GEOMETRICKÁ TĚLESA. Mnohostěny

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "GEOMETRICKÁ TĚLESA. Mnohostěny"

Transkript

1 GEOMETRICKÁ TĚLESA Geometrické těleso je prostorový geometrický útvar, který je omezený (ohraničený), tato hranice mu náleží. Jeho povrch tvoří rovinné útvary a také různé složitější plochy. Geometrická tělesa dělíme na mnohostěny a rotační tělesa. Mnohostěny mají stěny, hrany a vrcholy např. krychle, jehlan, atd. Rotační tělesa vznikají rotací rovinného útvaru, nemají stěny, hrany a vrcholy např. válec, koule, atd. Mnohostěny Mnohostěn je část prostoru, která je ohraničena několika mnohoúhelníky. Je to těleso (n-stěn), jehož hranicí je sjednocení n-mnohoúhelníků, u kterých strana každého z nich je zároveň stranou sousedního mnohoúhelníku a žádné dva sousední mnohoúhelníky neleží v téže rovině. 1 Tyto mnohoúhelníky se nazývají stěny mnohostěnu, jejich vrcholy jsou vrcholy mnohostěnu a jejich strany jsou hrany mnohostěnu. Tak jako mnohoúhelníky můžeme i mnohostěny rozdělit na konvexní (Obr. 1) a nekonvexní (Obr. 2). Konvexní mnohostěn obsahuje s každými dvěma svými body X, Y i celou úsečku XY. Pro nekonvexní mnohostěny to neplatí. Obr 1 Konvexní n-úhelník Obr. 2 Nekonvexní n-úhelník Pro konvexní mnohostěny platí Eulerova věta: V konvexním mnohostěnu je součet počtu stěn a počtu vrcholů roven počtu hran zvětšeném o dvě, tj. platí: s + v = h + 2. Tento vztah mohou žáci snadno odvodit sami. Stačí si jen vypsat dostatečné množství těles a jejich stěny, vrcholy a hrany. Mnohostěny ještě můžeme rozdělit na pravidelné, polopravidelné a nepravidelné. Platónská tělesa (pravidelné mnohostěny) Obdobou pravidelných mnohoúhelníků v rovině jsou v prostoru pravidelné mnohostěny (Obr. 3). Pravidelné (platónské) těleso je konvexní mnohostěn, jehož všechny stěny jsou 1 Polák J., Středoškolská matematika v úlohách II, Prométheus, Praha 1999

2 navzájem shodné pravidelné mnohoúhelníky. Všechny hrany jsou stejně dlouhé a úhly stejně veliké. A v každém vrcholu se stýká stejný počet stěn a hran. V rovině můžeme sestrojit mnoho pravidelných mnohoúhelníků, v prostoru je počet pravidelných mnohostěnů omezen na pět. Jsou to: Pravidelný čtyřstěn (je to těleso s nejmenším možným počtem stěn), pravidelný šestistěn (krychle), pravidelný osmistěn, pravidelný dvanáctistěn a pravidelný dvacetistěn. Obr.3 - Pravidelná tělesa: Čtyřstěn (tetraedr), Šestistěn (hexaedr), Osmistěn (oktaedr), Dvanáctistěn (dodekaedr), Dvacetistěn (ikosaedr). Tabulka 1. Přehled pravidelných těles České označení Mezinár. označení Počet stěn Počet vrcholů Počet hran Tvar stěny Počet hran jednoho vrcholu Počet hran jedné stěny Čtyřstěn Tetraedr Rovnostranný trojúhelník 3 3 Šestistěn Hexaedr Čtverec 3 4 Osmistěn Oktaedr Rovnostranný trojúhelník 4 3 Dvanáctistěn Dodekaedr Pravidelný pětiúhelník 3 5 Dvacetistěn Ikosaedr Rovnostranný trojúhelník 5 3 To, že je těchto těles jen pět může být pro někoho udivující a někdo tomu také nemusí věřit a může mít námitku: Co když je jich více a nějaká jsme třeba ještě ani neobjevili! Dokážeme, že tomu tak není, že jich je opravdu jen pět a ani o jedno více.

3 Důkaz je velmi jednoduchý: Nejednodušší mnohostěn (čtyřstěn) má stěny tvořené třemi rovnostrannými trojúhelníky. Pravidelné mnohostěny, jejichž stěny tvoří rovnostranné trojúhelníky, jsou tři. Další už nejsou. V tetraedru se stýkají ve vrcholu tři rovnostranné trojúhelníky, v oktaedru se stýkají čtyři rovnostranné trojúhelníky a v ikosaedru pět rovnostranných trojúhelníků. V dalším pravidelném mnohostěnu by se muselo stýkat v jednom vrcholu šest rovnostranných trojúhelníků. Jenže, když těchto šest rovnostranných trojúhelníků s jedním společným vrcholem poskládáme tak, aby měli jeden společný vrchol, dávají dohromady pravidelný šestiúhelník. Nemohou tak tvořit prostorový útvar. (Vnitřní úhel rovnostranného trojúhelníku má 60. Tedy = 360 ) Stejné je to se čtverci. Pravidelný mnohostěn se čtvercovými stěnami je jen jeden. Je to krychle, kde se v jednom vrcholu stýkají tři čtvercové stěny. Kdyby se stýkaly jen dvě stěny, tak je to málo a čtyři stěny nám už dávají dohromady také rovinu a tvoří větší čtverec. (Vnitřní úhel čtverce má 90. Tedy = 360 ) Pravidelný mnohostěn s pravidelnými pětiúhelníkovými stěnami je také jen jeden (dodekaedr). V jednom vrcholu se zde stýkají tři stěny. Opět, kdyby byly jen dvě, je to málo a kdyby byly čtyři, je to už moc. (Vnitřní úhel pětiúhelníku má 108. Tedy = 432, 432 > 360 ) Šestiúhelníkové a další mnohoúhelníkové stěny jsou vyloučeny. Ale připusťme existenci mnohostěnu s šestiúhelníkovými stěnami. V jednom vrcholu by se stýkaly buď dvě stěny, což je málo nebo tři stěny a to je již moc. Stejné je to i pro další mnohoúhelníky. (Vnitřní úhel šestiúhelníku má 120. Tedy = 360 ) Důkaz není opravdu moc těžký a nejsou k němu potřeba žádné odborné znalosti. Může se stát vhodným doplňkem při studiu těles na základní škole. Při provádění důkazu je vhodné vystřihnout nebo si složit z papíru potřebné pravidelné mnohoúhelníky šest rovnostranných trojúhelníků, čtyři čtverce, tři pravidelné pětiúhelníky a šestiúhelníky. Tyto mnohoúhelníky pak žáci jedním vrcholem přikládají k sobě a sami objevují, že další mnohoúhelníky kromě uvedených není možné sestavit. Tento objev je pro žáky důležitější než jen vysvětlování učitele.

