Jana Dannhoferová Ústav informatiky, PEF MZLU

Rozměr: px
Začít zobrazení ze stránky:

Download "Jana Dannhoferová Ústav informatiky, PEF MZLU"

Transkript

1 Počítačová grafika Fraktál Fraktální geometrie Jana Dannhoferová Ústav informatiky, PEF MZLU Fraktální geometrie se zabývá nepravidelností! s názvem přišel matematik B. Mandelbrot kolem roku 1980 (fractus frangere rozlámat, vytvořit nepravidelné úlomky) 1977: How long is the coast of Great Britain vlastnosti: vizuální modelování přírodních objektů tvarová komplikovanost a nepravidelnost objektů teorie chaosu tvarová soběpodobnost nezávislá na měřítku uplatnění: matematika, fyzika, výtvarná informatika, počítačové hry apod. 2 Fraktál Fraktál Fraktál = jakýkoliv geometricky nepravidelný útvar, ze kterého vznikne po rozdělení v ideálním případě několik soběpodobných kopií původního celku matematická definice fraktálu dosud nebyla podána nejvýstižnější Mandelbrot (1977): Fraktál je množina, jejíž hodnota Hausdorffovy-Besicovichovy dimenze přesahuje hodnotu dimenze topologické. DT topologická dimenze určuje klasický geometrický rozměr tělesa (např. bod: DT=0, přímka: DT=1, plocha: DT=2, prostorový objekt: DT=3) Haus.-Bes. dimenze D (tzv. fraktální dimenze) určuje míru nepravidelnosti tělesa 3 z = z 2 + c 4 Historie Lorenzův atraktor teorie chaosu + fraktální geometrie + počítače práce s chaosem prozkoumávání mnoha grafů spočítaných jednoduchými rovnicemi, zato s velkou přesností Edward Lorenz (50. a 60. léta): předpověď počasí chování vodního kola (první slavný chaotický systém) 5 6 1

2 Lorenzův atraktor Historie teorie chaosu a dynamické systémy: James Yorke Steve Smale Benoit Mandelbrot šum na telefonních linkách IBM (podobnost mezi Cantorovým mračnem a šumem) v přírodě existuje skrytý fraktální řád otázky: Kolik dimenzí má klubko provázku? Mandelbrotovy množiny (staly se symbolem všech fraktálů) Michael Barnsley 7 8 Cantorova množina IFS fraktály nebo také Cantorovo mračno rozdělení úsečky na stejné části a opakování tohoto procesu iterační funkční systémy (nejjednodušší) po nekonečně mnoho opakováních vznikne nekonečně mnoho bodů zlomková dimenze míra nepravidelnosti objektu 9 10 Barnsleyho kapradina Barnsleyho kapradina zabýval se problémem, jak nalézt u neznámého fraktálu jeho matematické vyjádření (tzv. kolážová věta, fraktálový řád) každý lístek kapradiny je téměř kopií sebe sama původní útvar byl postupně doplňován dalšími útvary, které byly zmenšenou kopií původního (menší útvary byly pokládány tak, že mohly i překrývat původní objekt)

3 Algoritmy větvení Kochova vločka Helge von Kocha trojúhelník, k jehož každé straně přilepíme k prostřední třetině další trojúhleník o třetinu menší (tento postup pak budeme aplikovat i na tento trojúhelník) po mnoha opakováních vznikne křivka s několika zajímavými vlastnostmi, která nikdy neprotne sama sebe, neboť nové trojúhelníky jsou příliš malé plocha zůstává na rozdíl od křivky konečná Kochova vločka Sierpinského trojúhelník z trojúhelníka vyřízneme trojúhelník tvořený středními příčkami trojúhleníka původního a tento postup dále opakuje pro zbylé trojúhelníky Sierpinského koberec Mengerova houba vyřezávání ze čtverce obdobné operace na trojrozměrných objektech trojrozměrná mřížka s nekonečně velkým povrchem, ale nekonečně malým objemem

