GEOMETRICKÁ TĚLESA. Mnohostěny

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "GEOMETRICKÁ TĚLESA. Mnohostěny"

Transkript

1 GEOMETRICKÁ TĚLESA Geometrické těleso je prostorový geometrický útvar, který je omezený (ohraničený), tato hranice mu náleží. Jeho povrch tvoří rovinné útvary a také různé složitější plochy. Geometrická tělesa dělíme na mnohostěny a rotační tělesa. Mnohostěny mají stěny, hrany a vrcholy např. krychle, jehlan, atd. Rotační tělesa vznikají rotací rovinného útvaru, nemají stěny, hrany a vrcholy např. válec, koule, atd. Mnohostěny Mnohostěn je část prostoru, která je ohraničena několika mnohoúhelníky. Je to těleso (n-stěn), jehož hranicí je sjednocení n-mnohoúhelníků, u kterých strana každého z nich je zároveň stranou sousedního mnohoúhelníku a žádné dva sousední mnohoúhelníky neleží v téže rovině. 1 Tyto mnohoúhelníky se nazývají stěny mnohostěnu, jejich vrcholy jsou vrcholy mnohostěnu a jejich strany jsou hrany mnohostěnu. Tak jako mnohoúhelníky můžeme i mnohostěny rozdělit na konvexní (Obr. 1) a nekonvexní (Obr. 2). Konvexní mnohostěn obsahuje s každými dvěma svými body X, Y i celou úsečku XY. Pro nekonvexní mnohostěny to neplatí. Obr 1 Konvexní n-úhelník Obr. 2 Nekonvexní n-úhelník Pro konvexní mnohostěny platí Eulerova věta: V konvexním mnohostěnu je součet počtu stěn a počtu vrcholů roven počtu hran zvětšeném o dvě, tj. platí: s + v = h + 2. Tento vztah mohou žáci snadno odvodit sami. Stačí si jen vypsat dostatečné množství těles a jejich stěny, vrcholy a hrany. Mnohostěny ještě můžeme rozdělit na pravidelné, polopravidelné a nepravidelné. Platónská tělesa (pravidelné mnohostěny) Obdobou pravidelných mnohoúhelníků v rovině jsou v prostoru pravidelné mnohostěny (Obr. 3). Pravidelné (platónské) těleso je konvexní mnohostěn, jehož všechny stěny jsou 1 Polák J., Středoškolská matematika v úlohách II, Prométheus, Praha 1999

2 navzájem shodné pravidelné mnohoúhelníky. Všechny hrany jsou stejně dlouhé a úhly stejně veliké. A v každém vrcholu se stýká stejný počet stěn a hran. V rovině můžeme sestrojit mnoho pravidelných mnohoúhelníků, v prostoru je počet pravidelných mnohostěnů omezen na pět. Jsou to: Pravidelný čtyřstěn (je to těleso s nejmenším možným počtem stěn), pravidelný šestistěn (krychle), pravidelný osmistěn, pravidelný dvanáctistěn a pravidelný dvacetistěn. Obr.3 - Pravidelná tělesa: Čtyřstěn (tetraedr), Šestistěn (hexaedr), Osmistěn (oktaedr), Dvanáctistěn (dodekaedr), Dvacetistěn (ikosaedr). Tabulka 1. Přehled pravidelných těles České označení Mezinár. označení Počet stěn Počet vrcholů Počet hran Tvar stěny Počet hran jednoho vrcholu Počet hran jedné stěny Čtyřstěn Tetraedr Rovnostranný trojúhelník 3 3 Šestistěn Hexaedr Čtverec 3 4 Osmistěn Oktaedr Rovnostranný trojúhelník 4 3 Dvanáctistěn Dodekaedr Pravidelný pětiúhelník 3 5 Dvacetistěn Ikosaedr Rovnostranný trojúhelník 5 3 To, že je těchto těles jen pět může být pro někoho udivující a někdo tomu také nemusí věřit a může mít námitku: Co když je jich více a nějaká jsme třeba ještě ani neobjevili! Dokážeme, že tomu tak není, že jich je opravdu jen pět a ani o jedno více.

3 Důkaz je velmi jednoduchý: Nejednodušší mnohostěn (čtyřstěn) má stěny tvořené třemi rovnostrannými trojúhelníky. Pravidelné mnohostěny, jejichž stěny tvoří rovnostranné trojúhelníky, jsou tři. Další už nejsou. V tetraedru se stýkají ve vrcholu tři rovnostranné trojúhelníky, v oktaedru se stýkají čtyři rovnostranné trojúhelníky a v ikosaedru pět rovnostranných trojúhelníků. V dalším pravidelném mnohostěnu by se muselo stýkat v jednom vrcholu šest rovnostranných trojúhelníků. Jenže, když těchto šest rovnostranných trojúhelníků s jedním společným vrcholem poskládáme tak, aby měli jeden společný vrchol, dávají dohromady pravidelný šestiúhelník. Nemohou tak tvořit prostorový útvar. (Vnitřní úhel rovnostranného trojúhelníku má 60. Tedy = 360 ) Stejné je to se čtverci. Pravidelný mnohostěn se čtvercovými stěnami je jen jeden. Je to krychle, kde se v jednom vrcholu stýkají tři čtvercové stěny. Kdyby se stýkaly jen dvě stěny, tak je to málo a čtyři stěny nám už dávají dohromady také rovinu a tvoří větší čtverec. (Vnitřní úhel čtverce má 90. Tedy = 360 ) Pravidelný mnohostěn s pravidelnými pětiúhelníkovými stěnami je také jen jeden (dodekaedr). V jednom vrcholu se zde stýkají tři stěny. Opět, kdyby byly jen dvě, je to málo a kdyby byly čtyři, je to už moc. (Vnitřní úhel pětiúhelníku má 108. Tedy = 432, 432 > 360 ) Šestiúhelníkové a další mnohoúhelníkové stěny jsou vyloučeny. Ale připusťme existenci mnohostěnu s šestiúhelníkovými stěnami. V jednom vrcholu by se stýkaly buď dvě stěny, což je málo nebo tři stěny a to je již moc. Stejné je to i pro další mnohoúhelníky. (Vnitřní úhel šestiúhelníku má 120. Tedy = 360 ) Důkaz není opravdu moc těžký a nejsou k němu potřeba žádné odborné znalosti. Může se stát vhodným doplňkem při studiu těles na základní škole. Při provádění důkazu je vhodné vystřihnout nebo si složit z papíru potřebné pravidelné mnohoúhelníky šest rovnostranných trojúhelníků, čtyři čtverce, tři pravidelné pětiúhelníky a šestiúhelníky. Tyto mnohoúhelníky pak žáci jedním vrcholem přikládají k sobě a sami objevují, že další mnohoúhelníky kromě uvedených není možné sestavit. Tento objev je pro žáky důležitější než jen vysvětlování učitele.