4 Obr. 4 - Důkaz, že pravidelných těles je právě 5. Tento důkaz může posloužit i pro další hraní s rovinnými pravidelnými útvary mozaikové dlaždice. Další vlastnosti pravidelných mnohostěnů Pro hexaedr a oktaedr a pak pro dodekaedr a ikosaedr platí, že středy stěn jednoho tělesa jsou vrcholy druhého tělesa. Takovýmto dvojicím těles se říká duální mnohostěny. Tetraedr je duální sám k sobě. Co znamená duální? Znamená to, že jedno těleso lze vepsat do druhého. Jak se dá poznat, že jsou tělesa k sobě duální? Jde to velmi snadno. Počet stěn jednoho tělesa je stejný jako počet vrcholů druhého tělesa (viz. Tabulka 1). Když najdeme v tělese středy stěn a tyto středy pospojujeme, dostaneme jiné těleso. Duální tělesa mají stejný počet hran, neboť sčítání je komutativní operace: s + v = v + s. A víme, že platí Eulerův vztah: s + v = h + 2. Pravidelným mnohoúhelníkům je možné vepsat či opsat kružnici. Stejně tak pravidelným mnohostěnům lze vepsat a opsat kulovou plochu, neboť pro všechny pravidelné mnohostěny platí: Střed pravidelného mnohostěnu má tutéž vzdálenost od jeho vrcholů (střed koule opsané) a tutéž vzdálenost od jeho stěn (střed koule vepsané). A jak najdeme tento střed? Nejednoduší je sestrojit rovinu souměrnosti těchto mnohostěnů. Řezem mnohostěnu rovinou souměrnosti je mnohoúhelník. Najít střed kružnice opsané mnohoúhelníku již není tak složité. Provedeme-li řez čtyřstěnem, dostaneme trojúhelník, šestistěnem čtyřúhelník, osmistěnem čtyřúhelník, dvanáctistěnem šestiúhelník, dvacetistěnem šestiúhelník. Trocha historie Těchto pět pravidelných těles znali starořečtí matematici na přelomu 5. a 4. století před naším letopočtem. Prvním matematikem, který se zabýval dodekaedrem a ikosaedrem, byl Theaitetos z Athén ( př. n. l.). Ovšem lze také nalézt, že to byl již Pythagoras ze Samu ( př. n. l.). Když se ale těmito tělesy zabývali již tito filosofové a matematici, proč nesou název podle Platona ( př. n. l.)? Platon dal této pětici pravidelných

5 mnohostěnů zvláštní filosofický význam. Předpokládal totiž, že atomy, nedělitelné částice živlů, z nichž je tvořen svět, mají tvar pravidelných mnohostěnů. Tedy, že pravidelný čtyřstěn představuje oheň, pravidelný šestistěn zemi, pravidelný osmistěn vzduch a dvacetistěn vodu. Dvanáctistěn považoval za představitele jsoucna, všeho co existuje. Platon říká, že ho Bůh určil pro Vesmír. Polopravidelné mnohostěny Polopravidelné mnohostěny jsou také konvexní a jejich stěny jsou pravidelné mnohoúhelníky, které se v každém vrcholu stýkají stejným způsobem. Rozdíl od pravidelných je v tom, že všechny stěny nejsou shodné. Polopravidelných mnohostěnů je mnoho. My se budeme zabývat menší skupinkou a to tělesy, které nesou zvláštní označení Archimédovská. Archimédovská tělesa Takto říkáme mnohostěnům, které vzniknou ořezáním hran či vrcholů pravidelných mnohostěnů a jejich řezy jsou pravidelné mnohoúhelníky. Archimédes ( př. n. l) objevil těchto těles třináct. Čtrnácté objevil teprve Aškinuze (1957), který jej získal ořezáním krychle. Toto těleso proto bývá v některých knihách a článcích označováno jako Aškinuzeho. Stejně ho budu označovat i já. Přesný překlad z angličtiny totiž neexistuje rhombicuboctahedron. Obr. 5. Aškinuzeho těleso Nejznámějším Archimédovským mnohostěnem je kubooktaedr (obr. 6), který vznikne ořezáním krychle nebo osmistěnu. Stěny tohoto mnohostěnu tvoří čtverce a rovnostranné trojúhelníky. Velmi používaným Archimédovských tělesem, i když si to většina neuvědomuje, je komolý dvacetistěn. Tento komolý dvacetistěn znázorňuje fotbalový míč (Obr. 7). Je tvořen z dvanácti pravidelných pětiúhelníků a z dvaceti pravidelných šestiúhelníků. Vznikl ořezáním pravidelného dvacetistěnu.

