Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Rozměr: px
Začít zobrazení ze stránky:

Download "Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické"

Transkript

1 Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] další teplotní stupnice: Fahrenheit William Thomson lord Kelvin ( ) Celsius 96 F teplota zdravého 0 C tání vody lidského těla 0 F teplota směsi ledu, 100 C var vody vody a chloridu amonného

2 Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] teplotní délková (objemová) roztažnost: l=l 0 1 T V =V 0 1 T součinitel teplotní délkové roztažnosti součinitel teplotní objemové roztažnosti =3 (pro pevné látky) aplikace: dilatační spáry, pružná kolena parovodů, měření teploty William Thomson lord Kelvin ( ) [K 1 ] Al 2,4 x 10 5 Cu 1,7 x 10 5 Ag 1,9 x 10 5 W 0,4 x 10 5 Fe 1,2 x 10 5 beton 1,0 x 10 5

3 Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] teplotní délková (objemová) roztažnost: l=l 0 1 T V =V 0 1 T součinitel teplotní délkové roztažnosti součinitel teplotní objemové roztažnosti =3 (pro pevné látky) aplikace: dilatační spáry, pružná kolena parovodů, měření teploty William Thomson lord Kelvin ( ) [K 1 ] Al 2,4 x 10 5 Cu 1,7 x 10 5 Ag 1,9 x 10 5 W 0,4 x 10 5 Fe 1,2 x 10 5 beton 1,0 x 10 5

4 Termodynamika Norma stanoví maximální vzdálenost dilatačních spár v konstrukci z prostého betonu na 10 m. Spočtěte, o kolik se prodlouží 10 m betonová deska při změně teploty z 20 o C na +40 o C. [6 mm] [K 1 ] Al 2,4 x 10 5 Cu 1,7 x 10 5 Ag 1,9 x 10 5 W 0,4 x 10 5 Fe 1,2 x 10 5 beton 1,0 x 10 5

5 Teplo Q [J] přenos energie mezi 2 termodynamickými systémy např. při rozdílné teplotě, fázovém přechodu Q=mc T Q t =ml t Q v =ml v teplo skupenské teplo tání skupenské teplo varu měrná tepelná kapacita c [J kg 1 K 1 ] (u pevných látek a kapalin netřeba rozlišovat c p > c V ) Měrné tepelné kapacity stavebních materiálů měrné skupenské teplo tání l t [J kg 1 ] (led: J kg 1 ) měrné skupenské teplo varu l v [J kg 1 ] tepelná kapacita (kalorimetru,...) [J K 1 ] C= Q T

6 Teplo Q [J] Bazén, který má tvar kvádru délky 5 m, šířky 2,5 m a hloubky 1,5 m, se naplní vodou, kterou je třeba ohřát z 10 C na 22 C. Voda v bazénu se ohřeje na požadovanou teplotu za 12 h při účinnosti ohřívače vody 85%. Voda má hustotu 1000 kg m 3 a měrnou tepelnou kapacitu 4180 J kg 1 K 1. Určete výkon ohřívače vody.

7 Teplo Q [J] kalorimetrická rovnice např. tání ledu v kalorimetru s vodou: Q=m l c l 0 t l m l l t m l c v t 0 =C t v t m v c v t v t měrná tepelná kapacita c [J kg 1 K 1 ] (u pevných látek a kapalin netřeba rozlišovat c p > c V ) Měrné tepelné kapacity stavebních materiálů měrné skupenské teplo tání l t [J kg 1 ] (led: J kg 1 ) měrné skupenské teplo varu l v [J kg 1 ] tepelná kapacita (kalorimetru,...) [J K 1 ] C= Q T

8 Ideální plyn soustava velkého počtu volných částic (atomů, molekul) srážky částic mezi sebou a se stěnami nádoby dokonale pružné (zachování hybnosti a kinetické energie) náhodný pohyb částic, žádný směr není preferován stavové veličiny: p, V, T, n (látkové množství) [mol] Vlastnosti plynu definice molu: Mol je látkové množství, které obsahuje tolik elementárních jedinců, kolik je atomů obsažených ve 12 g uhlíku 12 C. Avogadrova konstanta: N A = 6,022 x mol 1 stavová rovnice: pv =n RT R = 8,314 J mol 1 K 1 (molární plynová konstanta) molární hmotnost [kg mol 1 ]: M= m n molární tepelná kapacita při stálém objemu C mv [J mol 1 K 1 ]: molární tepelná kapacita při stálém tlaku C mp [J mol 1 K 1 ]: C mp =C mv R Q=nC mv T Q=nC mp T