4 Obr. 4 - Důkaz, že pravidelných těles je právě 5. Tento důkaz může posloužit i pro další hraní s rovinnými pravidelnými útvary mozaikové dlaždice. Další vlastnosti pravidelných mnohostěnů Pro hexaedr a oktaedr a pak pro dodekaedr a ikosaedr platí, že středy stěn jednoho tělesa jsou vrcholy druhého tělesa. Takovýmto dvojicím těles se říká duální mnohostěny. Tetraedr je duální sám k sobě. Co znamená duální? Znamená to, že jedno těleso lze vepsat do druhého. Jak se dá poznat, že jsou tělesa k sobě duální? Jde to velmi snadno. Počet stěn jednoho tělesa je stejný jako počet vrcholů druhého tělesa (viz. Tabulka 1). Když najdeme v tělese středy stěn a tyto středy pospojujeme, dostaneme jiné těleso. Duální tělesa mají stejný počet hran, neboť sčítání je komutativní operace: s + v = v + s. A víme, že platí Eulerův vztah: s + v = h + 2. Pravidelným mnohoúhelníkům je možné vepsat či opsat kružnici. Stejně tak pravidelným mnohostěnům lze vepsat a opsat kulovou plochu, neboť pro všechny pravidelné mnohostěny platí: Střed pravidelného mnohostěnu má tutéž vzdálenost od jeho vrcholů (střed koule opsané) a tutéž vzdálenost od jeho stěn (střed koule vepsané). A jak najdeme tento střed? Nejednoduší je sestrojit rovinu souměrnosti těchto mnohostěnů. Řezem mnohostěnu rovinou souměrnosti je mnohoúhelník. Najít střed kružnice opsané mnohoúhelníku již není tak složité. Provedeme-li řez čtyřstěnem, dostaneme trojúhelník, šestistěnem čtyřúhelník, osmistěnem čtyřúhelník, dvanáctistěnem šestiúhelník, dvacetistěnem šestiúhelník. Trocha historie Těchto pět pravidelných těles znali starořečtí matematici na přelomu 5. a 4. století před naším letopočtem. Prvním matematikem, který se zabýval dodekaedrem a ikosaedrem, byl Theaitetos z Athén ( př. n. l.). Ovšem lze také nalézt, že to byl již Pythagoras ze Samu ( př. n. l.). Když se ale těmito tělesy zabývali již tito filosofové a matematici, proč nesou název podle Platona ( př. n. l.)? Platon dal této pětici pravidelných

5 mnohostěnů zvláštní filosofický význam. Předpokládal totiž, že atomy, nedělitelné částice živlů, z nichž je tvořen svět, mají tvar pravidelných mnohostěnů. Tedy, že pravidelný čtyřstěn představuje oheň, pravidelný šestistěn zemi, pravidelný osmistěn vzduch a dvacetistěn vodu. Dvanáctistěn považoval za představitele jsoucna, všeho co existuje. Platon říká, že ho Bůh určil pro Vesmír. Polopravidelné mnohostěny Polopravidelné mnohostěny jsou také konvexní a jejich stěny jsou pravidelné mnohoúhelníky, které se v každém vrcholu stýkají stejným způsobem. Rozdíl od pravidelných je v tom, že všechny stěny nejsou shodné. Polopravidelných mnohostěnů je mnoho. My se budeme zabývat menší skupinkou a to tělesy, které nesou zvláštní označení Archimédovská. Archimédovská tělesa Takto říkáme mnohostěnům, které vzniknou ořezáním hran či vrcholů pravidelných mnohostěnů a jejich řezy jsou pravidelné mnohoúhelníky. Archimédes ( př. n. l) objevil těchto těles třináct. Čtrnácté objevil teprve Aškinuze (1957), který jej získal ořezáním krychle. Toto těleso proto bývá v některých knihách a článcích označováno jako Aškinuzeho. Stejně ho budu označovat i já. Přesný překlad z angličtiny totiž neexistuje rhombicuboctahedron. Obr. 5. Aškinuzeho těleso Nejznámějším Archimédovským mnohostěnem je kubooktaedr (obr. 6), který vznikne ořezáním krychle nebo osmistěnu. Stěny tohoto mnohostěnu tvoří čtverce a rovnostranné trojúhelníky. Velmi používaným Archimédovských tělesem, i když si to většina neuvědomuje, je komolý dvacetistěn. Tento komolý dvacetistěn znázorňuje fotbalový míč (Obr. 7). Je tvořen z dvanácti pravidelných pětiúhelníků a z dvaceti pravidelných šestiúhelníků. Vznikl ořezáním pravidelného dvacetistěnu.