6 Obr. 6 Kubooktaedr Obr. 7 Komolý dvacetistěn Mezi polopravidelné mnohostěny řadíme také kolmé n-boké hranoly (Obr. 8), jejichž podstavou je pravidelný mnohoúhelník a výška je rovna délce straně tohoto mnohoúhelníku. Těchto mnohostěnů je nekonečně mnoho. Dále sem také patří n-boké hranolce (Obr. 9), kterých je také nekonečně mnoho. Podstavou je opět pravidelný mnohoúhelník a výška je též rovna délce strany mnohoúhelníku. Plášť je však tvořen rovnostrannými trojúhelníky. Obr. 8 Polopravidelný n-boký hranol Obr. 9 Polopravidelný n-boký hranolec Deltastěny Deltastěny jsou takové mnohoúhelníky, jejichž stěny mají tvar rovnostranných trojúhelníků (Obr. 10). Odtud název deltastěn neboť řecké tiskací písmeno delta připomíná trojúhelník. Můžeme je také dělit na konvexní a nekonvexní. Nekonvexních deltastěnů je nekonečně mnoho. Konvexních deltastěnů je pouze osm. Dokázal to v roce 1947 matematik Freudenthal. Jsou to: delta-čtyřstěn (tetraedr), delta-šestistěn, delta-osmistěn (oktaedr), delta-desetistěn (pětiboká dvojpyramida), delta-dvanáctistěn, delta-čtrnáctistěn, delta-šestnáctistěn a deltadvacetistěn.

7 Obr. 10 Delta čtrnáctistěn, Delta dvacetistěn Velmi snadné je například proměnit krychli v deltastěn nad každou její stěnu doplníme čtyřboký jehlan, jehož strany jsou rovnostranné trojúhelníky. Takto získáme nekonvexní delta-dvacetičtyřstěn. Hvězdicové mnohostěny Hvězdicové mnohostěny jsou velmi dekorativní a vznikají z mnohostěnů tak, že se stěny mnohostěnu protahují do té doby, dokud se neprotnou.

Průniky rotačních ploch

Průniky rotačních ploch Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Průniky rotačních ploch Vypracoval: Vojtěch Trnka Třída: 8. M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Bod, přímka a rovina. bezrozměrnost, jeden rozměr a dva rozměry

Bod, přímka a rovina. bezrozměrnost, jeden rozměr a dva rozměry Úvod Posvátná geometrie mapuje rozkrývání významu čísel v prostoru. Základní trasa vede z izolovaného bodu do přímky, následuje rozprostření do roviny, poté do třetího rozměru, ba až za jeho hranice, a

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

STEREOMETRIE, OBJEMY A POVRCHY TĚLES

STEREOMETRIE, OBJEMY A POVRCHY TĚLES STEREOMETRIE, OBJEMY POVRCHY TĚLES Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia utoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

3.5.8 Otočení. Předpoklady: 3506

3.5.8 Otočení. Předpoklady: 3506 3.5.8 Otočení Předpoklady: 3506 efinice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel). Nevýhody této definice: Nevíme,

Více

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů 4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Teoretické řešení střech

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Teoretické řešení střech Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Teoretické řešení střech Vypracoval: Michal Drašnar Třída: 8.M Školní rok: 2015/2016 Seminář: Deskriptivní geometrie Prohlašuji, že

Více

Vyučovací předmět / ročník: Matematika / 5. Učivo

Vyučovací předmět / ročník: Matematika / 5. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 5. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

2.2.2 Zlomky I. Předpoklady: 020201

2.2.2 Zlomky I. Předpoklady: 020201 .. Zlomky I Předpoklady: 0001 Pedagogická poznámka: V hodině je třeba postupovat tak, aby se ještě před jejím koncem začala vyplňovat tabulka u posledního příkladu 9. V loňském roce jsme si zopakovali

Více

Matematický KLOKAN 2009 www.matematickyklokan.net. kategorie Benjamín

Matematický KLOKAN 2009 www.matematickyklokan.net. kategorie Benjamín Matematický KLOKAN 2009 www.matematickyklokan.net kategorie Benjamín Úlohy za 3 body 1. Hodnota kterého výrazu je sudé číslo? (A) 200 + 9 (B) 200 9 (C) 200 9 (D) 2 + 0 + 0 + 9 (E) 2 0 + 0 + 9 2. Kolik

Více

Příprava na 1. čtvrtletní písemku pro třídu 1EB

Příprava na 1. čtvrtletní písemku pro třídu 1EB Variace 1 Příprava na 1. čtvrtletní písemku pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné

Více

1.9.5 Středově souměrné útvary

1.9.5 Středově souměrné útvary 1.9.5 Středově souměrné útvary Předpoklady: 010904 Př. 1: V obdélníkových rámech jsou nakresleny tři obrázky. Každý je sestaven z jedné přímky a jednoho obdélníku. Jeden z obrázků je středově souměrný.

