Bezpečnost chemických výrob N111001
|
|
- Aleš Mašek
- před 8 lety
- Počet zobrazení:
Transkript
1 Bezpečnost chemických výrob N Petr Zámostný místnost: A-72a tel.: Specifická rizika chemických reakcí Reaktivita látek Laboratorní měření reaktivity Reaktory s exotermní reakcí 1
2 Rizika chemických reakcí q5e1g zbrty Rizika spojená s chemickými reakcemi Chemické reakce mají potenciál uvolnit energii zvýšení teploty zvýšení tlaku chemickou látku zvýšení tlaku (plyn) toxickou hořlavou korozivní 2
3 Rizika spojená s chemickými reakcemi Přičiny havárií způsobených reakcí uvolnění energie nebo látky je prudké uvolnění energie nebo látky je neočekávané Obtížná charakterizace (kvantifikace) rizika široké spektrum možných scénářů nečistoty katalytické efekty změny koncentrace na vstupu poruchy zařízení Rizika spojená s chemickými reakcemi Obtížná charakterizace (kvantifikace) rizika široké spektrum možných scénářů akumulace nezreagované suroviny špatné promíchávání reakce v nežádoucích místech vedlejší reakce 3
4 Nebezpečné chemické reakce Jedna reagující látka polymereace rozklad iniciace teplotou, mechanicky izomerace disproporcionace Nebezpečné chemické reakce Více reagujících látek látky reagující s kyslíkem látky oxidující látky reagující s vodou reakce s nedokonale prozkoumaným chemismem řetězové reace (radikálové) 4
5 Lokace rizik Skladování nepromíchávaný zásobník velká zádrž, možné fázové rozhraní Míchání a jiné fyzikální operace změna koncentrace, specifického povrchu absorbce energie Chemické operace Data o reaktivních látkách (MSDS) Je třeba vycházet ze znalosti konkrétních látek a jejich reakcí + jak jejich chování ovlivní teplota, stechiometrie, nečistoty nehomogenita 5
6 Testování reaktivních látek Sledování chování směsí v malých množstvích v laboratoři (závislost na teplotě) Ohřev v kalorimetru ARC = accelerated rate calorimetry klasický kalorimetr = prohledávání intervalu Měření tepla uvolněného rekcí ARC Tlaková schránka Ohřev Cela Ohřev 6
7 Měření v ARC Konstantní rychlost ohřevu Záznam teploty nereaktivní látka (směs) teplota q mc p dt dt q [W]... příkon čas Měření v ARC Záznam teploty reaktivní látka (směs) teplota dt/dt rychlost samovolného ohřívání (dt/dt) max čas čas Podobně lze sledovat i závislost tlaku 7
8 Data změřitelná ARC Maximální tlak a teplota dosažitelná v uzavřeném systému Maximální rychlost ohřívání reakčním teplem Adiabatický teplotní ohřev Reakční teplo, rychlost vývoje tepla Kinetické parametry Startovací teplota reakce Doba do maximální teploty Ujetí teploty v reaktoru Chemické reaktory s exotermní reakcí chlazení -ΔH r Možné příčiny porucha chlazení zvýšená teplota zvýšená rychlost produkce tepla Možné následky zvýšení teploty následné zvýšení tlaku tepelný výbuch 8
9 Technické příčiny ujetí Porucha v chladícím systému závada na potrubí výpadek čerpadla Zvýšení teploty vnější požár lokální přehřátí při vyřazení míchadla Zvýšení produkce tepla záměna látek, katalyzátor zvýšený nástřik Prevence ujetí teploty Prevence příčin rezerva v systému chlazení nouzové chlazení Omezení následků řízené uvolnění obsahu pojistný ventil průtržná membrána, kotouč 9
10 Pružinové pojistné ventily Průtržné membrány Výhody nulové propouštění snadná úprava pro antikorozní vlastnosti odolnost k nečistotám Nevýhody neumožňují zpětné uzavření citlivost na teplotu, poškození nutnost periodické výměny 10