6 Obr. 6 Kubooktaedr Obr. 7 Komolý dvacetistěn Mezi polopravidelné mnohostěny řadíme také kolmé n-boké hranoly (Obr. 8), jejichž podstavou je pravidelný mnohoúhelník a výška je rovna délce straně tohoto mnohoúhelníku. Těchto mnohostěnů je nekonečně mnoho. Dále sem také patří n-boké hranolce (Obr. 9), kterých je také nekonečně mnoho. Podstavou je opět pravidelný mnohoúhelník a výška je též rovna délce strany mnohoúhelníku. Plášť je však tvořen rovnostrannými trojúhelníky. Obr. 8 Polopravidelný n-boký hranol Obr. 9 Polopravidelný n-boký hranolec Deltastěny Deltastěny jsou takové mnohoúhelníky, jejichž stěny mají tvar rovnostranných trojúhelníků (Obr. 10). Odtud název deltastěn neboť řecké tiskací písmeno delta připomíná trojúhelník. Můžeme je také dělit na konvexní a nekonvexní. Nekonvexních deltastěnů je nekonečně mnoho. Konvexních deltastěnů je pouze osm. Dokázal to v roce 1947 matematik Freudenthal. Jsou to: delta-čtyřstěn (tetraedr), delta-šestistěn, delta-osmistěn (oktaedr), delta-desetistěn (pětiboká dvojpyramida), delta-dvanáctistěn, delta-čtrnáctistěn, delta-šestnáctistěn a deltadvacetistěn.

7 Obr. 10 Delta čtrnáctistěn, Delta dvacetistěn Velmi snadné je například proměnit krychli v deltastěn nad každou její stěnu doplníme čtyřboký jehlan, jehož strany jsou rovnostranné trojúhelníky. Takto získáme nekonvexní delta-dvacetičtyřstěn. Hvězdicové mnohostěny Hvězdicové mnohostěny jsou velmi dekorativní a vznikají z mnohostěnů tak, že se stěny mnohostěnu protahují do té doby, dokud se neprotnou.

Bod, přímka a rovina. bezrozměrnost, jeden rozměr a dva rozměry

Bod, přímka a rovina. bezrozměrnost, jeden rozměr a dva rozměry Úvod Posvátná geometrie mapuje rozkrývání významu čísel v prostoru. Základní trasa vede z izolovaného bodu do přímky, následuje rozprostření do roviny, poté do třetího rozměru, ba až za jeho hranice, a

Více

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů 4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

3.5.8 Otočení. Předpoklady: 3506

3.5.8 Otočení. Předpoklady: 3506 3.5.8 Otočení Předpoklady: 3506 efinice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel). Nevýhody této definice: Nevíme,

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Teoretické řešení střech

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Teoretické řešení střech Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Teoretické řešení střech Vypracoval: Michal Drašnar Třída: 8.M Školní rok: 2015/2016 Seminář: Deskriptivní geometrie Prohlašuji, že

Více

Matematický KLOKAN 2009 www.matematickyklokan.net. kategorie Benjamín

Matematický KLOKAN 2009 www.matematickyklokan.net. kategorie Benjamín Matematický KLOKAN 2009 www.matematickyklokan.net kategorie Benjamín Úlohy za 3 body 1. Hodnota kterého výrazu je sudé číslo? (A) 200 + 9 (B) 200 9 (C) 200 9 (D) 2 + 0 + 0 + 9 (E) 2 0 + 0 + 9 2. Kolik

Více

1.9.5 Středově souměrné útvary

1.9.5 Středově souměrné útvary 1.9.5 Středově souměrné útvary Předpoklady: 010904 Př. 1: V obdélníkových rámech jsou nakresleny tři obrázky. Každý je sestaven z jedné přímky a jednoho obdélníku. Jeden z obrázků je středově souměrný.

Více

Úlohy domácího kola kategorie C

Úlohy domácího kola kategorie C 50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] 1 CÍL KAPITOLY Cílem této kapitoly je naučit uživatele efektivně navrhovat objekty v režimu

Více

Tematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Iveta Jedličková Týdenní dotace hodin: 5 hodin Ročník: pátý

Tematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Iveta Jedličková Týdenní dotace hodin: 5 hodin Ročník: pátý ČASOVÉ OBDOBÍ Září Říjen KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA Umí zapsat a přečíst čísla do 1 000 000 Porovnává čísla do 1 000 000 Zaokrouhluje čísla na tisíce, desetitisíce, statisíce Umí

Více

ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH

ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH Vypracoval: Jan Vojtíšek Třída: 8.M Školní rok: 2011/2012 Seminář: Aplikace Deskriptivní geometrie Prohlašuji, že jsem svou ročníkovou práci napsal samostatně a

Více

5.2.1 Matematika povinný předmět

5.2.1 Matematika povinný předmět 5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,

Více

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)

Více

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika.

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika. Matematika Matematika pro žáky 6. až 9. ročníku napomáhá k rozvoji paměti, logického myšlení, kritickému usuzování a srozumitelné a věcné argumentaci prostřednictvím matematických problémů. Žáci si prostřednictvím

Více

Číslicová technika 3 učební texty (SPŠ Zlín) str.: - 1 -

Číslicová technika 3 učební texty (SPŠ Zlín) str.: - 1 - Číslicová technika učební texty (SPŠ Zlín) str.: - -.. ČÍTAČE Mnohá logická rozhodnutí jsou založena na vyhodnocení počtu opakujících se jevů. Takovými jevy jsou např. rychlost otáčení nebo cykly stroje,

Více

5.2.2 Rovinné zrcadlo

5.2.2 Rovinné zrcadlo 5.2.2 Rovinné zrcadlo ředpoklady: 5101, 5102, 5201 Terminologie pro přijímačky z fyziky Optická soustava = soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných paprsků. Optické

Více

MATEMATIKA. 1 Základní informace k zadání zkoušky

MATEMATIKA. 1 Základní informace k zadání zkoušky MATEMATIKA PŘIJÍMAČKY LIK 2012 DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů 1 Základní informace k zadání zkoušky Didaktický test obsahuje 15 úloh. Časový limit pro řešení didaktického testu je

Více

Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol

Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol Výroba ozubených kol Použití ozubených kol Ozubenými koly se přenášejí otáčivé pohyby a kroutící momenty. Přenos je zde nucený, protože zuby a zubní mezery do sebe zabírají. Kola mohou mít vnější nebo