Více

Matematika. Charakteristika vyučovacího předmětu. Výchovné a vzdělávací strategie pro rozvíjení klíčových kompetencí žáků

Matematika. Charakteristika vyučovacího předmětu. Výchovné a vzdělávací strategie pro rozvíjení klíčových kompetencí žáků Vzdělávací obor: Matematika a její aplikace Matematika Obsahové, časové a organizační vymezení Charakteristika vyučovacího předmětu 1.-2. ročník 4 hodiny týdně 3.-5. ročník 5 hodin týdně Vzdělávací obsah

Více

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky provádí pamětné a písemné početní Čísla přirozená Opakování září, říjen operace v oboru přirozených čísel porovnává a uspořádává čísla celá a Čísla celá, racionální racionální, provádí početní operace

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] 1 CÍL KAPITOLY Cílem této kapitoly je naučit uživatele efektivně navrhovat objekty v režimu

Více

Úlohy domácího kola kategorie C

Úlohy domácího kola kategorie C 50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,

Více

Tematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Iveta Jedličková Týdenní dotace hodin: 5 hodin Ročník: pátý

Tematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Iveta Jedličková Týdenní dotace hodin: 5 hodin Ročník: pátý ČASOVÉ OBDOBÍ Září Říjen KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA Umí zapsat a přečíst čísla do 1 000 000 Porovnává čísla do 1 000 000 Zaokrouhluje čísla na tisíce, desetitisíce, statisíce Umí

Více

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)

Více

5.2.1 Matematika povinný předmět

5.2.1 Matematika povinný předmět 5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v

Více

ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH

ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH Vypracoval: Jan Vojtíšek Třída: 8.M Školní rok: 2011/2012 Seminář: Aplikace Deskriptivní geometrie Prohlašuji, že jsem svou ročníkovou práci napsal samostatně a

Více

Autodesk Inventor 8 vysunutí

Autodesk Inventor 8 vysunutí Nyní je náčrt posazen rohem do počátku souřadného systému. Autodesk Inventor 8 vysunutí Následující text popisuje vznik 3D modelu pomocí příkazu Vysunout. Vyjdeme z náčrtu na obrázku 1. Obrázek 1: Náčrt

Více

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika.

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika. Matematika Matematika pro žáky 6. až 9. ročníku napomáhá k rozvoji paměti, logického myšlení, kritickému usuzování a srozumitelné a věcné argumentaci prostřednictvím matematických problémů. Žáci si prostřednictvím

Více

MATEMATIKA. 1 Základní informace k zadání zkoušky

MATEMATIKA. 1 Základní informace k zadání zkoušky MATEMATIKA PŘIJÍMAČKY LIK 2012 DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů 1 Základní informace k zadání zkoušky Didaktický test obsahuje 15 úloh. Časový limit pro řešení didaktického testu je

Více

Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď.

Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď. MATEMATIKA 5 M5PZD16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi 6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové

Více

Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol

Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol Výroba ozubených kol Použití ozubených kol Ozubenými koly se přenášejí otáčivé pohyby a kroutící momenty. Přenos je zde nucený, protože zuby a zubní mezery do sebe zabírají. Kola mohou mít vnější nebo

Více

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat? 3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.

Více

Číslicová technika 3 učební texty (SPŠ Zlín) str.: - 1 -

Číslicová technika 3 učební texty (SPŠ Zlín) str.: - 1 - Číslicová technika učební texty (SPŠ Zlín) str.: - -.. ČÍTAČE Mnohá logická rozhodnutí jsou založena na vyhodnocení počtu opakujících se jevů. Takovými jevy jsou např. rychlost otáčení nebo cykly stroje,

Více

5.2.2 Rovinné zrcadlo

5.2.2 Rovinné zrcadlo 5.2.2 Rovinné zrcadlo ředpoklady: 5101, 5102, 5201 Terminologie pro přijímačky z fyziky Optická soustava = soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných paprsků. Optické

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数 A absolutní člen 常 量 成 员 absolutní hodnota čísla 绝 对 值 algebraický výraz 代 数 表 达 式 ar 公 亩 aritmetický průměr 算 术 均 数 aritmetika 算 术, 算 法 B boční hrana 侧 棱 boční hrany jehlanu 角 锥 的 侧 棱 boční stěny jehlanu

Více

Vysoká škola báňská Technická univerzita Ostrava KUŽELOSEČKY, KOLINEACE

Vysoká škola báňská Technická univerzita Ostrava KUŽELOSEČKY, KOLINEACE Vysoká škola báňská Technická univerzita Ostrava KUŽELOEČKY KOLINECE Deskriptivní geometrie Krista Dudková Radka Hamříková O T R V 0 0 5 OH 1. Kuželosečky 5 1.1. Řezy na kuželové ploše 5 1.. Elipsa 7 odová

Více

REPREZENTACE 3D SCÉNY

REPREZENTACE 3D SCÉNY REPREZENTACE 3D SCÉNY JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah reprezentace 3D scény objemové reprezentace výčtové reprezentace

Více

Plochy stavebně-inženýrské praxe

Plochy stavebně-inženýrské praxe Plochy stavebně-inženýrské praxe 9. Plochy rourové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 95 98. Persistent

Více

Řešení: Dejme tomu, že pan Alois to vezme popořadě od jara do zimy. Pro výběr fotky z jara má Alois dvanáct možností. Tady není co počítat.

Řešení: Dejme tomu, že pan Alois to vezme popořadě od jara do zimy. Pro výběr fotky z jara má Alois dvanáct možností. Tady není co počítat. KOMBINATORIKA ŘEŠENÉ PŘÍKLADY Příklad 1 Pan Alois dostal od vedení NP Šumava za úkol vytvořit propagační poster se čtyřmi fotografiemi Šumavského národního parku, každou z jiného ročního období (viz obrázek).