11 Kontrola úniku Únik z pojistného ventilu je třeba kontrolovat Snížení rychlosti úniku Flash Kondenzátory Vypírky Fléry Záchytné tanky Cvičení V průtočném míchaném reaktoru (válec d = 1 m, h = 1 m) probíhá exotermní reakce prvního řádu. Reakční teplo reakce je H r = J mol -1. Rychlostní konstanta reakce při 0 C je 1E-4 s -1, aktivační energie reakce je J mol -1. Reakční i chladící směs má hustotu 1000 kg m -3 a specifické teplo c p = 4000 J kg -1 K -1. Reaktor je chlazen po celém povrchu pláště, vstupní teplota chladícího média je 20 C. Koeficient prostupu tepla je K = J s -1 m -2 K -1. Průtok reakční směsi je 5 l/s, chladícího média 30 l/s. Koncentrace výchozí látky v reakční směsi je mol/m 3. Počáteční teplota reakční směsi je shodná s teplotou vstupujícího proudu Ti = 45 C. Chladící prostor je ideálně míchán a jeho objem je 0,2 m 3. Vytvořte dynamický model chování reaktoru a chladicího systému v čase Prostudujte vliv parametrů reakce a chlazení na chování systému 11
Bezpečnost chemických výrob N Petr Zámostný místnost: A-72a tel.:
Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Specifická rizika chemických reakcí Reaktivita látek Laboratorní měření reaktivity Reaktory s
Bezpečnostní inženýrství - Chemické procesy -
Bezpečnostní inženýrství - Chemické procesy - M. Jahoda Nebezpečí a prevence chemických procesů 2 Chemické reakce Tepelné efekty exotermní procesy (teplo se uvolňuje => nutnost chlazení) endotermní procesy
Termochemie. Katedra materiálového inženýrství a chemie A Ing. Martin Keppert Ph.D.
Termochemie Ing. Martin Keppert Ph.D. Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz A 329 http://tpm.fsv.cvut.cz/ Termochemie: tepelné jevy při chemických reakcích Chemická reakce: CH
Bezpečnost chemických výrob N111001
Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Rizika plynoucí z chemických výrob Slavné havárie Zákon o prevenci závažných havárií Analýza
Bezpečnost chemických výrob N111001
Bezpečnost chemických výrob N Petr Zámostný místnost: A-7a tel.: 4 e-mail: petr.zamostny@vscht.cz Následky a prevence požárů a explozí Následky explozí Prostředky snížení nebezpečí požáru nebo exploze
9. Chemické reakce Kinetika
Základní pojmy Kinetické rovnice pro celistvé řády Katalýza Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti reakční mechanismus elementární reakce a molekularita reakce reakční rychlost
Bezpečnost chemických výrob N111001
Bezpečnost chemických výrob N111 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Rizika spojená s hořlavými látkami Povaha procesů hoření a výbuchu Požární charakteristiky látek
Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Předmět: Vícefázové reaktory Jméno: Veronika Sedláková
Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru Předmět: Vícefázové reaktory Jméno: Veronika Sedláková 3-fázové reakce Autoklávy (diskontinuální) Trubkové reaktory (kontinuální) Probublávané
Fentonova oxidace ve zkrápěném reaktoru za kontinuálního a periodického nástřiku
Fentonova oxidace ve zkrápěném reaktoru za kontinuálního a periodického nástřiku Autor: Uhlíř David Ročník: 5. Školitel: doc.ing. Vratislav Tukač, CSc. Ústav organické technologie 2005 Úvod Odpadní vody
Jaromír Literák. Zelená chemie Zelená chemie a chemické technologie
Zelená chemie Zelená chemie a chemické technologie Chemické technologie Vývoj nového procesu začíná v chemické laboratoři. Provedení reakcí se často liší v laboratorním a v průmyslovém měřítku. Přechod
Bezpečnost chemických výrob N111001. Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz
Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Rizika plynoucí z chemických výrob Slavné havárie Zákon o prevenci závažných havárií Analýza
Autokláv reaktor pro promíchávané vícefázové reakce
Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.