Více

Strojní součásti, konstrukční prvky a spoje

Strojní součásti, konstrukční prvky a spoje Strojní součásti, konstrukční prvky a spoje Šroubové spoje Šrouby jsou nejčastěji používané strojní součástí a neexistuje snad stroj, kde by se nevyskytovaly. Mimo šroubů jsou u některých šroubových spojů

Více

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi 6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové

Více

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数 A absolutní člen 常 量 成 员 absolutní hodnota čísla 绝 对 值 algebraický výraz 代 数 表 达 式 ar 公 亩 aritmetický průměr 算 术 均 数 aritmetika 算 术, 算 法 B boční hrana 侧 棱 boční hrany jehlanu 角 锥 的 侧 棱 boční stěny jehlanu

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

Řešení: Dejme tomu, že pan Alois to vezme popořadě od jara do zimy. Pro výběr fotky z jara má Alois dvanáct možností. Tady není co počítat.

Řešení: Dejme tomu, že pan Alois to vezme popořadě od jara do zimy. Pro výběr fotky z jara má Alois dvanáct možností. Tady není co počítat. KOMBINATORIKA ŘEŠENÉ PŘÍKLADY Příklad 1 Pan Alois dostal od vedení NP Šumava za úkol vytvořit propagační poster se čtyřmi fotografiemi Šumavského národního parku, každou z jiného ročního období (viz obrázek).

Více

Vysoká škola báňská Technická univerzita Ostrava KUŽELOSEČKY, KOLINEACE

Vysoká škola báňská Technická univerzita Ostrava KUŽELOSEČKY, KOLINEACE Vysoká škola báňská Technická univerzita Ostrava KUŽELOEČKY KOLINECE Deskriptivní geometrie Krista Dudková Radka Hamříková O T R V 0 0 5 OH 1. Kuželosečky 5 1.1. Řezy na kuželové ploše 5 1.. Elipsa 7 odová

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502 .5. Další úlohy s kvadratickými funkcemi Předpoklady: 50, 50 Pedagogická poznámka: Tato hodina patří mezi ty méně organizované. Společně řešíme příklad, při dalším počítání se třída rozpadá. Já řeším příklady

Více

1.2.5 Reálná čísla I. Předpoklady: 010204

1.2.5 Reálná čísla I. Předpoklady: 010204 .2.5 Reálná čísla I Předpoklady: 00204 Značíme R. Reálná čísla jsou čísla, kterými se vyjadřují délky úseček, čísla jim opačná a 0. Každé reálné číslo je na číselné ose znázorněno právě jedním bodem. Každý

Více

2.2.10 Slovní úlohy vedoucí na lineární rovnice I

2.2.10 Slovní úlohy vedoucí na lineární rovnice I Slovní úlohy vedoucí na lineární rovnice I Předpoklady: 0, 06 Pedagogická poznámka: Řešení slovních úloh představuje pro značnou část studentů nejobtížnější část matematiky Důvod je jednoduchý Po celou

Více

NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO 3.5.5 PŘÍRUČKA UŽIVATELE

NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO 3.5.5 PŘÍRUČKA UŽIVATELE NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO 3.5.5 PŘÍRUČKA UŽIVATELE 1. Přehled možností programu 1.1. Hlavní okno Hlavní okno programu se skládá ze čtyř karet : Projekt, Zadání, Výsledky a Návrhový

Více

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ MATEMATIKA I ZÁKLADY LINEÁRNÍ ALGEBRY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε, Podpořeno projektem

Více

Kód uchazeče ID:... Varianta: 15

Kód uchazeče ID:... Varianta: 15 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 15 1. V únoru byla zaměstnancům zvýšena mzda o 15 % lednové mzdy. Následně

Více

Staroegyptská matematika. Hieratické matematické texty

Staroegyptská matematika. Hieratické matematické texty Staroegyptská matematika. Hieratické matematické texty Stanovení kvality piva a chleba In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický

Více

5.4.1 Mnohostěny. Předpoklady:

5.4.1 Mnohostěny. Předpoklady: 5.4.1 Mnohostěny Předpoklady: Geometrické těleso je prostorově omezený geometrický útvar, jehož hranicí je uzavřená plocha. Hranoly Je dán n-úhelník A... 1A2 A n (řídící n-úhelník) ležící v rovině ρ a

Více

www.ujep.cz/ujep/pf/kmat/home/page2/kos.htm. Přejeme Ti hodně zábavy při řešení problémů korespondenčního semináře KOS SEVERÁK.

www.ujep.cz/ujep/pf/kmat/home/page2/kos.htm. Přejeme Ti hodně zábavy při řešení problémů korespondenčního semináře KOS SEVERÁK. Milý příteli, dostal se Ti do rukou první ročník matematického korespondenčního semináře KOS SEVERÁK. Seminář je určen pro studenty středních škol všech typů. Ročník nerozhoduje. Je pořádán katedrou matematiky

Více

Měření základních vlastností OZ

Měření základních vlastností OZ Měření základních vlastností OZ. Zadání: A. Na operačním zesilovači typu MAA 74 a MAC 55 změřte: a) Vstupní zbytkové napětí U D0 b) Amplitudovou frekvenční charakteristiku napěťového přenosu OZ v invertujícím

Více

Základní umělecká škola Sokolov, Staré náměstí 37, 356 01 Sokolov

Základní umělecká škola Sokolov, Staré náměstí 37, 356 01 Sokolov Základní umělecká škola Sokolov, Staré náměstí 37, 356 01 Sokolov Název projektu Podpora profesního rozvoje pedagogických pracovníků ZUŠ Karlovarského kraje při zavádění nových studijních oborů v rámci