Více

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_9_ČT_1.09_ grafická minimalizace Střední odborná škola a Střední odborné učiliště,

Více

Diamantová suma - řešení příkladů 1.kola

Diamantová suma - řešení příkladů 1.kola Diamantová suma - řešení příladů.ola. Doažte, že pro aždé přirozené číslo n platí.n + 2.n + + n.n < 2. Postupujeme matematicou inducí. Levou stranu nerovnosti označme s n. Nejmenší n, pro než má smysl

Více

Organismy. Látky. Bakterie drobné, okem neviditelné, některé jsou původci nemocí, většina z nich je však velmi užitečná a v přírodě potřebná

Organismy. Látky. Bakterie drobné, okem neviditelné, některé jsou původci nemocí, většina z nich je však velmi užitečná a v přírodě potřebná Organismy Všechny živé tvory dohromady nazýváme živé organismy (zkráceně "organismy") Živé organismy můžeme roztřídit na čtyři hlavní skupiny: Bakterie drobné, okem neviditelné, některé jsou původci nemocí,

Více

Strojní součásti, konstrukční prvky a spoje

Strojní součásti, konstrukční prvky a spoje Strojní součásti, konstrukční prvky a spoje Šroubové spoje Šrouby jsou nejčastěji používané strojní součástí a neexistuje snad stroj, kde by se nevyskytovaly. Mimo šroubů jsou u některých šroubových spojů

Více

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502 .5. Další úlohy s kvadratickými funkcemi Předpoklady: 50, 50 Pedagogická poznámka: Tato hodina patří mezi ty méně organizované. Společně řešíme příklad, při dalším počítání se třída rozpadá. Já řeším příklady

Více

TECHNICKÉ KRESLENÍ A CAD

TECHNICKÉ KRESLENÍ A CAD Přednáška č. 7 V ELEKTROTECHNICE Kótování Zjednodušené kótování základních geometrických prvků Někdy stačí k zobrazení pouze jeden pohled Tenké součásti kvádr Kótování Kvádr (základna čtverec) jehlan Kvalitativní

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Číslo projektu Z.1.07/1.5.00/34.0743 Název školy Moravské gymnázium rno s.r.o. utor Tematická oblast Mgr. Marie hadimová Mgr. Věra Jeřábková Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Ročník

Více

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ MATEMATIKA I ZÁKLADY LINEÁRNÍ ALGEBRY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε, Podpořeno projektem

Více

NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO 3.5.5 PŘÍRUČKA UŽIVATELE

NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO 3.5.5 PŘÍRUČKA UŽIVATELE NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO 3.5.5 PŘÍRUČKA UŽIVATELE 1. Přehled možností programu 1.1. Hlavní okno Hlavní okno programu se skládá ze čtyř karet : Projekt, Zadání, Výsledky a Návrhový

Více

2.2.10 Slovní úlohy vedoucí na lineární rovnice I

2.2.10 Slovní úlohy vedoucí na lineární rovnice I Slovní úlohy vedoucí na lineární rovnice I Předpoklady: 0, 06 Pedagogická poznámka: Řešení slovních úloh představuje pro značnou část studentů nejobtížnější část matematiky Důvod je jednoduchý Po celou

Více

1.2.5 Reálná čísla I. Předpoklady: 010204

1.2.5 Reálná čísla I. Předpoklady: 010204 .2.5 Reálná čísla I Předpoklady: 00204 Značíme R. Reálná čísla jsou čísla, kterými se vyjadřují délky úseček, čísla jim opačná a 0. Každé reálné číslo je na číselné ose znázorněno právě jedním bodem. Každý

Více

Mechanismy. Vazby členů v mechanismech (v rovině):

Mechanismy. Vazby členů v mechanismech (v rovině): Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).

Více

5.4.1 Mnohostěny. Předpoklady:

5.4.1 Mnohostěny. Předpoklady: 5.4.1 Mnohostěny Předpoklady: Geometrické těleso je prostorově omezený geometrický útvar, jehož hranicí je uzavřená plocha. Hranoly Je dán n-úhelník A... 1A2 A n (řídící n-úhelník) ležící v rovině ρ a

Více

Projekt Odyssea, www.odyssea.cz

Projekt Odyssea, www.odyssea.cz Projekt Odyssea, www.odyssea.cz Příprava na vyučování s cíli osobnostní a sociální výchovy (typ B) Téma oborové Vzdělávací obor Ročník Časový rozsah Definice matematických pojmů Matematika a její aplikace

Více

Kód uchazeče ID:... Varianta: 15

Kód uchazeče ID:... Varianta: 15 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 15 1. V únoru byla zaměstnancům zvýšena mzda o 15 % lednové mzdy. Následně

Více

Základní umělecká škola Sokolov, Staré náměstí 37, 356 01 Sokolov

Základní umělecká škola Sokolov, Staré náměstí 37, 356 01 Sokolov Základní umělecká škola Sokolov, Staré náměstí 37, 356 01 Sokolov Název projektu Podpora profesního rozvoje pedagogických pracovníků ZUŠ Karlovarského kraje při zavádění nových studijních oborů v rámci

Více

Staroegyptská matematika. Hieratické matematické texty

Staroegyptská matematika. Hieratické matematické texty Staroegyptská matematika. Hieratické matematické texty Stanovení kvality piva a chleba In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jana Kalinová [ÚLOHA 01 ÚVOD DO PROSTŘEDÍ OBJEMOVÁ SOUČÁST; PŘÍKAZ SKICA A JEJÍ VAZBENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jana Kalinová [ÚLOHA 01 ÚVOD DO PROSTŘEDÍ OBJEMOVÁ SOUČÁST; PŘÍKAZ SKICA A JEJÍ VAZBENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jana Kalinová [ÚLOHA 01 ÚVOD DO PROSTŘEDÍ OBJEMOVÁ SOUČÁST; PŘÍKAZ SKICA A JEJÍ VAZBENÍ] 1 CÍL KAPITOLY. Cílem této kapitoly je sžití se s win prostředím