10. Chemické reaktory
10. Chemické reaktory V každé chemické technologii je základní/nejvýznamnější zařízení pro provedení chemické reakce chemický reaktor. Celý technologický proces se skládá v podstatě ze tří typů zařízení:
Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová
Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné
Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru. Petr Svačina
Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru Petr Svačina I. Vliv difuze vodíku tekoucím filmem kapaliny na průběh katalytické hydrogenace ve zkrápěných reaktorech
Základy chemických technologií
6. Přednáška Výměníky tepla Odpařování, odparky Výměníky tepla: zařízení, které slouží k výměně tepla mezi dvěma fázemi ( obvykle kapalné) z tepejší se teplo odebírá do studenější se převádí technologické
5. PRŮTOČNÉ HOMOGENNÍ REAKTORY
5. PRŮTOČNÉ HOMOGENNÍ REAKTORY Úloha 5-1 Diskontinuální a průtočný reaktor s pístovým tokem... 2 Úloha 5-2 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 5-3 Protisměrné reakce
Bezpečnost chemických výrob N111001
Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Základní pojmy z regulace a řízení procesů Účel regulace Základní pojmy Dynamické modely regulačních
Terminologie, základní pojmy
Terminologie, základní pojmy Přednáška (3/5) v rámci předmětu Havárie a životní prostředí Ing. Vilém Sluka Odborné pracoviště pro prevenci závažných havárií Výzkumný ústav bezpečnosti práce, v.v.i., Praha
MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10
MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický
Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Roman Snop
Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru Roman Snop Charakteristika Zkrápěné reaktory jsou nejvhodněji aplikovatelné na provoz heterogenně katalyzovaných reakcí. Nacházejí uplatnění
Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování
Spalování je fyzikálně chemický pochod, při kterém probíhá organizovaná příprava hořlavé směsi paliva s okysličovadlem a jejich slučování (hoření) za intenzivního uvolňování tepla, což způsobuje prudké
Bezpečnost chemických výrob N111001
Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Zdroje vznícení, zkapalněné plyny, exploze Zdroje vznícení v chemických procesech Riziko spojené
Automatické měření veličin
Měření veličin a řízení procesů Automatické měření veličin» Čidla» termočlánky, tlakové senzory, automatické váhy, konduktometry» mají určitou dynamickou charakteristiku» Analyzátory» periodický odběr
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
Intenzifikace, bezpečné řízení a provozování průmyslových zkrápěných reaktorů
ÚCHP AV ČR Výzkumný ústav anorganické chemie a.s. VŠCHT Praha Intenzifikace, bezpečné řízení a provozování průmyslových zkrápěných reaktorů J. Hanika, V. Jiřičný, J. Kolena, J. Lederer, P. Stavárek, J.
Reaktory pro systém plyn-kapalina
Reaktory pro systém plyn-kapalina Vypracoval : Jan Horáček FCHT, ústav 111 Prováděné reakce Rychlé : všechen absorbovaný plyn zreaguje již na fázovém rozhraní (př. : absorpce kyselých plynů : CO 2, H 2
9 Charakter proudění v zařízeních
9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění
CHEMICKÉ TECHNOLOGIE PRO PROCESNÍ INŽENÝRSTVÍ N VÝROBA MTBE
CHEMICKÉ TECHNOLOGIE PRO PROCESNÍ INŽENÝRSTVÍ N409059 VÝROBA MTBE Fyzikální a chemické vlastnosti Suroviny Reakce Technologie Dvoustupňová výroba Jednostupňová výroba Charakteristiky technologií Zdroje
Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6
3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně
Bezpečnost chemických výrob N Petr Zámostný místnost: A-72a tel.:
Bezpečnost chemických výrob N1111 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Rizika spojená s toxickými látkami Toxicita látek Zákonné limity pro práci s toxickými látkami
Výzkumný ústav bezpečnosti práce, v.v.i. (VÚBP, v.v.i.) Odborné pracoviště pro prevenci závažných havárií (OPPZH) ZÁVAŽNÉ HAVÁRIE: zákon 224/2015 Sb.