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jana Kalinová [ÚLOHA 01 ÚVOD DO PROSTŘEDÍ OBJEMOVÁ SOUČÁST; PŘÍKAZ SKICA A JEJÍ VAZBENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jana Kalinová [ÚLOHA 01 ÚVOD DO PROSTŘEDÍ OBJEMOVÁ SOUČÁST; PŘÍKAZ SKICA A JEJÍ VAZBENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jana Kalinová [ÚLOHA 01 ÚVOD DO PROSTŘEDÍ OBJEMOVÁ SOUČÁST; PŘÍKAZ SKICA A JEJÍ VAZBENÍ] 1 CÍL KAPITOLY. Cílem této kapitoly je sžití se s win prostředím

Více

6. Matice. Algebraické vlastnosti

6. Matice. Algebraické vlastnosti Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 6 Matice Algebraické vlastnosti 1 Algebraické operace s maticemi Definice Bud te A,

Více

Pokyny pro dodržování soutěžního práva

Pokyny pro dodržování soutěžního práva Translation by courtesy of Pokyny pro dodržování soutěžního práva Naše obchodní asociace sdružuje dodavatele a další strany, které se podílejí na činnosti evropského zdravotnického sektoru, aby diskutovali

Více

% STĚNY OKNA INFILTRA STŘECHA PODLAHA 35 CE 30 25 35% 20 25% 15 20% 10 10% 10% 5

% STĚNY OKNA INFILTRA STŘECHA PODLAHA 35 CE 30 25 35% 20 25% 15 20% 10 10% 10% 5 Obecně o smyslu zateplení : Každému, kdo se o to zajímá, je jasné, kterým směrem se ubírají ceny energie a jak dramaticky rostou náklady na vytápění objektů. Týká se to jak domácností, tak kanceláří, výrobních

Více

Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2

Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2 Po etní geometrie Pythagorova v ta Obsah tverce nad p eponou je roven sou tu obsah tverc nad ob ma odv snami. Výpo et délky p epony: c = a + b Výpo et délky odv sny: a = c b, b = c a P íklad 1: Vypo t

Více

4. Připoutejte se, začínáme!

4. Připoutejte se, začínáme! 4. Připoutejte se, začínáme! Pojďme si nyní zrekapitulovat základní principy spreadů, které jsme si vysvětlili v předcházejících kapitolách. Řekli jsme si, že klasický spreadový obchod se skládá ze dvou

Více

1.1.11 Poměry a úměrnosti I

1.1.11 Poměry a úměrnosti I 1.1.11 Poměry a úměrnosti I Předpoklady: základní početní operace, 010110 Poznámka: Následující látka bohužel patří mezi ty, kde je nejvíce rozšířené používání samospasitelných postupů, které umožňují

Více

Pokyn D - 293. Sdělení Ministerstva financí k rozsahu dokumentace způsobu tvorby cen mezi spojenými osobami

Pokyn D - 293. Sdělení Ministerstva financí k rozsahu dokumentace způsobu tvorby cen mezi spojenými osobami PŘEVZATO Z MINISTERSTVA FINANCÍ ČESKÉ REPUBLIKY Ministerstvo financí Odbor 39 Č.j.: 39/116 682/2005-393 Referent: Mgr. Lucie Vojáčková, tel. 257 044 157 Ing. Michal Roháček, tel. 257 044 162 Pokyn D -

Více

STANDARD 3. JEDNÁNÍ SE ZÁJEMCEM (ŽADATELEM) O SOCIÁLNÍ SLUŽBU

STANDARD 3. JEDNÁNÍ SE ZÁJEMCEM (ŽADATELEM) O SOCIÁLNÍ SLUŽBU STANDARD 3. JEDNÁNÍ SE ZÁJEMCEM (ŽADATELEM) O SOCIÁLNÍ SLUŽBU CÍL STANDARDU 1) Tento standard vychází ze zákona č. 108/2006 Sb., o sociálních službách (dále jen Zákon ) a z vyhlášky č. 505/2006 Sb., kterou

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY Předmět: Ročík: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ. 9. 0 Název zpracovaého celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY DEFINICE FAKTORIÁLU Při výpočtech úloh z kombiatoriky se používá!

Více

Tab. 1 Podíl emisí TZL a SO₂ v krajích z celkového objemu ČR v letech 2003 až 2009 (v %)

Tab. 1 Podíl emisí TZL a SO₂ v krajích z celkového objemu ČR v letech 2003 až 2009 (v %) 3. Emise Jednou ze základních složek životního prostředí je ovzduší. Jeho kvalita zcela zásadně ovlivňuje kvalitu lidského života. Kvalitu ovzduší lze sledovat 2 způsoby. Prvním, a statisticky uchopitelnějším,

Více

Vodafone promo kit uživatelský manuál http://promo.vodafone.cz/ Uživatelský manuál pro aplikaci. Vodafone promo kit. Verze dokumentu: 2.

Vodafone promo kit uživatelský manuál http://promo.vodafone.cz/ Uživatelský manuál pro aplikaci. Vodafone promo kit. Verze dokumentu: 2. Uživatelský manuál pro aplikaci Vodafone promo kit Verze dokumentu: 2.1 Vytvořeno: V Praze dne 8. 9. 2011 1 Obsah Vodafone promo kit uživatelský manuál Webové rozhraní aplikace Vodafone promo kit... 4

Více

I. Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb

I. Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb I. Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb 1 VŠEOBECNĚ ČSN EN 1991-1-1 poskytuje pokyny pro stanovení objemové tíhy stavebních a skladovaných materiálů nebo výrobků, pro vlastní

Více

UNIVERZITA PARDUBICE

UNIVERZITA PARDUBICE UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY POKROČILÉ TECHNIKY MODELOVÁNÍ A SIMULACE SEMESTRÁLNÍ PRÁCE A Jiří Popelka Stránka 1 Obsah Zadání... 3 Parametry úlohy... 3 Cíl... 3 Řešení...