Více

Tab. 1 Podíl emisí TZL a SO₂ v krajích z celkového objemu ČR v letech 2003 až 2009 (v %)

Tab. 1 Podíl emisí TZL a SO₂ v krajích z celkového objemu ČR v letech 2003 až 2009 (v %) 3. Emise Jednou ze základních složek životního prostředí je ovzduší. Jeho kvalita zcela zásadně ovlivňuje kvalitu lidského života. Kvalitu ovzduší lze sledovat 2 způsoby. Prvním, a statisticky uchopitelnějším,

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY Předmět: Ročík: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ. 9. 0 Název zpracovaého celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY DEFINICE FAKTORIÁLU Při výpočtech úloh z kombiatoriky se používá!

Více

Měření základních vlastností OZ

Měření základních vlastností OZ Měření základních vlastností OZ. Zadání: A. Na operačním zesilovači typu MAA 74 a MAC 55 změřte: a) Vstupní zbytkové napětí U D0 b) Amplitudovou frekvenční charakteristiku napěťového přenosu OZ v invertujícím

Více

6. Matice. Algebraické vlastnosti

6. Matice. Algebraické vlastnosti Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 6 Matice Algebraické vlastnosti 1 Algebraické operace s maticemi Definice Bud te A,

Více

Výchovné a vzdělávací strategie pro rozvoj klíčových kompetencí žáků

Výchovné a vzdělávací strategie pro rozvoj klíčových kompetencí žáků CVIČENÍ Z MATEMATIKY Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Předmět je realizován od 6. ročníku až po 9. ročník po 1 hodině týdně. Výuka probíhá v kmenové učebně nebo

Více

www.ujep.cz/ujep/pf/kmat/home/page2/kos.htm. Přejeme Ti hodně zábavy při řešení problémů korespondenčního semináře KOS SEVERÁK.

www.ujep.cz/ujep/pf/kmat/home/page2/kos.htm. Přejeme Ti hodně zábavy při řešení problémů korespondenčního semináře KOS SEVERÁK. Milý příteli, dostal se Ti do rukou první ročník matematického korespondenčního semináře KOS SEVERÁK. Seminář je určen pro studenty středních škol všech typů. Ročník nerozhoduje. Je pořádán katedrou matematiky

Více

1 Úvod do čínského určování diagnózy z nehtů

1 Úvod do čínského určování diagnózy z nehtů 138 1 Úvod do čínského určování diagnózy z nehtů Určování diagnózy z nehtů je metoda, jak diagnostikovat onemocnění těla a jeho plných i dutých orgánů a zhodnocovat stupeň chorobné změny pozorováním stavu

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Základní škola Obříství, okres Mělník Termín zkoušky: 13.

Více

Metoda konečných prvků. 6. přednáška Tělesové prvky - úvod (lineární trojúhelník a lineární čtyřstěn) Martin Vrbka, Michal Vaverka

Metoda konečných prvků. 6. přednáška Tělesové prvky - úvod (lineární trojúhelník a lineární čtyřstěn) Martin Vrbka, Michal Vaverka Metoda konečných prvků 6. přednáška Tělesové prvky - úvod (lineární trojúhelník a lineární čtyřstěn) Martin Vrbka, Michal Vaverka Diskretizace Analýza pomocí MKP vyžaduje rozdělení řešené oblasti na konečný

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla Moderní technologie ve studiu aplikované fyiky CZ.1.07/..00/07.0018 4. Komplexní čísla Matematickým důvodem pro avedení komplexních čísel ( latinského complexus složený), byla potřeba rošířit množinu (obor)

Více

% STĚNY OKNA INFILTRA STŘECHA PODLAHA 35 CE 30 25 35% 20 25% 15 20% 10 10% 10% 5

% STĚNY OKNA INFILTRA STŘECHA PODLAHA 35 CE 30 25 35% 20 25% 15 20% 10 10% 10% 5 Obecně o smyslu zateplení : Každému, kdo se o to zajímá, je jasné, kterým směrem se ubírají ceny energie a jak dramaticky rostou náklady na vytápění objektů. Týká se to jak domácností, tak kanceláří, výrobních

Více

DAŇ Z PŘÍJMŮ FYZICKÝCH OSOB

DAŇ Z PŘÍJMŮ FYZICKÝCH OSOB DAŇ Z PŘÍJMŮ FYZICKÝCH OSOB Předmět daně z příjmů fyzických osob Fyzická osoba zdaňuje všechny své příjmy jedinou daní a přitom tyto příjmy mohou mít různý charakter. Příjmy fyzických osob se rozdělují

Více

Pokyny pro dodržování soutěžního práva

Pokyny pro dodržování soutěžního práva Translation by courtesy of Pokyny pro dodržování soutěžního práva Naše obchodní asociace sdružuje dodavatele a další strany, které se podílejí na činnosti evropského zdravotnického sektoru, aby diskutovali

Více

LANOVÁ STŘECHA NAD ELIPTICKÝM PŮDORYSEM

LANOVÁ STŘECHA NAD ELIPTICKÝM PŮDORYSEM LANOVÁ STŘECHA NAD ELIPTICKÝM PŮDORYSEM 1 Úvod V roce 2012 byla v rámci projektu TA02011322 Prostorové konstrukce podepřené kabely a/nebo oblouky řešena statická analýza návrhu visuté lanové střechy nad