Ing. Lenka Frišhansová Výzkumný ústav bezpečnosti práce, v.v.i. (VÚBP, v.v.i.) Odborné pracoviště pro prevenci závažných havárií (OPPZH) ZÁVAŽNÉ HAVÁRIE: zákon 224/2015 Sb. o prevenci závažných havárií
Co víme o nekatalytické redukci oxidů dusíku
Co víme o nekatalytické redukci oxidů dusíku Ing. Pavel Machač, CSc., email: pavel.machac@vscht.cz, tel.: (40) 0 444 46 Ing. Jana Vávrová, email: jana1.vavrova@vscht.cz, tel.: (40) 74 971 991 VŠCHT Praha,
Inovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
POLOŽKOVÝ ROZPOČET - shrnutí. Aparáty R35 - Kotel 0. MaR R35 - Kotel 0
POLOŽKOVÝ ROZPOČET - shrnutí Položka Cena bez DPH Aparáty R35 - Kotel 0 Armatury 35 MaR R35 - Kotel 0 CENA CELKEM* * Cena zahrnuje jednotku Fischer-Tropschovy syntézy (vč. všech položek zahrnutých v příloze
Protiexplozní membrány
Protiexplozní membrány Zařízení pro odlehčení výbuchu Membrány pro odlehčení výbuchu jsou ochranná zařízení určená k ochraně průmyslových zařízení, u kterých hrozí nebezpečí výbuchu. Pro snížení rizika
kde k c(no 2) = 2, m 6 mol 2 s 1. Jaká je hodnota rychlostní konstanty v rychlostní rovnici ? V [k = 1, m 6 mol 2 s 1 ]
KINETIKA JEDNODUCHÝCH REAKCÍ Různé vyjádření reakční rychlosti a rychlostní konstanty 1 Rychlost reakce, rychlosti přírůstku a úbytku jednotlivých složek Rozklad kyseliny dusité je popsán stechiometrickou
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
Návrh a simulace zkušební stolice olejového čerpadla. Martin Krajíček
Návrh a simulace zkušební stolice olejového čerpadla Autor: Vedoucí diplomové práce: Martin Krajíček Prof. Michael Valášek 1 Cíle práce 1. Vytvoření specifikace zařízení 2. Návrh zařízení včetně hydraulického
metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.
Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem
TECHNOLOGICKÉ PROCESY A APARÁTY
TECHNOLOGICKÉ PROCESY PRÁTY Základní informace pro potřeby předmětuedmětu Měřicí a řídicí technika 2009 Základní pojmy, veličiny iny a dějed zejména z oboru fyzikální chemie Obsah systém, jeho popis a
Vícefázové reaktory. MÍCHÁNÍ ve vsádkových reaktorech
Vícefázové reaktory MÍCHÁNÍ ve vsádkových reaktorech Úvod vsádkový reaktor s mícháním nejběžnější typ zařízení velké rozmezí velikostí aparátů malotonážní desítky litrů (léčiva, chemické speciality, )
Měření měrné tepelné kapacity látek kalorimetrem
Měření měrné tepelné kapacity látek kalorimetrem Problém A. Změření kapacity kalorimetru (tzv. vodní hodnota) pomocí elektrického ohřevu s měřeným příkonem. B. Změření měrné tepelné kapacity hliníku směšovací
Chlazení kapalin. řada WDE. www.jdk.cz. CT120_CZ WDE (Rev.04-11)
Chlazení kapalin řada WDE www.jdk.cz CT120_CZ WDE (Rev.04-11) Technický popis WDE-S1K je řada kompaktních chladičů kapalin (chillerů) s nerezovým deskovým výparníkem a se zabudovanou akumulační nádobou
Spirax Sarco Tour 2019 Kvalita a parametry páry pod kontrolou. Regulace tlaku a teploty páry