4 Fraktální dimenze Fraktální dimenze N.r 1 =1 N.r 2 =1 N.r 3 =1 N x 1D kopie v měřítku r =1/N D míra nepravidelnosti útvaru fraktály: fraktální dimenze je větší než topologická dimenze ne-fraktály: zmenšováním délky měřidla se přibližuje délka objektu (obvod) k nějaké limitní hodnotě (u fraktálů to neplatí, délka se neustále zvětšuje tzv. Richardsonův efekt) příklad: rozdělit úsečku o délce jedné jednotky na pět stejných dílů délka jednoho dílku: r=1/5 N je počet dílků, obecně: r=1/n rozdělit čtverec na dvacet pět stejných dílů délka jednoho dílku: r=1/5 po zobecnění: r=1/n 1/ Fraktální dimenze Juliova množina obecný zápis: r = 1 / N 1/D (D je dimenze objektu) D můžeme vyjádřit jako: log r = - log N 1/D celkově tedy dostáváme: D = log N / log (1/r) (kde N označujeme faktor změny délky a 1/r faktor změny měřítka) příklad: použití vzorce na Kochovu křivku při každé transformaci je r=1/3 své původní hodnoty počet samopodobných úseků je N=4 dosadíme: D = log 4 / log 3 = Gaston Julia (práce okolo r. 1915) + Pierre Fatou skupina polynomických fraktálů chování komplexního polynomu při iteraci (z 4 +z 3 /(z-1)+z 2 /(z 3 +4z 2 +5)+c) v současné době je Juliova množina definována jako množina bodů z=x+iy v komplexní rovině Juliova množina Juliova množina metoda: zvolíme jedno náhodné komplexní čislo c, které bude charakterizovat množinu pro každý bod komplexní roviny z zjistíme, zda neustálým mocněním z a přičítáním c konverguje výsledek k nule či ne. pokud k nule konverguje, bod patří do Juliovy množiny v praxi: zkoumané číslo umocníme a přičteme k němu konstantu c pokud je výsledek větší než 2, bod nepatří do množiny, pokud je menší, zopakujeme výpočet jestliže ani po několika iteracích nepřesáhne výsledek hodnotu 2, bod patří do Juliovy množiny aby byly Juliovy množiny zajímavější, zobrazují se barevně barvu zvolíme podle počtu iterací potřebných ke zjištění, zda číslo je či není prvkem Juliovy množiny

5 Mandelborotova množina Mandelborotova množina Benoit Mandelbrot pokoušel se zobecnit, sjednotit a popsat Juliovy množiny 1979: objevil jakýsi katalog Juliových množin (tím katalogem byla další množina v komplexní rovině, která popisovala v každém svém bodě určitou Juliovu množinu) tato množina se nazývá dle svého objevitele Mandelbrotova tyto dvě množiny jsou spolu propojeny tak, že každý bod vmandelbrotově množině určuje vzhled množiny Juliovy, která ke zvolenému bodu patří 25 idea: zkoumáme pro každý bod komplexní roviny, zda jeho neustálým umocňováním se vzdaluje od nuly a blíží k nekonečnu na každý bod několikrát aplikujeme rovnici z n = z n-12 + c výpočet: vezmeme komplexní číslo a přičteme k němu jeho druhou mocninu výsledek zase umocníme a přičteme k němu původní číslo tento proces opakujeme, dokud výsledek výpočtu nepřesáhne hodnotu 2 pokud ji přesáhne, výpočet končí, pokud ne, bod do množiny patří 26 Newton Nástroje John Hubbard Newtonova metoda řešení polynomů (postupné zpřesňování výsledku) zkoumal jednoduchou rovnici x 3-1 = 0 (v oboru reálných čísel má jen jedno řešení, v komplexním oboru jsou řešení ovšem celkem tři) tato rovnice se stala základem pro fraktál s označením Newton FractInt Fractal Explorer ChaosPro Ultra Fractal Hénonův atraktor King s dream vznikne natahováním a ohýbáním fázového prostoru při postupném zjemňování fraktálu se objevují nové a nové detaily (nekonečně mnoho párů křivek vedle sebe) x n =y n-1 +1 (1.4(x n-1 ) 1/2 ), y n =0.3x n-1 vymyslel jej Clifford Pickover (kniha: Chaos in Wonderland) x n =sin(y n-1 b)+c sin(x n-1 b) y n =sin(x n-1 a)+d sin(y n-1 a)

6 Přírodní fraktály Literatura a zdroje útvary vzniklé přírodní oscilací, turbulencí, chemickou reakcí Beneš, B., Felkel, P., Sochor, J., Žára, J. Moderní počítačová grafika. Computer Press: Brno, Serba, J., Staudek, T., Žára, J. Výtvarná informatika. FI MU: Brno, Sochor, J.: Počítačová grafika. FI MU: Brno,

Fraktální geometrie. Topologická a fraktální dimenze. Vypracovali: Jiří Thoma Jiří Pelc Jitka Stokučová

Fraktální geometrie. Topologická a fraktální dimenze. Vypracovali: Jiří Thoma Jiří Pelc Jitka Stokučová Fraktální geometrie Vypracovali: Jiří Thoma Jiří Pelc Jitka Stokučová Topologická a fraktální dimenze Fraktální (Hausdorffova - Besicovitchova) dimenze D udává míru nepravidelnosti geometrického útvaru.