9 tlak plynu: termodynamická teplota: Kinetická teorie ideálního plynu p= 1 3 N V m v 2 k T = střední kvadratická rychlost: v k = N 3n R m v 2 k= N A 3 R m v 2 k= 1 2 m v 3k k B N 2 vi i=1 N Boltzmannova konstanta: k B = 1,38 x J K 1 vnitřní energie: N 1 U= i=0 obecný vztah pro vnitřní energii: n v počet stupňů volnosti 1 molekuly: jednoatomové molekuly 2 m v 2 i =N 1 2 m v 2 k=n 3 2 k BT =n 3 2 RT (pro jednoatomové molekuly) U=N n v 2 k B T =n n v 2 R T n v =3 C mv = 3 2 R U= 3 2 n R T dvouatomové molekuly tří a více atomové molekuly n v =5 C mv = 5 2 R U= 5 2 n RT n v =6 C mv =3 R U=3 n R T

10 Termodynamika práce plynu: A= V 1 V 2 p dv da=f ds= p S ds= p dv 1. věta termodynamiky: (zákon zachování energie) Teplo Q dodané plynu se spotřebuje na přírůstek vnitřní energie plynu U a na práci A, kterou plyn vykoná. p P 1 Q= U A U=nC mv T P 2 2. věta termodynamiky: 0 V 1 dv V 2 V Teplo nemůže při styku dvou těles různých teplot samovolně přecházet z tělesa chladnějšího na těleso teplejší.

11 Děje v plynech stavová rovnice pro ideální plyn: pv =n RT Děje v plynech n=konst. děj konst. zákon 1. věta termodynamiky izotermický izobarický izochorický T = konst. p = konst. V = konst. adiabatický Q = 0 pv =konst. V 1 = p 2 V 2 V /T =konst. V 1 /T 1 =V 2 /T 2 p/t =konst. /T 1 = p 2 /T 2 pv =konst. V 1 = p 2 V 2 U=0 Q= A Q 1 =A 1 0 U=0 p A= p V 2 V 1 Q= U A=0 izoterma Q=n C mv T Q=0 U= A =C mp /C mv =1 2/n v V

12 Děje v plynech stavová rovnice pro ideální plyn: pv =n RT Děje v plynech n=konst. děj konst. zákon 1. věta termodynamiky izotermický izobarický izochorický T = konst. p = konst. V = konst. adiabatický Q = 0 pv =konst. V 1 = p 2 V 2 V /T =konst. V 1 /T 1 =V 2 /T 2 p/t =konst. /T 1 = p 2 /T 2 pv =konst. V 1 = p 2 V 2 U=0 Q= A Q= U A Q=n C mp T A= p V 2 V 1 A=0 p Q= U Q=n C mv T izobara Q=0 U= A =C mp /C mv =1 2/n v V

13 Děje v plynech stavová rovnice pro ideální plyn: pv =n RT Děje v plynech n=konst. děj konst. zákon 1. věta termodynamiky izotermický izobarický izochorický T = konst. p = konst. V = konst. adiabatický Q = 0 pv =konst. V 1 = p 2 V 2 V /T =konst. V 1 /T 1 =V 2 /T 2 p/t =konst. /T 1 = p 2 /T 2 pv =konst. V 1 = p 2 V 2 p U=0 Q= A Q= U A Q=n C mp T A= p V 2 V 1 Q= U A=0 izochora Q=n C mv T Q=0 U= A =C mp /C mv =1 2/n v V

14 Děje v plynech stavová rovnice pro ideální plyn: pv =n RT Děje v plynech n=konst. děj konst. zákon 1. věta termodynamiky izotermický izobarický izochorický T = konst. p = konst. V = konst. pv =konst. V 1 = p 2 V 2 V /T =konst. V 1 /T 1 =V 2 /T 2 p/t =konst. U=0 Q= A Q= U A Q=n C mp T A= p V 2 V 1 A=0 adiabatický Q = 0 /T 1 = p 2 /T 2 pv =konst. V 1 = p 2 V 2 Q=0 U= A =C mp /C mv =1 2/n v Poissonova konstanta

15 Děje v plynech V dokonale utěsněné místnosti pravoúhlých rozměrů (délka 4 m, šířka 5 m, výška 2,5 m) zvýšíme teplotu z 15 C na 25 C. Kolikrát se zvýší (nebo sníží) tlak vzduchu v místnosti? Jaká bude práce plynu, změna jeho vnitřní energie a teplo dodané plynu? Předpokládejte, že vzduch je ideální plyn.