Spirax Sarco Tour 2019 Kvalita a parametry páry pod kontrolou Regulace tlaku a teploty páry Regulace tlaku a teploty páry Regulace/redukce tlaku páry Proč redukujeme tlak páry? Požadavek technologického
Otázky Chemické inženýrství I ak. rok 2013/14
Otázky Chemické inženýrství I ak. rok 2013/14 1. Principy bilancování. Bilancovatelné veličiny. Pojmy: bilanční systém a jeho hranice, bilanční období, proud, složka, akumulace, zdroj, fiktivní proud,
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: Číslo DUMu: VY_32_INOVACE_10_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 12.02.2013 Číslo DUMu: VY_32_INOVACE_10_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná
5. CHEMICKÉ REAKTORY
5. CHEMICÉ REAORY 5.1 IZOERMNÍ REAORY... 5.1.1 Diskontinuální reaktory... 5.1. Průtočné reaktory... 5.1..1 Průtočné reaktory s pístovým tokem... 5.1.. Průtočné reaktory s dokonale promíchávaným obsahem...4
2. Úloha difúze v heterogenní katalýze
2. Úloha difúze v heterogenní katalýze Vnitřní difúze při nerovnoměrné radiální distribuci aktivní složky v částici katalyzátoru Kateřina Horáčková Příčina radiálního aktivitního profilu v katalyzátorové
= 2,5R 1,5R =1,667 T 2 =T 1. W =c vm W = ,5R =400,23K. V 1 =p 2. p 1 V 2. =p 2 R T. p 2 p 1 1 T 1 =p 2 1 T 2. =p 1 T 1,667 = ,23
15-17 Jeden mol argonu, o kterém budeme předpokládat, že se chová jako ideální plyn, byl adiabaticky vratně stlačen z tlaku 100 kpa na tlak p 2. Počáteční teplota byla = 300 K. Kompresní práce činila W
8. Komponenty napájecí části a příslušenství
Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT HYDRAULICKÉ A PNEUMATICKÉ MECHANISMY 8. Komponenty napájecí části
8. Chemické reakce Energetika - Termochemie
- Termochemie TERMOCHEMIE oddíl termodynamiky Tepelné zabarvení chemických reakcí Samovolnost chemických reakcí Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti - Termochemie TERMOCHEMIE
Reaktory pro systém plyn kapalina
FCHT Reaktory pro systém plyn kapalina Lubomír Krabáč 1 Probublávané reaktory: příklady procesů oxidace organických látek kyslíkem, resp. vzduchem chlorace hydrogenace org. látek s homogenním katal. vyšších
Základní hodnocení rizik
Základní rizik Část A 1. 2. Obchodní firma, název nebo jméno, popřípadě jména, a příjmení, sídlo identifikační číslo osoby (IČO) a datová schránka příslušného provozovatele Jméno, popřípadě jména, příjmení,
Dodržování hygienických standardů ve zdravotnictví- Aktuální změny legislativy: Classification Labelling Packaging. Hana Lišková
1 Dodržování hygienických standardů ve zdravotnictví- Aktuální změny legislativy: Classification Labelling Packaging Hana Lišková 2 Požadavky na dezinfekční prostředek Nízká cena přípravku, resp. pracovního
Intumex RS. Intumex RS. Strana: 1/5 Bezpečnostní list Dle Nařízení (ES) 1907/2006 (REACH) Datum vydání: 3.12.2007 Datum revize: 02.01.