Více

Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost

Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost Příloha č. 7 Seminář z matematiky V učebním plánu 2. druhého stupně se zařazuje nepovinný předmět Seminář z matematiky. V tematickém okruhu Čísla a početní operace na prvním stupni, na který navazuje a

Více

DAŇ Z PŘÍJMŮ FYZICKÝCH OSOB

DAŇ Z PŘÍJMŮ FYZICKÝCH OSOB DAŇ Z PŘÍJMŮ FYZICKÝCH OSOB Předmět daně z příjmů fyzických osob Fyzická osoba zdaňuje všechny své příjmy jedinou daní a přitom tyto příjmy mohou mít různý charakter. Příjmy fyzických osob se rozdělují

Více

ŘÁD UPRAVUJÍCÍ POSTUP DO DALŠÍHO ROČNÍKU

ŘÁD UPRAVUJÍCÍ POSTUP DO DALŠÍHO ROČNÍKU 1. Oblast použití Řád upravující postup do dalšího ročníku ŘÁD UPRAVUJÍCÍ POSTUP DO DALŠÍHO ROČNÍKU na Německé škole v Praze 1.1. Ve školském systému s třináctiletým studijním cyklem zahrnuje nižší stupeň

Více

ZAŘÍZENÍ PRO MĚŘENÍ POSUVŮ

ZAŘÍZENÍ PRO MĚŘENÍ POSUVŮ ZAŘÍZENÍ PRO MĚŘENÍ POSUVŮ APARATURA PRO MĚŘENÍ POSUVŮ LINEÁRNÍ SNÍMAČE DRÁHY SD 2.1, SD 3.1 Vyrábí a dodává: AUTING spol. s r.o. Jírovcova 23 623 00 Brno Tel/Fax: 547 220 002 Provozní předpis MP 5.1 strana

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: VY_42_INOVACE_145 Vzdělávací oblast: Matematika a její aplikace Vzdělávací

Více

Metoda konečných prvků. 6. přednáška Tělesové prvky - úvod (lineární trojúhelník a lineární čtyřstěn) Martin Vrbka, Michal Vaverka

Metoda konečných prvků. 6. přednáška Tělesové prvky - úvod (lineární trojúhelník a lineární čtyřstěn) Martin Vrbka, Michal Vaverka Metoda konečných prvků 6. přednáška Tělesové prvky - úvod (lineární trojúhelník a lineární čtyřstěn) Martin Vrbka, Michal Vaverka Diskretizace Analýza pomocí MKP vyžaduje rozdělení řešené oblasti na konečný

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla Moderní technologie ve studiu aplikované fyiky CZ.1.07/..00/07.0018 4. Komplexní čísla Matematickým důvodem pro avedení komplexních čísel ( latinského complexus složený), byla potřeba rošířit množinu (obor)

Více

Seriál: Management projektů 7. rámcového programu

Seriál: Management projektů 7. rámcového programu Seriál: Management projektů 7. rámcového programu Část 4 Podpis Konsorciální smlouvy V předchozím čísle seriálu o Managementu projektů 7. rámcového programu pro výzkum, vývoj a demonstrace (7.RP) byl popsán

Více

LANOVÁ STŘECHA NAD ELIPTICKÝM PŮDORYSEM

LANOVÁ STŘECHA NAD ELIPTICKÝM PŮDORYSEM LANOVÁ STŘECHA NAD ELIPTICKÝM PŮDORYSEM 1 Úvod V roce 2012 byla v rámci projektu TA02011322 Prostorové konstrukce podepřené kabely a/nebo oblouky řešena statická analýza návrhu visuté lanové střechy nad

Více

Teleskopie díl pátý (Triedr v astronomii)

Teleskopie díl pátý (Triedr v astronomii) Teleskopie díl pátý (Triedr v astronomii) Na první pohled se může zdát, že malé dalekohledy s převracející hranolovou soustavou, tzv. triedry, nejsou pro astronomická pozorování příliš vhodné. Čas od času

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Základní škola Obříství, okres Mělník Termín zkoušky: 13.

Více

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ),

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), 3.cvičení 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR Bodem A rovnoběžku: Ještě jednu kolmici. Tři úhly, které je možno rozdělit

Více

MECHANIKA HORNIN A ZEMIN

MECHANIKA HORNIN A ZEMIN MECHANIKA HORNIN A ZEMIN podklady k přednáškám doc. Ing. Kořínek Robert, CSc. Místnost: C 314 Telefon: 597 321 942 E-mail: robert.korinek@vsb.cz Internetové stránky: fast10.vsb.cz/korinek Mechanické vlastnosti

Více

6. DIDAKTICKÁ JEDNOTKA PREVENCE KONFLIKTŮ, KOMUNIKACE

6. DIDAKTICKÁ JEDNOTKA PREVENCE KONFLIKTŮ, KOMUNIKACE 6. DIDAKTICKÁ JEDNOTKA PREVENCE KONFLIKTŮ, KOMUNIKACE Úvod Pro bezproblémové vztahy ve školním prostředí je třeba znát dynamiku interakcí a pravidla komunikace. Je nutné, aby všichni měli možnost se svobodně

Více

1 Úvod do čínského určování diagnózy z nehtů

1 Úvod do čínského určování diagnózy z nehtů 138 1 Úvod do čínského určování diagnózy z nehtů Určování diagnózy z nehtů je metoda, jak diagnostikovat onemocnění těla a jeho plných i dutých orgánů a zhodnocovat stupeň chorobné změny pozorováním stavu

Více

Posilování sociálního dialogu v místním a regionálním správním sektoru. Diskusní dokument

Posilování sociálního dialogu v místním a regionálním správním sektoru. Diskusní dokument EPSU/CEMR seminář 11. prosince 2008, Bratislava 1) Co je sociální dialog? Je důležité vysvětlit, co znamená sociální dialog, protože tento termín se obvykle nepoužívá ve všech evropských zemích pro popis

Více

Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0

Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0 PZK 9 M9-Z-D-PR_OT_ST M9PZD6CT Pokyny k hodnocení Pokyny k hodnocení úlohy BODY ZADÁNÍ Vypočtěte, kolikrát je rozdíl čísel,4 a,7 (v tomto pořadí) menší než jejich součet. (V záznamovém archu je očekáván