Více

Fraktály. Kristina Bártová. Univerzita Karlova v Praze 9.prosince

Fraktály. Kristina Bártová. Univerzita Karlova v Praze 9.prosince Fraktály Kristina Bártová Univerzita Karlova v Praze 9.prosince 2008 kristinka.b@tiscali.cz Úvodní informace Fraktální geometrie je samostatná a dnes již poměrně rozsáhlá vědní disciplína zasahující

Více

Počítačové zobrazování fraktálních množin. J. Bednář*, J. Fábera**, B. Fürstová*** *Gymnázium Děčín **SPŠ Hronov ***Gymnázium Plasy

Počítačové zobrazování fraktálních množin. J. Bednář*, J. Fábera**, B. Fürstová*** *Gymnázium Děčín **SPŠ Hronov ***Gymnázium Plasy Počítačové zobrazování fraktálních množin J. Bednář*, J. Fábera**, B. Fürstová*** *Gymnázium Děčín **SPŠ Hronov ***Gymnázium Plasy *jurij.jurjevic@centrum.cz **icarosai@seznam.cz ***barborafurstova7@seznam.cz

Více

Fraktály. Ondřej Bouchala, George Dzhanezashvili, Viktor Skoupý

Fraktály. Ondřej Bouchala, George Dzhanezashvili, Viktor Skoupý Fraktály Ondřej Bouchala, George Dzhanezashvili, Viktor Skoupý 19.6.2012 Abstrakt Tato práce se zabývá vlastnostmi a vykreslováním fraktálů. Popisuje fraktální dimenzi (soběpodobnostní a mřížkovou), dále

Více

RNDr. Martin Pivokonský, Ph.D.

RNDr. Martin Pivokonský, Ph.D. Jak souvisí fraktální geometrie částic s vodou, kterou pijeme? RNDr. Martin Pivokonský, Ph.D. Ústav pro hydrodynamiku AV ČR, v. v. i., Pod Paťankou 30/5, 166 12 Praha 6 Tel.: 233 109 068 E-mail: pivo@ih.cas.cz

Více

Dynamické systémy 4. Deterministický chaos. Ing. Jaroslav Jíra, CSc.

Dynamické systémy 4. Deterministický chaos. Ing. Jaroslav Jíra, CSc. Dynamické systémy 4 Deterministický chaos Ing. Jaroslav Jíra, CSc. Jednorozměrné mapy Jednorozměrné mapy (též známé jako diferenční rovnice) jsou matematické systémy, které modelují vývoj proměnné v čase

Více

Fraktály a chaos. Za otce fraktální geometrie je dnes považován Benoit Mandelbrot. Při zkoumání chyb při

Fraktály a chaos. Za otce fraktální geometrie je dnes považován Benoit Mandelbrot. Při zkoumání chyb při Martin Šarbort 8.května 2006 Fraktály a chaos 1 Fraktály - základní pojmy 1.1 Úvod Za otce fraktální geometrie je dnes považován Benoit Mandelbrot. Při zkoumání chyb při přenosu signálu zjistil, že při

Více

Aplikace multifraktální geometrie na finančních trzích

Aplikace multifraktální geometrie na finančních trzích Aplikace multifraktální geometrie na finančních trzích 5. studentské kolokvium a letní škola matematické fyziky Stará Lesná Fakulta jaderná a fyzikálně inženýrská ČVUT, Praha 1. 9. 2011 Úvod náhodné procesy

Více

10. FRAKTÁLY. Cíl Po prostudování této kapitoly budete znát. Výklad Soběpodobnost. 10. Fraktály

10. FRAKTÁLY. Cíl Po prostudování této kapitoly budete znát. Výklad Soběpodobnost. 10. Fraktály 10. FRAKTÁLY Cíl Po prostudování této kapitoly budete znát principy fraktální grafiky na osobních počítačích použití fraktálů v počítačové grafice algoritmy tvorby fraktálů Výklad Dosavadní dělení geometrie

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika 1. Definice oblasti souvisí: a) s definováním množiny všech bodů, které náleží do hranice a zároveň do jejího vnitřku b) s popisem její hranice c) s definováním množiny všech bodů, které

Více

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND

Více

ztrátová odstraňuje zbytečné informace z obrazu. Různé druhy ztrátových kompresních metod se liší podle druhu odstraněných zbytečných informací.

ztrátová odstraňuje zbytečné informace z obrazu. Různé druhy ztrátových kompresních metod se liší podle druhu odstraněných zbytečných informací. Základní rozdělení Obecně každá ztrátová kompresní metoda je založena na odstraňování nadbytečných dat. Rozdělení kompresních metod obrazu: neztrátová -např. hledá delší sekvence stejných prvků nebo statisticky

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

37. PARABOLA V ANALYTICKÉ GEOMETRII

37. PARABOLA V ANALYTICKÉ GEOMETRII 37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná

Více

Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l

Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l Baudhayana (kolem 800 př.n.l) Pythagoras ze Sámu (asi 580 př.n.l asi 500 př.n.l) Motivace: Tato věta mě zaujala, protože se o ní