1/5 1 Identifikace látky: Detaily o produktu: Obchodní název: List č.: 012 Doporučené použití látky / přípravku: Manžeta z ocelového plechu vyplněná protipožárním laminátem Intumex L Výrobce: INTUMEX Gmbh
VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA. Technická fakulta České zemědělské univerzity v Praze
VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA Radomír Adamovský Pavel Neuberger Technická fakulta České zemědělské univerzity v Praze H = 1,0 2,0 m; D = 0,5 2,0 m; S = 0,1
Bezpečnost chemických výrob N111001
8.11.21 Bezpečnost chemických výrob N1111 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Rizika spojená s toxickými látkami Toxicita látek Zákonné limity pro práci s toxickými
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. Zařízení pro akumulaci tepla v napájecí vodě pro transformátory páry
ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A (19 y POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ (61) (23) Výstavní priorita (22) Přihlášeno 15 04 77 (21) pv 2473-77 189 348 (ii) B1] (51) Int. Cl.' P 01 K 3/08
PRŮBĚH SPALOVÁNÍ (obecně)
PRŮBĚH SPALOVÁNÍ (obecně) 1. PŘÍPRAVA a) Fyzikální část zabezpečuje podmínky pro styk reagentů vytvořením kontaktních ploch paliva s kyslíkem (odpaření, smíšení) vnější nebo vnitřní tvorba směsi ohřátím
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu
1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,
Kosmická technologie v galvanizovnách
Kosmická technologie v galvanizovnách Ing. Libor Vodehnal, AITEC s.r.o., Ledeč nad Sázavou Využívání galvanických povlaků vyloučených ze slitinových lázní v současné době nabývá na významu vzhledem k požadavkům
DOKUMENTACE K PILOTNÍ JEDNOTCE SONOLÝZY OZONU
DOKUMENTACE K PILOTNÍ JEDNOTCE SONOLÝZY OZONU SOUHRN VÝSTUPU B2D1 PROJEKTU LIFE2WATER EXECUTIVE SUMMARY OF DELIVERABLE B2D1 OF LIFE2WATER PROJECT BŘEZEN 2015 www.life2water.cz ÚVOD Sonolýzou ozonu se rozumí
Energie v chemických reakcích
Energie v chemických reakcích Energetická bilance reakce CH 4 + Cl 2 = CH 3 Cl + HCl rozštěpení vazeb vznik nových vazeb V chemických reakcích dochází ke změně vazeb mezi atomy. Vazebná energie uvolnění
Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C?
TERMOCHEMIE Reakční entalpie při izotermním průběhu reakce, rozsah reakce 1 Kolik tepla se uvolní (nebo spotřebuje) při výrobě 2,2 kg acetaldehydu C 2 H 5 OH(g) = CH 3 CHO(g) + H 2 (g) (a) při teplotě
Zařízení pro zabránění přenosu výbuchu. Efektivní řešení ochrany technologických zařízení a průmyslových provozů, zabraňující přenosu výbuchu.
Zařízení pro zabránění přenosu výbuchu Efektivní řešení ochrany technologických zařízení a průmyslových provozů, zabraňující přenosu výbuchu. Jestliže na daném místě a ve stejný čas jsou k dispozici: látky
Technická specifikace jednotlivých částí solárního systému. www.sunfield.cz
Technická specifikace jednotlivých částí solárního systému www.sunfield.cz 1. Solární trubicové kolektory HEAT-PIPE Počet trubic (ks) 12 15 18 20 24 30 Doporučený 100 L 125 L 150 L 166 L 200 L 250 L objem
Pojistné a zabezpečovací zařízení systémů VYT a TV
Pojistné a zabezpečovací zařízení systémů VYT a TV Roman Vavřička (Jakub Vrána VUT Brno) ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/19 ČSN 06 0830 - Tepelné soustavy v budovách Zabezpečovací
Dynamická podstata chemické rovnováhy
Dynamická podstata chemické rovnováhy Ve směsi reaktantů a produktů probíhá chemická reakce dokud není dosaženo rovnovážného stavu. Chemická rovnováha má dynamický charakter protože produkty stále vznikají
Informace pro veřejnost v okolí objektu Linde Gas a.s. Výrobně distribuční centrum Praha
Informace pro veřejnost v okolí objektu Linde Gas a.s. Výrobně distribuční centrum Praha Tento text vytvořil Magistrát hl. m. Prahy ve spolupráci s Hasičským záchranným sborem hl. m. Prahy a společností
Základy chemických technologií
4. Přednáška Mísení a míchání MÍCHÁNÍ patří mezi nejvíc používané operace v chemickém průmyslu ( resp. příbuzných oborech, potravinářský, výroba kosmetiky, farmaceutických přípravků, ) hlavní cíle: odstranění
Projekční podklady - LOGOaktiv
Projekční podklady - LOGOaktiv Změny vyhrazeny. Popis stanice LOGOaktiv LOGOAktiv 4/2 kw Max. tlak: PN 6 Max. teplota: 9 C Rozměry Š V H (mm): 575 75 17 Instalační r. V Š H (mm): 6 8 2 Tlaková ztráta LOGOAktiv:
Chlazení kapalin. řada WDC. www.jdk.cz. CT125_CZ WDC (Rev.04-11)
Chlazení kapalin řada WDC www.jdk.cz CT_CZ WDC (Rev.0-) Technický popis WDC-S1K je řada kompaktních průtokových chladičů kapalin (chillerů) s nerezovým deskovým výměníkem. Jednotka je vhodná pro umístění
3 Základní modely reaktorů
3 Základní modely reaktorů Rovnce popsující chování reakční směs v reaktoru (v čase a prostoru) vycházejí z blančních rovnc pro hmotu, energ a hybnost. Blanc lze formulovat pro extenzvní velčnu B v obecném
Co se stalo v JE Fukušima? Úterý, 15 Březen :32 - Aktualizováno Pátek, 01 Duben :00
Sdělovací prostředky chrlí další a další informace, ze kterých si laik jen těžko poskládá názor, co se vlastně v jaderné elektrárně Fukušima stalo. Pokusím se shrnout tyto informace a najít pravděpodobnou
příloha 2 Stav plnění bezpečnostních doporučení MAAE
příloha 2 Stav plnění bezpečnostních doporučení MAAE Stav řešení bezpečnostních nálezů JE s VVER-440/213 v JE Dukovany Označ. Název bezpečnostních nálezů Kat. Stav G VŠEOBECNÉ PROBLÉMY G01 Klasifikace
LABORATOŘ OBORU I. Testování katalyzátorů pro přípravu prekurzorů vonných látek. Umístění práce:
LABORATOŘ OBORU I F Testování katalyzátorů pro přípravu prekurzorů vonných látek Vedoucí práce: Umístění práce: Ing. Eva Vrbková F07, F08 1 ÚVOD Hydrogenace je uplatňována v nejrůznějších odvětvích chemických
na stabilitu adsorbovaného komplexu
Vliv velikosti částic aktivního kovu na stabilitu adsorbovaného komplexu Jiří Švrček Ing. Petr Kačer, Ph.D. Ing. David Karhánek Ústav organické technologie VŠCHT Praha Hydrogenace Základní proces chemického
Bezpečnost chemických výrob N111001. Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz
Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Analýza rizika Vymezení pojmu riziko Metody analýzy rizika Struktura rizika spojeného s výrobou
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 15.03.2013 Číslo DUMu: VY_32_INOVACE_11_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 15.03.2013 Číslo DUMu: VY_32_INOVACE_11_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná
Ing. Radovan Nečas Mgr. Miroslav Hroza
Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními
COMPACFOAM. Bezpečnostní list
Podle nařízení (ES) č. 1907/2006 (změněno nařízením (EU) č. 453/2010) COMPACFOAM Bezpečnostní list Vytvořeno dne: 10.04.2012 Přepracováno dne: 02.07.2013 Platné od: 10.04.2012 Verze: 1.3 Nahrazuje verzi:
Bezpečnost chemických výrob
Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Jak bude předmět organizován? Přednášky a cvičení: Středa 10.00 12.30 (AS31a) Zápočet: 2x průběžný test, alespoň 50 % úspěšnost nebo
Rychlost chemické reakce A B. time. rychlost = - [A] t. [B] t. rychlost = Reakční rychlost a stechiometrie A + B C; R C = R A = R B A + 2B 3C;
Rychlost chemické reakce A B time rychlost = - [A] t rychlost = [B] t Reakční rychlost a stechiometrie A + B C; R C = R A = R B A + 2B 3C; 1 1 R A = RB = R 2 3 C Př.: Určete rychlost rozkladu HI v následující
Komponenta Vzorce a popis symbol propojení Hydraulický válec jednočinný. d: A: F s: p provoz.: v: Q přítok: s: t: zjednodušeně:
Plánování a projektování hydraulických zařízení se provádí podle nejrůznějších hledisek, přičemž jsou hydraulické elementy voleny podle požadovaných funkčních procesů. Nejdůležitějším předpokladem k tomu
Filtrace a katalytický rozklad nežádoucích složek v odpadních vzdušninách a spalinách pomocí nanovlákenných filtrů
Filtrace a katalytický rozklad nežádoucích složek v odpadních vzdušninách a spalinách pomocí nanovlákenných filtrů Petr Šidlof 1, Jakub Hrůza 2, Pavel Hrabák 1 1 NTI FM TUL 2 KNT FT TUL Šidlof, Hrůza,
KOMPRESORY F 1 F 2. F 3 V 1 p 1. V 2 p 2 V 3 p 3
KOMPRESORY F 1 F 2 F 3 V 1 p 1 V 2 p 2 V 3 p 3 1 KOMPRESORY V kompresorech se mění mechanická nebo kinetická energie v energii tlakovou, při čemž se vyvíjí teplo. Kompresory jsou stroje tepelné, se zřetelem
Ing. Hana Ilkivová Hotelová škola, Obchodní akademie a Střední průmyslová škola, Benešovo náměstí 1., příspěvková organizace
Chlazení motorů Autor: Škola: Kód: Ing. Hana Ilkivová Hotelová škola, Obchodní akademie a Střední průmyslová škola, Benešovo náměstí 1., příspěvková organizace VY_32_INOVACE_SPS_959 Datum vytvoření 14.