Více

Provoz a poruchy topných kabelů

Provoz a poruchy topných kabelů Stránka 1 Provoz a poruchy topných kabelů Datum: 31.3.2008 Autor: Jiří Koreš Zdroj: Elektroinstalatér 1/2008 Článek nemá za úkol unavovat teoretickými úvahami a předpisy, ale nabízí pohled na topné kabely

Více

Rozdělení metod tlakového odporového svařování

Rozdělení metod tlakového odporového svařování Rozdělení metod tlakového odporového svařování Podle konstrukčního uspořádání elektrod a pracovního postupu tohoto elektromechanického procesu rozdělujeme odporové svařování na čtyři hlavní druhy: a) bodové

Více

Modul Řízení objednávek. www.money.cz

Modul Řízení objednávek. www.money.cz Modul Řízení objednávek www.money.cz 2 Money S5 Řízení objednávek Funkce modulu Obchodní modul Money S5 Řízení objednávek slouží k uskutečnění hromadných akcí s objednávkami, které zajistí dostatečné množství

Více

9.4.2001. Ėlektroakustika a televize. TV norma ... Petr Česák, studijní skupina 205

9.4.2001. Ėlektroakustika a televize. TV norma ... Petr Česák, studijní skupina 205 Ėlektroakustika a televize TV norma.......... Petr Česák, studijní skupina 205 Letní semestr 2000/200 . TV norma Úkol měření Seznamte se podrobně s průběhem úplného televizního signálu obrazového černobílého

Více

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Aplikační list Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Ref: 15032007 KM Obsah Vyvažování v jedné rovině bez měření fáze signálu...3 Nevýhody vyvažování jednoduchými přístroji...3

Více

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 1O POLOHOVÉ VYTYČOVÁNÍ Pod pojem polohového vytyčování se

Více

Válec - slovní úlohy

Válec - slovní úlohy Válec - slovní úlohy VY_32_INOVACE_M-Ge. 7., 8. 20 Anotace: Žák řeší slovní úlohy z praxe. Využívá k řešení matematický aparát. Vzdělávací oblast: Matematika Autor: Mgr. Robert Kecskés Jazyk: Český Očekávaný

Více

Prameny. Hry středověku

Prameny. Hry středověku Vypracoval: Lukáš Hetmánek 438553 Stolní hry ve středověku Mezi jedny z nejoblíbenějších volnočasových aktivit člověka patří nepochybně hra. Hra a hraní si jde ruku v ruce s lidským bytím a za mnoho let

Více

Online travel solutions s.r.o. YONAD.CZ. Uživatelská příručka. Verze červen 2009

Online travel solutions s.r.o. YONAD.CZ. Uživatelská příručka. Verze červen 2009 Online travel solutions s.r.o. YONAD.CZ Uživatelská příručka Verze červen 2009 OBSAH 1. Úvod 2. Zprávy 3. Nastavení 3.1. Přidat nový typ pokoje 3.2. Editovat či smazat již stávající typ pokoje 3.3. Sezóny

Více

VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE

VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE V. Hon VŠB TU Ostrava, FEI, K455, 17. Listopadu 15, Ostrava Poruba, 70833 Abstrakt Neuronová síť (dále

Více

TECHNICKÁ DOKUMENTACE NA PC

TECHNICKÁ DOKUMENTACE NA PC TECHNICKÁ DOKUMENTACE NA PC Vypracovala: Jitka Chocholoušková 1 Obsah: 1. Uživatelské prostředí... 4 2. Tvorba objektů... 7 3. Tvorba úsečky... 10 4. Tvorba kružnice a oblouku... 15 4.1. Tvorba kružnice...

Více

MEZINÁRODNÍ AUDITORSKÝ STANDARD ISA 505 EXTERNÍ KONFIRMACE OBSAH

MEZINÁRODNÍ AUDITORSKÝ STANDARD ISA 505 EXTERNÍ KONFIRMACE OBSAH MEZINÁRODNÍ AUDITORSKÝ STANDARD ISA 505 EXTERNÍ KONFIRMACE (Účinný pro audity účetních závěrek sestavených za období počínající 15. prosincem 2009 nebo po tomto datu) Úvod OBSAH Odstavec Předmět standardu...

Více

Vnitřní elektrické rozvody dle ČSN 33 2130 ed. 2 silové rozvody - ElektroPrůmysl.cz

Vnitřní elektrické rozvody dle ČSN 33 2130 ed. 2 silové rozvody - ElektroPrůmysl.cz Článek popisuje požadavky na elektrické rozvody v budovách pro bydlení a v budovách občanské výstavby. Dále zavádí pro ochranu před nebezpečným dotykem neživých částí elektrického zařízení zapojeného vidlicí

Více

7. Stropní chlazení, Sálavé panely a pasy - 1. část

7. Stropní chlazení, Sálavé panely a pasy - 1. část Základy sálavého vytápění (2162063) 7. Stropní chlazení, Sálavé panely a pasy - 1. část 30. 3. 2016 Ing. Jindřich Boháč Obsah přednášek ZSV 1. Obecný úvod o sdílení tepla 2. Tepelná pohoda 3. Velkoplošné

Více

Osvětlovací modely v počítačové grafice

Osvětlovací modely v počítačové grafice Západočeská univerzita v Plzni Fakulta aplikovaných věd Semestrální práce z předmětu Matematické modelování Osvětlovací modely v počítačové grafice 27. ledna 2008 Martin Dohnal A07060 mdohnal@students.zcu.cz

Více

19 Jednočipové mikropočítače

19 Jednočipové mikropočítače 19 Jednočipové mikropočítače Brzy po vyzkoušení mikroprocesorů ve výpočetních aplikacích se ukázalo, že se jedná o součástku mnohem universálnější, která se uplatní nejen ve výpočetních, ale i v řídicích

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

Miroslav Kunt. Srovnávací přehled terminologie archivních standardů ISAD(G), ISAAR(CPF) a české archivní legislativy

Miroslav Kunt. Srovnávací přehled terminologie archivních standardů ISAD(G), ISAAR(CPF) a české archivní legislativy Příloha č. 2 k výzkumné zprávě projektu VE20072009004 Miroslav Kunt Srovnávací přehled terminologie archivních standardů ISAD(G), ISAAR(CPF) a české archivní legislativy Pozn.: Za českou archivní legislativu

Více

TECHNOLOGICKY POSTUP PLETTAC SL70, MJ UNI 70/100

TECHNOLOGICKY POSTUP PLETTAC SL70, MJ UNI 70/100 TECHNOLOGICKY POSTUP PLETTAC SL70, MJ UNI 70/100 1 ÚVOD Tento návod pro montáž, použití a demontáž rámového systémového lešení PLETTAC SL70 a MJ UNI 70/100 je nutno prostudovat před prvním použitím lešení

Více

Rekonstrukce bytu Sartoriova 5

Rekonstrukce bytu Sartoriova 5 Rekonstrukce bytu Sartoriova 5 1. Zadání Předmětem rekonstrukce je částečná změna dispozice bytu, úprava tras rozvodů TZB a výměna elektrických rozvodů a přístrojů. Dojde také k rekonstrukci podlahy v

Více

Regresní analýza. Statistika II. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Regresní analýza. Statistika II. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Statistika II Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu) této závislosti pomocí vhodné funkce

Více

4.5.1 Magnety, magnetické pole

4.5.1 Magnety, magnetické pole 4.5.1 Magnety, magnetické pole Předpoklady: 4101 Pomůcky: magnety, kancelářské sponky, papír, dřevěná dýha, hliníková kulička, měděná kulička (drát), železné piliny, papír, jehla (špendlík), korek (kus

Více

Obchodní podmínky PRESPLAST s.r.o.

Obchodní podmínky PRESPLAST s.r.o. Obchodní podmínky PRESPLAST s.r.o. I. ÚVODNÍ USTANOVENÍ Obchodní podmínky. Obchodní společnost PRESPLAST s.r.o., se sídlem Česká Třebová, Kubelkova 497, PSČ 560 02, IČ 27502317, společnost zapsaná v obchodním

Více

Obsah. Logická zkoumání

Obsah. Logická zkoumání Obsah Logická zkoumání O smyslu a významu 17 Výklady o smyslu a významu 43 Funkce a pojem 55 Pojem a předmět 79 Myšlenka. Logické zkoumání 95 Recenze Husserlovy Filosofie aritmetiky 123 Základy aritmetiky

Více

Decentrální větrání bytových a rodinných domů

Decentrální větrání bytových a rodinných domů 1. Úvod Větrání představuje systém, který slouží k výměně vzduchu v místnostech. Může být přirozené, založené na proudění vzduchu v důsledku jeho rozdílné hustoty, která odpovídá tlakovým poměrům (podobně

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII - 3.1 MĚŘENÍ ZÁKLADNÍCH EL. VELIČIN

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII - 3.1 MĚŘENÍ ZÁKLADNÍCH EL. VELIČIN Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEII - 3.1 MĚŘENÍ ZÁKLADNÍCH EL. VELIČIN Obor: Mechanik Elektronik Ročník: 2. Zpracoval(a): Jiří Kolář Střední průmyslová škola Uherský Brod, 2010 Projekt

Více

1) List č. 1 Přehled o činnosti sekce regionu za rok 2007

1) List č. 1 Přehled o činnosti sekce regionu za rok 2007 SMĚRNICE Metodický pokyn pro zpracování přehledu o činnosti a vyúčtování sekcí a regionů České asociace sester za rok 2007 Vydání: 7. 1. 2008 Frekvence kontroly: 1x ročně Česká asociace sester Prezidium

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.2.3. Valivá ložiska Ložiska slouží k otočnému nebo posuvnému uložení strojních součástí a k přenosu působících

Více

Příloha č. 2 Vyhledávání souřadnic definičních bodů v Nahlížení do KN OBSAH

Příloha č. 2 Vyhledávání souřadnic definičních bodů v Nahlížení do KN OBSAH Příloha č. 2 Vyhledávání souřadnic definičních bodů v Nahlížení do KN OBSAH 1) Úvodní informace... 2 2) Vyhledání bodu zadáním souřadnic... 2 Hledání... 2 Mapové podklady... 3 3) Doplňkové funkce... 4

Více

úzkým propojením se rozumí stav, kdy jsou dvě nebo více fyzických či právnických osob spojeny:

úzkým propojením se rozumí stav, kdy jsou dvě nebo více fyzických či právnických osob spojeny: Příloha č. 1 Srovnávací tabulka k návrhu zákona o finančních konglomerátech s legislativou ES Ustanovení zákona Navrhovaný předpis ČR 36 Změna zákona o bankách 4 V 4 odst. 5 písm. g) se slova s úzkým propojením,

Více

Evidence čerpacích stanic pohonných hmot. Zpráva o aktualizaci a stavu Evidence čerpacích stanic pohonných hmot v ČR k 30. 6. 2011

Evidence čerpacích stanic pohonných hmot. Zpráva o aktualizaci a stavu Evidence čerpacích stanic pohonných hmot v ČR k 30. 6. 2011 Evidence čerpacích stanic pohonných hmot Zpráva o aktualizaci a stavu Evidence čerpacích stanic pohonných hmot v ČR k 30. 6. 2011 Srpen 2011 Odbor surovinové a energetické bezpečnosti Oddělení surovinové

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Radek Havlík [ÚLOHA 05 VYŘÍZNUTÍ MATERIÁLU LINEÁRNÍ A ROTACÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Radek Havlík [ÚLOHA 05 VYŘÍZNUTÍ MATERIÁLU LINEÁRNÍ A ROTACÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Radek Havlík [ÚLOHA 05 VYŘÍZNUTÍ MATERIÁLU LINEÁRNÍ A ROTACÍ] 1 CÍL KAPITOLY Cílem této kapitoly je naučit se efektivní práci ve 3D modelování, s použitím

Více