Více

I. kolo kategorie Z6

I. kolo kategorie Z6 58. ročník Matematické olympiády I. kolo kategorie Z6 Z6 I 1 Naobrázkuječtvercovásíť,jejížčtvercemajístranudélky1cm.Vsítijezakreslen obrazec vybarvený šedě. Libor má narýsovat přímku, která je rovnoběžná

Více

4. Připoutejte se, začínáme!

4. Připoutejte se, začínáme! 4. Připoutejte se, začínáme! Pojďme si nyní zrekapitulovat základní principy spreadů, které jsme si vysvětlili v předcházejících kapitolách. Řekli jsme si, že klasický spreadový obchod se skládá ze dvou

Více

Posilování sociálního dialogu v místním a regionálním správním sektoru. Diskusní dokument

Posilování sociálního dialogu v místním a regionálním správním sektoru. Diskusní dokument EPSU/CEMR seminář 11. prosince 2008, Bratislava 1) Co je sociální dialog? Je důležité vysvětlit, co znamená sociální dialog, protože tento termín se obvykle nepoužívá ve všech evropských zemích pro popis

Více

Teleskopie díl pátý (Triedr v astronomii)

Teleskopie díl pátý (Triedr v astronomii) Teleskopie díl pátý (Triedr v astronomii) Na první pohled se může zdát, že malé dalekohledy s převracející hranolovou soustavou, tzv. triedry, nejsou pro astronomická pozorování příliš vhodné. Čas od času

Více

Modul Řízení objednávek. www.money.cz

Modul Řízení objednávek. www.money.cz Modul Řízení objednávek www.money.cz 2 Money S5 Řízení objednávek Funkce modulu Obchodní modul Money S5 Řízení objednávek slouží k uskutečnění hromadných akcí s objednávkami, které zajistí dostatečné množství

Více

PŘÍLOHA 1.6 SMLOUVY O PŘÍSTUPU K VEŘEJNÉ PEVNÉ KOMUNIKAČNÍ SÍTI LOGISTIKA KONCOVÝCH ZAŘÍZENÍ

PŘÍLOHA 1.6 SMLOUVY O PŘÍSTUPU K VEŘEJNÉ PEVNÉ KOMUNIKAČNÍ SÍTI LOGISTIKA KONCOVÝCH ZAŘÍZENÍ PŘÍLOHA 1.6 SMLOUVY O PŘÍSTUPU K VEŘEJNÉ PEVNÉ KOMUNIKAČNÍ SÍTI LOGISTIKA KONCOVÝCH ZAŘÍZENÍ Obsah 1 Koncová zařízení... 3 2 Charakteristika typů služeb logistika KZ Dodání KZ, Instalace KZ... 3 3 Další

Více

9.4.2001. Ėlektroakustika a televize. TV norma ... Petr Česák, studijní skupina 205

9.4.2001. Ėlektroakustika a televize. TV norma ... Petr Česák, studijní skupina 205 Ėlektroakustika a televize TV norma.......... Petr Česák, studijní skupina 205 Letní semestr 2000/200 . TV norma Úkol měření Seznamte se podrobně s průběhem úplného televizního signálu obrazového černobílého

Více

Zadání. Založení projektu

Zadání. Založení projektu Zadání Cílem tohoto příkladu je navrhnout symetrický dřevěný střešní vazník délky 13 m, sklon střechy 25. Materiálem je dřevo třídy C24, fošny tloušťky 40 mm. Zatížení krytinou a podhledem 0,2 kn/m, druhá

Více

MECHANIKA HORNIN A ZEMIN

MECHANIKA HORNIN A ZEMIN MECHANIKA HORNIN A ZEMIN podklady k přednáškám doc. Ing. Kořínek Robert, CSc. Místnost: C 314 Telefon: 597 321 942 E-mail: robert.korinek@vsb.cz Internetové stránky: fast10.vsb.cz/korinek Mechanické vlastnosti

Více

Pokyn D - 293. Sdělení Ministerstva financí k rozsahu dokumentace způsobu tvorby cen mezi spojenými osobami

Pokyn D - 293. Sdělení Ministerstva financí k rozsahu dokumentace způsobu tvorby cen mezi spojenými osobami PŘEVZATO Z MINISTERSTVA FINANCÍ ČESKÉ REPUBLIKY Ministerstvo financí Odbor 39 Č.j.: 39/116 682/2005-393 Referent: Mgr. Lucie Vojáčková, tel. 257 044 157 Ing. Michal Roháček, tel. 257 044 162 Pokyn D -

Více

1.1.11 Poměry a úměrnosti I

1.1.11 Poměry a úměrnosti I 1.1.11 Poměry a úměrnosti I Předpoklady: základní početní operace, 010110 Poznámka: Následující látka bohužel patří mezi ty, kde je nejvíce rozšířené používání samospasitelných postupů, které umožňují

Více

STANDARD 3. JEDNÁNÍ SE ZÁJEMCEM (ŽADATELEM) O SOCIÁLNÍ SLUŽBU

STANDARD 3. JEDNÁNÍ SE ZÁJEMCEM (ŽADATELEM) O SOCIÁLNÍ SLUŽBU STANDARD 3. JEDNÁNÍ SE ZÁJEMCEM (ŽADATELEM) O SOCIÁLNÍ SLUŽBU CÍL STANDARDU 1) Tento standard vychází ze zákona č. 108/2006 Sb., o sociálních službách (dále jen Zákon ) a z vyhlášky č. 505/2006 Sb., kterou

Více

MSSF Benefit praktický průvodce pro žadatele v rámci Operačního programu Rozvoj lidských zdrojů

MSSF Benefit praktický průvodce pro žadatele v rámci Operačního programu Rozvoj lidských zdrojů MSSF Benefit praktický průvodce pro žadatele v rámci Operačního programu Rozvoj lidských zdrojů MSSF Benefit dostupnost a instalace MSSF Benefit bude dostupný ke stažení na stránkách www.kr-olomoucky.cz

Více

VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE

VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE V. Hon VŠB TU Ostrava, FEI, K455, 17. Listopadu 15, Ostrava Poruba, 70833 Abstrakt Neuronová síť (dále

Více

Dodatečné informace č. 3 k zadávacím podmínkám

Dodatečné informace č. 3 k zadávacím podmínkám Dodatečné informace č. 3 k zadávacím podmínkám Zakázka: Zadavatel: Evropské domy v krajích stavební úpravy objektu Nový Hluchák budova bez č.p. v areálu Pospíšilova 365, Hradec Králové Královéhradecký

Více

Provoz a poruchy topných kabelů

Provoz a poruchy topných kabelů Stránka 1 Provoz a poruchy topných kabelů Datum: 31.3.2008 Autor: Jiří Koreš Zdroj: Elektroinstalatér 1/2008 Článek nemá za úkol unavovat teoretickými úvahami a předpisy, ale nabízí pohled na topné kabely

Více

Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost

Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost Příloha č. 7 Seminář z matematiky V učebním plánu 2. druhého stupně se zařazuje nepovinný předmět Seminář z matematiky. V tematickém okruhu Čísla a početní operace na prvním stupni, na který navazuje a

Více

Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0

Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0 PZK 9 M9-Z-D-PR_OT_ST M9PZD6CT Pokyny k hodnocení Pokyny k hodnocení úlohy BODY ZADÁNÍ Vypočtěte, kolikrát je rozdíl čísel,4 a,7 (v tomto pořadí) menší než jejich součet. (V záznamovém archu je očekáván

Více

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 1O POLOHOVÉ VYTYČOVÁNÍ Pod pojem polohového vytyčování se

Více

Stanovy TJ Plzeň-Bílá Hora, z.s.

Stanovy TJ Plzeň-Bílá Hora, z.s. Stanovy TJ Plzeň-Bílá Hora, z.s. I. Tělovýchovná jednota 1.1. Spolek s názvem TJ Plzeň-Bílá Hora, z.s., (dále jen TJ) je dobrovolným zájmovým svazkem členů provozujících nebo majících zájem o tělovýchovu,

Více

Podrobný postup pro vygenerování a zaslání Žádosti o podporu a příloh OPR přes Portál farmáře

Podrobný postup pro vygenerování a zaslání Žádosti o podporu a příloh OPR přes Portál farmáře Podrobný postup pro vygenerování a zaslání Žádosti o podporu a příloh OPR přes Portál farmáře 3. a 4. výzva příjmu žádostí Operačního programu Rybářství (2014 2020) V následujícím dokumentu je uveden podrobný

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět: Období ročník: Učební texty: Matematika 2. období 4. ročník R. Blažková: Matematika pro 3. ročník ZŠ (3. díl) (Alter) R. Blažková: Matematika pro 4. ročník ZŠ (1. díl) (Alter) J. Jurtová:

Více

ŘÁD UPRAVUJÍCÍ POSTUP DO DALŠÍHO ROČNÍKU

ŘÁD UPRAVUJÍCÍ POSTUP DO DALŠÍHO ROČNÍKU 1. Oblast použití Řád upravující postup do dalšího ročníku ŘÁD UPRAVUJÍCÍ POSTUP DO DALŠÍHO ROČNÍKU na Německé škole v Praze 1.1. Ve školském systému s třináctiletým studijním cyklem zahrnuje nižší stupeň

Více

Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2

Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2 Po etní geometrie Pythagorova v ta Obsah tverce nad p eponou je roven sou tu obsah tverc nad ob ma odv snami. Výpo et délky p epony: c = a + b Výpo et délky odv sny: a = c b, b = c a P íklad 1: Vypo t

Více

Jakhrátavyhrát Robert Šámal

Jakhrátavyhrát Robert Šámal Jakhrátavyhrát Robert Šámal V přednášce si ukážeme efektivní způsob, jak analyzovat hry. U jednodušších her objevíme úplnou strategii, tj. postup, jak o každé pozici poznat, kdo vyhraje a jak má správně

Více

Válec - slovní úlohy

Válec - slovní úlohy Válec - slovní úlohy VY_32_INOVACE_M-Ge. 7., 8. 20 Anotace: Žák řeší slovní úlohy z praxe. Využívá k řešení matematický aparát. Vzdělávací oblast: Matematika Autor: Mgr. Robert Kecskés Jazyk: Český Očekávaný

Více

Prameny. Hry středověku

Prameny. Hry středověku Vypracoval: Lukáš Hetmánek 438553 Stolní hry ve středověku Mezi jedny z nejoblíbenějších volnočasových aktivit člověka patří nepochybně hra. Hra a hraní si jde ruku v ruce s lidským bytím a za mnoho let

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

I. Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb

I. Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb I. Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb 1 VŠEOBECNĚ ČSN EN 1991-1-1 poskytuje pokyny pro stanovení objemové tíhy stavebních a skladovaných materiálů nebo výrobků, pro vlastní

Více

Seriál: Management projektů 7. rámcového programu

Seriál: Management projektů 7. rámcového programu Seriál: Management projektů 7. rámcového programu Část 4 Podpis Konsorciální smlouvy V předchozím čísle seriálu o Managementu projektů 7. rámcového programu pro výzkum, vývoj a demonstrace (7.RP) byl popsán

Více