in accordance with 91/155 EEC
13.04.2012 03.09.1998 / Hb 15.09.2000 / Hb 1 / 7 1 Označení výrobku a název společnosti Údaje o výrobku Mikrobiální enzymatický preparát, vyrobený fermentací, extrakcí, koncentrací, odstraněním doprovodné
13.04.2012 05.08.98 1 / 6. Erbslöh Geisenheim Getränketechnologie GmbH & Co. KG, Erbslöhstraße 1, D-65366 Geisenheim
13.04.2012 05.08.98 1 / 6 1 Označení výrobku a název společnosti Údaje o výrobku Prostředek k ošetření vína. Obchodní název Číslo výrobku 5009.. Výrobce / Dodavatel: Erbslöh Geisenheim Getränketechnologie
ČERPADLA PŘEHLED TEPELNÝCH ČERPADEL THERMIA A ZÁKLADNÍ POKYNY 11/2009
ŠVÉDSKÁ TEPELNÁ ČERPADLA PŘEHLED TEPELNÝCH ČERPADEL THERMIA A ZÁKLADNÍ POKYNY PRO JEJICH INSTALACI O společnosti THERMIA Společnost THERMIA byla založena roku 1923 průmyslníkem Per Anderssonem. Firma se
Rizika v chemických výrobách spojená s akumulací a uvolněním náboje statické elektřiny
Statická elektřina Rizika v chemických výrobách spojená s akumulací a uvolněním náboje statické elektřiny Rizika statického nábojen Obvyklý zdroj vznícení v chemickém průmyslu Obtížně postižitelná příčina
POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (Bl) ( 1 ) о») (51) Int Cl.' G 21 С 19/04. (75) Autor vynálezu
ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A ( 1 ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ (61) (23) Výstavní priorita (22) Přihlášeno 30 08 82 (21) PV 6295-82 226 382 о») (Bl) (51) Int Cl.' G 21 С 19/04
Příkonové charakteristiky míchadel
Míchání suspenzí Navrhněte míchací zařízení pro rozplavovací nádrž na vápenný hydrát. Požadovaný objem nádrže je 0,8 m 3. Největší částice mají průměr 1 mm a hustotu 2200 kg m -3. Objemová koncentrace
Kondenzační sušičky. MDX pro výkony 400 až 70000 l/min SPOLEHLIVÁ TECHNOLOGIE
Kondenzační sušičky MDX pro výkony 400 až 70000 l/min SPOLEHLIVÁ TECHNOLOGIE Proč použít sušičku? Vlhkost je přirozenou součástí atmosférického vzduchu, která se rovněž nachází ve stlačeném vzduchu v potrubních
Bezpečnost chemických výrob N111001. Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz
Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Úvod Jak bude předmět organizován? Přednášky: Úterý 13.30 15.10 (A01) Cvičení: Úterý 15.30 -?
LOGO. Struktura a vlastnosti plynů Ideální plyn
Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu