení strategické analýzy

Více

Úvod do projektu. Standardizace provozních funkcí ÚSC. Součást projektu Korporátní styl řízení ve veřejné správě

Úvod do projektu. Standardizace provozních funkcí ÚSC. Součást projektu Korporátní styl řízení ve veřejné správě Úvod do projektu Standardizace provozních funkcí ÚSC Součást projektu Korporátní styl řízení ve veřejné správě Měníme zvyky a posouváme mentální bloky POPTÁVKA Tlak na rozpočet, obtížně stanovitelné rozpočtové

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 1 1 2 5 U k á z k a k n i h

Více

Přístupy k efektivnímu využití modelu MBI

Přístupy k efektivnímu využití modelu MBI MBI, Management byznys informatiky Přístupy k efektivnímu využití modelu MBI Jan Dohnal Katedra softwarového inženýrství, F, ČVUT Jan Pour Katedra, FIS, VŠE MBI, Management byznys Snímek informatiky 1

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice 11. REALIZACE PROJEKTU, SLEDOVÁNÍ STAVU, PŘÍPRAVA PROVOZU, ZKUŠEBNÍ PROVOZ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební

Více

KERNUN CLEAR WEB. Má smysl český webový filtr? Radek Nebeský, TNS / Kernun Security Notes / Praha 11. října 2012. www.kernun.cz

KERNUN CLEAR WEB. Má smysl český webový filtr? Radek Nebeský, TNS / Kernun Security Notes / Praha 11. října 2012. www.kernun.cz KERNUN CLEAR WEB Má smysl český webový filtr? Radek Nebeský, TNS / Kernun Security Notes / Praha 11. října 2012 Trusted Network Solutions, a.s. Producent Kernun Společnost TNS patří mezi přední české IT

Více

14 Úvod do plánování projektu Řízení projektu

14 Úvod do plánování projektu Řízení projektu 14 Úvod do plánování projektu Řízení projektu Plánování projektu Vývoj - rozbor zadání odhad pracnosti, doby řešení, nákladů,... analýza rizik strategie řešení organizace týmu PLÁN PROJEKTU 14.1 Softwarové

Více

Softwarová podpora v procesním řízení

Softwarová podpora v procesním řízení Softwarová podpora v procesním řízení Zkušenosti z praxe využití software ATTIS Ostrava, 7. října 2010 www.attis.cz ATTN Consulting s.r.o. 1 Obsah Koncepce řízení výkonnosti Koncepce řízení výkonnosti

Více

Řízení rizik v SŽDC, s.o. a posuzování bezpečnosti podle NK ES č. 352/2009

Řízení rizik v SŽDC, s.o. a posuzování bezpečnosti podle NK ES č. 352/2009 Řízení rizik v SŽDC, s.o. a posuzování bezpečnosti podle NK ES č. 352/2009 Ing. Miroslav Šídlo, Ing. Josef Černý Ing. Vladimír Novák, Praha 4.11.2014 část I. Proces řízení rizik, nejpoužívanější metody,

Více

End User Experience Monitoring Měření kvality IT služeb 7.10.2010, Brno Jiří Vozňák. information technology

End User Experience Monitoring Měření kvality IT služeb 7.10.2010, Brno Jiří Vozňák. information technology End User Experience Monitoring Měření kvality IT služeb 7.10.2010, Brno Jiří Vozňák information technology Základ firemní strategie Strategie firmy Lidé Procesy Nástroje Portfolio nabídky a služeb Crux

Více

Energetický management Průkazy energetické náročnosti budovy (PENB) Energetické audity (EA) Termovizní snímkování

Energetický management Průkazy energetické náročnosti budovy (PENB) Energetické audity (EA) Termovizní snímkování Energetický management Průkazy energetické náročnosti budovy (PENB) Energetické audity (EA) Termovizní snímkování Nabízíme Vám kvalitní a odborné zpracování studií, posudků a jiných expertních dokumentů

Více

Spojení a kontakty: Střední průmyslová škola strojní a elektrotechnická a Vyšší odborná škola, Liberec 1, Masarykova 3, příspěvková organizace

Spojení a kontakty: Střední průmyslová škola strojní a elektrotechnická a Vyšší odborná škola, Liberec 1, Masarykova 3, příspěvková organizace Spojení a kontakty: Střední průmyslová škola strojní a elektrotechnická a Vyšší odborná škola, Liberec 1, Masarykova 3, příspěvková organizace Ředitel: Ing. Josef Šorm Zástupci ředitele: Mgr. Jan Šimůnek

Více

Plán dalšího postupu procesního modelování a standardizace agend veřejné správy a způsob jeho financování

Plán dalšího postupu procesního modelování a standardizace agend veřejné správy a způsob jeho financování Příloha č. 2 usnesení vlády ze dne 13. července 2015 č. 565 Plán dalšího postupu procesního modelování a standardizace agend veřejné správy a způsob jeho financování 1.0 Úvod: strategické zakotvení a základní

Více

Projektové řízení a rizika v projektech

Projektové řízení a rizika v projektech Projektové řízení a rizika v projektech Zainteresované strany Zainteresované strany (tzv. stakeholders) jsou subjekty (organizace, lidé, prostory, jiné projekty), které realizace projektu ovlivňuje. Tyto

Více

Management sítí OSI management framework SNMP Komerční diagnostické nástroje Opensource diagnostické nástroje

Management sítí OSI management framework SNMP Komerční diagnostické nástroje Opensource diagnostické nástroje Přednáška č.12 Management sítí OSI management framework SNMP Komerční diagnostické nástroje Opensource diagnostické nástroje Původní LAN o 50 až 100 uživatelů, několik tiskáren, fileserver o relativně

Více

Co je kvalita, ISO 8402

Co je kvalita, ISO 8402 Kvalita dat Výzkum kvality dat Kvalita dat je rozsáhlým oborem, který je i tématem legislativní činnosti My se zaměříme pouze na klíčové problémy kvality dats přímou vazbou na problematiku informačních

Více

Výhody a rizika outsourcingu formou cloud computingu

Výhody a rizika outsourcingu formou cloud computingu Výhody a rizika outsourcingu formou cloud computingu Jiří Voříšek katedra informačních technologií Vysoká škola ekonomická v Praze vorisek@vse.cz 1 Výchozí model MMDIS pro identifikaci možností outsourcingu

Více

Klasické metodiky softwarového inženýrství I N G M A R T I N M O L H A N E C, C S C. Y 1 3 A N W

Klasické metodiky softwarového inženýrství I N G M A R T I N M O L H A N E C, C S C. Y 1 3 A N W Klasické metodiky softwarového inženýrství I N G M A R T I N M O L H A N E C, C S C. Y 1 3 A N W Osnova přednášky Co to je softwarové inženýrství Softwarový proces Metodika a metoda Evoluce softwarových

Více

Manažerský informační systém pro podporu ekonomického řízení laboratoří

Manažerský informační systém pro podporu ekonomického řízení laboratoří Manažerský informační systém pro podporu ekonomického řízení laboratoří FONS, 20.9.2010, Pardubice Bc. Pavel Jezdinský www.medila.cz medila@medila.cz Obsah Co potřebujeme řídit Řízení laboratoří MIS? Řízení

Více