16 Carnotův cyklus ideální tepelný stroj: pracovní látka ideální plyn, n = konst. (žádné úniky) =1 T 2 T 1 dokonale tepelně izolován (nulové ztráty tepla) ohřívač konst. teplota T 1 dodává pracovní látce teplo Q 1 chladič konst. teplota T 2 přijímá od prac. látky teplo Q 2 ohřívač a chladič dokonale připojen k prac. látce, příp. dokonale izolován cyklus: I. izotermická expanze II. adiabatická expanze III. izotermická komprese IV. adiabatická komprese Q 1 =Q I =A I 0 U I =0 Q II =0 A II = U II 0 Q 2 =Q III =A III 0 U III =0 Q IV =0 A IV = U IV = A II 0 Nicolas Léonard Sadi Carnot ( )

17 i Carnotův cyklus = ,15 pracovní látka ideální plyn, n = ,15 =0,20 =1 T 2 T 1 dokonale tepelně izolován (nul ohřívač konst. teplota T 1 dodává pra chladič konst. teplota T 2 přijím = A I A III Q 1 = A Q 1 ohřívač a chladič dokonale připojen k prac. látce, příp. izolován cyklus: I. izotermická expanze II. adiabatická expanze III. izotermická komprese IV. adiabatická komprese Q 1 =Q I =A I 0 U I =0 Q II =0 A II = U II 0 Q 2 =Q III =A III 0 U III =0 Q IV =0 A IV = U IV = A II 0 Nicolas Léonard Sadi Carnot ( )

18 Obrácený Carnotův cyklus kompresorová chladnička: T 2 : výparník vypařování pracovní kapaliny skupenské teplo vypařování (vnitřek ledničky) kompresor vyšší tlak kondenzace (T 1 ) skupenské teplo kondenzační (okolí ledničky)

19 Obrácený Carnotův cyklus Motor chladničky má výkon 200 W. Vypočítejte její ideální chladící faktor, jestliže teplota uvnitř chlazeného prostoru je 275 K a vně 300 K. Jaké je maximální teplo, které může být odebráno z chlazeného prostoru za 10 min? Kolik vody by tato chladnička dokázala za daný čas ochladit?

20 Obrácený Carnotův cyklus tepelné čerpadlo: vypařování pracovní kapaliny skupenské teplo vypařování (venkovní vzduch, země, voda) kompresor vyšší tlak kondenzace skupenské teplo kondenzační (topná voda) topný faktor (ideální tepelné čerpadlo): K= Q 2 A = T 2 T 1 T 2 =

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Termodynamika 1. UJOP Hostivař 2014

Termodynamika 1. UJOP Hostivař 2014 Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování

Více

6. Stavy hmoty - Plyny

6. Stavy hmoty - Plyny skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 3.. 04 Název zpracovaného celku: MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Studuje tělesa na základě jejich částicové struktury.

Více

Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.

Termodynamika. Děj, který není kvazistatický, se nazývá nestatický. Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D08_Z_OPAK_T_Uvodni_pojmy_vnitrni_energie _prace_teplo_t Člověk a příroda Fyzika

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

Termodynamické zákony

Termodynamické zákony Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Termika (Fyzika zajímavě) Pachner Úvodní obrazovka Obsah učebnice (vlevo) Seznamy a přehledy (tlačítka dole) Teorie Zajímavosti Osobnosti Úlohy Pokusy Pojmy Animace Lišta s nástroji (vpravo nahoře) Poznámky

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Elektroenergetika 1. Termodynamika

Elektroenergetika 1. Termodynamika Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Elektroenergetika 1. Termodynamika a termodynamické oběhy

Elektroenergetika 1. Termodynamika a termodynamické oběhy Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

měření teploty Molekulová fyzika a termika Teplotní délková roztažnost V praxi úlohy

měření teploty Molekulová fyzika a termika Teplotní délková roztažnost V praxi úlohy měření teploty Molekulová fyzika a termika rozdíl mezi stupnicí celsiovskou a termodynamickou př. str. 173 (nové vydání s. 172) teplo(to)měry roztažnost látek rtuťový, lihový, bimetalový vodivost polovodičů

Více

Přehled otázek z fyziky pro 2.ročník

Přehled otázek z fyziky pro 2.ročník Přehled otázek z fyziky pro 2.ročník 1. Z jakých základních poznatků vychází teorie látek + důkazy. a) Látka kteréhokoli skupenství se skládá z částic molekul, atomů, iontů. b) Částice se v látce pohybují,

Více

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 2 metody zkoumání látek na základě vnějších projevů: I. KINETICKÁ TEORIE LÁTEK -studium vlastností látek na základě vnitřní struktury, pohybu a vzájemného působení jednotlivých

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

III. STRUKTURA A VLASTNOSTI PLYNŮ

III. STRUKTURA A VLASTNOSTI PLYNŮ III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo

Více

Základní poznatky. Teplota Vnitřní energie soustavy Teplo

Základní poznatky. Teplota Vnitřní energie soustavy Teplo Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme. Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO 2.1 Vnitřní energie tělesa a) celková energie (termodynamické) soustavy E tvořena kinetickou energií E k jejího makroskopického pohybu jako celku potenciální energií

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

FYZIKÁLNÍ CHEMIE chemická termodynamika

FYZIKÁLNÍ CHEMIE chemická termodynamika FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky

Více

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/2 1. Určovací veličiny pracovní látky 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 3. Směsi plynů, měrné tepelné kapacity plynů 4. První termodynamický zákon 5. Základní vratné

Více

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď)

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) Jméno: _ podpis: ročník: č. studenta Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) 1. JEDNOTKA PASCAL JE DEFINOVÁNÁ JAKO a. N.m.s b. kg.m-1.s-2 c. kg.m-2 d. kg.m.s 2. KALORIMETRICKÁ

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter. CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické

Více

Vnitřní energie, práce a teplo

Vnitřní energie, práce a teplo Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

Látkové množství n poznámky 6.A GVN

Látkové množství n poznámky 6.A GVN Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové

Více

PŘEVODY JEDNOTEK. jednotky " 1. základní

PŘEVODY JEDNOTEK. jednotky  1. základní PŘEVODY JEDNOTEK jednotky 1. základní Fyzikální veličina Jednotka Značka Délka l metr m Hmotnost m kilogram kg Čas t sekunda s Termodynamická teplota T kelvin K Látkové množství n mol mol Elektrický proud

Více

3. TEKUTINY A TERMIKA 3.1 TEKUTINY

3. TEKUTINY A TERMIKA 3.1 TEKUTINY 3. TEKUTINY A TERMIKA 3.1 TEKUTINY 3.1.1 TEKUTINY, TLAK, HYDROSTATICKÝ A ATMOSFÉRICKÝ TLAK, VZTLAKOVÁ SÍLA Tekutiny: kapaliny a plyny Statika kapalin a plynů = Hydrostatika a Aerostatika Tlak v tekutině

Více

Hmotnost atomu, molární množství. Atomová hmotnost

Hmotnost atomu, molární množství. Atomová hmotnost Hmotnost atomu, molární množství Atomová hmotnost Hmotnosti jednotlivých atomů (atomové hmotnosti) se vyjadřují v násobcích tzv atomové hmotnostní jednotky u: Dohodou bylo stanoveno, že atomová hmotnostní

Více

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,

Více

TERMIKA. (Petr Jizba) Doporučená literatura:

TERMIKA. (Petr Jizba) Doporučená literatura: Doporučená literatura: TERMIKA (Petr Jizba) http://www.fjfi.cvut.cz/files/k402/pers_hpgs/jizba/ Z. Maršák, Termodynamika a statistická fyzika (ČVUT 2000) J. Kvasnica, Termodynamika, (SNTL 1965) K. Huang,

Více

Termochemie. Katedra materiálového inženýrství a chemie A Ing. Martin Keppert Ph.D.

Termochemie. Katedra materiálového inženýrství a chemie A Ing. Martin Keppert Ph.D. Termochemie Ing. Martin Keppert Ph.D. Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz A 329 http://tpm.fsv.cvut.cz/ Termochemie: tepelné jevy při chemických reakcích Chemická reakce: CH

Více

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

1. Látkové soustavy, složení soustav

1. Látkové soustavy, složení soustav , složení soustav 1 , složení soustav 1. Základní pojmy 1.1 Hmota 1.2 Látky 1.3 Pole 1.4 Soustava 1.5 Fáze a fázové přeměny 1.6 Stavové veličiny 1.7 Složka 2. Hmotnost a látkové množství 3. Složení látkových

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/2-2-3-14 III/2-2-3-15 III/2-2-3-16 III/2-2-3-17 III/2-2-3-18 III/2-2-3-19 III/2-2-3-20 Název DUMu Ideální plyn Rychlost molekul plynu Základní rovnice pro tlak ideálního

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_11 Název materiálu: Teplo a teplota. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k vysvětlení základních fyzikálních veličin tepla a teploty.

Více

Otázky Termomechanika (2014)

Otázky Termomechanika (2014) Otázky Termomechanika (2014) 1. Základní pojmy a veličiny termomechaniky a. Makroskopický a mikroskopický popis systému, makroskopické veličiny b. Tlak: definice makroskopická a mikroskopické objasnění

Více

Molekulová fyzika a termika

Molekulová fyzika a termika Molekulová fyzika a termika Fyzika 1. ročník Vzdělávání pro konkurenceschopnost Inovace výuky oboru Informační technologie MěSOŠ Klobouky u Brna Mgr. Petr Kučera 1 Obsah témat v kapitole Molekulová fyzika

Více

5 Základy termodynamiky

5 Základy termodynamiky 5 Základy termodynamiky Teplo, teplota, tepelná kapacita, metody jejich měření. Termodynamická soustava a její rovnováha. Hlavní věty termodynamiky. Ideální plyn. Stavová rovnice, Carnotův cyklus. Reálné

Více

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o 3 - Termomechanika 1. Hustota vzduchu při tlaku p l = 0,2 MPa a teplotě t 1 = 27 C je ρ l = 2,354 kg/m 3. Jaká je jeho hustota ρ 0 při tlaku p 0 = 0,1MPa a teplotě t 0 = 0 C [1,29 kg/m 3 ] 2. Určete objem

Více

TEPLOTA (termodynamické a statistické pojetí)

TEPLOTA (termodynamické a statistické pojetí) TEPLOTA (termodynamické a statistické pojetí) TEPELNÁ ROVNOVÁHA TEPLOTA, TEPLOTNÍ STUPNICE Teplota jako statistická veličina Prof. RNDr. Emanuel Svoboda, CSc. Původ slova Podnět a příčina určitého druhu

Více

Základy molekulové fyziky a termodynamiky

Základy molekulové fyziky a termodynamiky Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou

Více

Joulův-Thomsonův jev. p 1 V 1 V 2. p 2 < p 1 V 2 > V 1. volná adiabatická expanze nevratný proces (vzroste entropie)

Joulův-Thomsonův jev. p 1 V 1 V 2. p 2 < p 1 V 2 > V 1. volná adiabatická expanze nevratný proces (vzroste entropie) Joulův-homsonův jev volná aiabatická expanze nevratný proces (vzroste entropie) ieální plyn: teplota t se nezmění ě a bue platit: p p p reálný plyn: teplota se změní (buď vzroste nebo klesne) p p < p >

Více

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. Termika Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. 1. Vnitřní energie Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou

Více

Termodynamika. Martin Keppert. Katedra materiálového inženýrství a chemie

Termodynamika. Martin Keppert. Katedra materiálového inženýrství a chemie Termodynamika Martin Keppert Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz http://tpm.fsv.cvut.cz/ Co to je termodynamika Nauka o energii, jejích formách a přenosu Energie schopnost systému

Více

TESTY Závěrečný test 2. ročník Skupina A

TESTY Závěrečný test 2. ročník Skupina A 1. Teplota tělesa se zvýšila o o C. Analogicky tomu lze říci, že se a) snížila o K. b) zvýšila o 93,15 K c) snížila o 53,15 K d) zvýšila o K. Částice v látce se pohybují a) neustáleným a uspořádaným pohybem

Více

3 pokusy z termiky. Vojtěch Jelen Fyzikální seminář LS 2014

3 pokusy z termiky. Vojtěch Jelen Fyzikální seminář LS 2014 3 pokusy z termiky Vojtěch Jelen Fyzikální seminář LS 2014 Obsah 1. Pokus online 2. Měření teploty cihly 3. Vypařování střely 1. Kalorimetrie Zabývá se měřením tepla a studuje vlastnosti látek a jejich

Více

PROCESY V TECHNICE BUDOV 8

PROCESY V TECHNICE BUDOV 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze

Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze ermodynamika par Fázové změny látky: Přivádíme-li pevné fázi látky teplo, dochází při jisté teplotě a tlaku ke změně pevné fáze na fázi kapalnou (tání) Jestliže spojíme body tání při různých tlacích, získáme

Více

Termika termika - teplota, teplo a práce termodynamické zákony tepelná vodivost - tepelná kapacita skupenské teplo

Termika termika - teplota, teplo a práce termodynamické zákony tepelná vodivost - tepelná kapacita skupenské teplo Termika termika - teplota, teplo a práce termodynamické zákony tepelná vodivost - tepelná kapacita skupenské teplo teplo, teplota, práce, tepelná vodivost Teplo část vnitřní energie tělesa = součet kinetické

Více

Termodynamika ideálních plynů

Termodynamika ideálních plynů Za správnost neručím, cokoli s jinou než černou barvou je asi špatně Informace jsou primárně z přednášek Termodynamika ideálních plynů 1. Definice uzavřené termodynamické soustavy - neprochází přes ni

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných

Více

Termodynamika ideálního plynu

Termodynamika ideálního plynu Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu

Více

1.4. II. věta termodynamiky

1.4. II. věta termodynamiky ... věta termodynamiky Slovní formulace: homsonova formulace: Nelze sestrojit periodicky pracující stroj, který by konal práci, přičemž by ochlazoval jediné těleso, jehož teplota by byla všude stejná,

Více

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie

Více

Termodynamika a živé systémy. Helena Uhrová

Termodynamika a živé systémy. Helena Uhrová Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor

Více

SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D11_Z_OPAK_T_Skupenske_premeny_T Člověk a příroda Fyzika Skupenské přeměny Opakování

Více

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný

Více

Teplotní roztažnost Přenos tepla Kinetická teorie plynů

Teplotní roztažnost Přenos tepla Kinetická teorie plynů Teplotní roztažnost Přenos tepla Kinetická teorie plynů Teplotní roztažnost pevných látek l a kapalin Teplotní délková roztažnost Teplotní objemová roztažnost a závislost hustoty na teplotě Objemová roztažnost

Více

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W = Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv

Více

Magnetokalorický jev MCE

Magnetokalorický jev MCE Magnetokalorický jev a jeho aplikační potenciál P. Svoboda Katedra fyziky kondenzovaných látek Magnetokalorický jev MCE MCE: znám déle než 120 let renesance zájmu během posledních 35 let PROČ? Připomínka

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní

Více

TERMOMECHANIKA 1. Základní pojmy

TERMOMECHANIKA 1. Základní pojmy 1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,

Více

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná

Více

CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO.

CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO. CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO. 01) Složení látek opakování učiva 6. ročníku: Všechny látky jsou složeny z částic nepatrných rozměrů (tj. atomy, molekuly,

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Thermos teplo Dynamic změna

Thermos teplo Dynamic změna Termodynamika Plán přednášky: Předmět studia Základní pojmy Termodynamické zákony předmět studia Co je to termodynamika? Soubor matematických modelů a představ, které nám umožňují popsat jakým způsobem

Více

Poznámky k semináři z termomechaniky Grafy vody a vodní páry

Poznámky k semináři z termomechaniky Grafy vody a vodní páry Příklad 1 Sytá pára o tlaku 1 [MPa] expanduje izotermicky na tlak 0,1 [MPa]. Znázorněte v diagramech vody a vodní páry. Jelikož se jedná o izotermický děj, je výhodné použít diagram T-s. Dále máme v zadání,

Více

4 Term ika. D ůsledky zavedení tep lo ty a tep la Stavová r o v n i c e Stavová rovnice termická a kalorická

4 Term ika. D ůsledky zavedení tep lo ty a tep la Stavová r o v n i c e Stavová rovnice termická a kalorická Obsah Předm luva И 1 Výchozí představy term odynam iky 13 1.1 Předmět zkoumání termodynamiky... 13 1.1.1 Celkový r á m e c... 13 1.1.2 Teplo, teplota, e n tr o p ie... 14 1.1.3 Vymezení term o d y n am

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Základní poznatky termodynamiky

Základní poznatky termodynamiky Kapitola 1 Základní poznatky termodynamiky 1.1 Úvod Při studiu fyziky začínáme zpravidla klasickou mechanikou, ve které studujeme mechanický pohyb těles. Při tom si nevšímáme, jaké vlastnosti mají tato

Více

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady Příklady 1. Jaký je tlak vzduchu v pneuatice nákladního autoobilu při teplotě C a hustotě 8, kg 3? Molární hotnost vzduchu M 9 1 3 kg ol 1. t C T 93 K -3 ρ 8, kg, M 9 1 3 kg ol 1 p? p R T R T ρ M V M 8,31

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Teplo v příkladech I

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Teplo v příkladech I Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Teplo v příkladech

Více