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

ŠIFROVACÍ METODA ZALOŽENÁ NA FRAKTÁLNÍ KOMPRESI. 1. Úvod. V posledních letech se ukázalo, že teorii fraktálů lze využít v mnoha teoretických

ŠIFROVACÍ METODA ZALOŽENÁ NA FRAKTÁLNÍ KOMPRESI. 1. Úvod. V posledních letech se ukázalo, že teorii fraktálů lze využít v mnoha teoretických Kvaternion 2 (2012, 83 89 83 ŠIFROVACÍ METODA ZALOŽENÁ NA FRAKTÁLNÍ KOMPRESI TOMÁŠ GRÍSA Abstrakt Tento článek se zabývá teoretickými principy fraktální komprese a využitím modifikovaného algoritmu fraktální

Více

volitelný předmět ročník zodpovídá CVIČENÍ Z MATEMATIKY 9. MACASOVÁ

volitelný předmět ročník zodpovídá CVIČENÍ Z MATEMATIKY 9. MACASOVÁ Výstupy žáka ZŠ Chrudim, U Stadionu je schopen provádět složitější operace s racionálními čísly umí řešit a tvořit úlohy, ve kterých aplikuje osvojené početní operace Učivo obsah Mezipředmětové vztahy

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Užití a zneužití fraktálů

Užití a zneužití fraktálů MASARYKOVA UNIVERZITA FAKULTA PŘÍRODOVĚDECKÁ Užití a zneužití fraktálů Diplomová práce Brno, květen 2006 Robert Wiesner Prohlašuji, že tato práce je mým původním autorským dílem, které jsem vypracoval

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování

Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso

Více

Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose

Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 9. ročník J.Coufalová : Matematika pro 9.ročník ZŠ (Fortuna) Očekávané výstupy předmětu Na konci 3. období základního vzdělávání

Více

KMA/GPM Barycentrické souřadnice a

KMA/GPM Barycentrické souřadnice a KMA/GPM Barycentrické souřadnice a trojúhelníkové pláty František Ježek jezek@kma.zcu.cz Katedra matematiky Západočeské univerzity v Plzni, 2008 19. dubna 2009 1 Trojúhelníkové pláty obecně 2 Barycentrické

Více

Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1

Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1 Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1 Bohumír Tichánek 7 Práce zdůvodňuje způsob využití Ludolfova čísla při převodu bodu, a to z diskrétního do Euklidova prostoru. Tím se bod

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

Fraktály. krásné obrázky v matematice

Fraktály. krásné obrázky v matematice Fraktály aneb krásné obrázky v matematice Mgr. Jan Šustek 22. 10. 2009 Grafy funkcí Grafy funkcí Mějme funkce f, g : [ 6, 6] R definované vztahy f(x) = 2 3 Jak vypadají jejich grafy? x 2 + x 6 x 2 + x

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

Vzdělávací obor matematika

Vzdělávací obor matematika "Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Křivky a plochy technické praxe

Křivky a plochy technické praxe Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Fakulta informačních technologií. Zbyšek Gajda

Fakulta informačních technologií. Zbyšek Gajda Vysoké učení technické v Brně Fakulta informačních technologií ROČNÍKOVÝ PROJEKT Zbyšek Gajda květen 2004 Abstrakt Předkládaná práce se zabývá evolučním uměním. K tomu jsou využity techniky genetického

Více

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011 Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení

Více

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19 Matematika 1 Jiří Fišer 19. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 19. září 2016 1 / 19 Zimní semestr KMA MAT1 1 Úprava algebraických výrazů. Číselné obory. 2 Kombinatorika, základy teorie

Více

6. ANALYTICKÁ GEOMETRIE

6. ANALYTICKÁ GEOMETRIE Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných

Více

volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ

volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky provádí operace s celými čísly (sčítání, odčítání, násobení

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ L-SYSTÉMY A SYSTÉMY ITEROVANÝCH FUNKCÍ POPIS A REALIZACE V PROSTREDÍ MATLAB

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ L-SYSTÉMY A SYSTÉMY ITEROVANÝCH FUNKCÍ POPIS A REALIZACE V PROSTREDÍ MATLAB VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více

Základní škola Blansko, Erbenova 13 IČO

Základní škola Blansko, Erbenova 13 IČO Základní škola Blansko, Erbenova 13 IČO 49464191 Dodatek Školního vzdělávacího programu pro základní vzdělávání Škola v pohybu č.j. ERB/365/16 Škola: Základní škola Blansko, Erbenova 13 Ředitelka školy:

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Vyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule.

Vyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule. Charakteristika předmětu 2. stupně Matematika je zařazena do vzdělávací oblasti Matematika a její aplikace. Vyučovací předmět má časovou dotaci v 6. ročníku 4 hodiny týdně, v 7., 8. a 9 ročníku bylo použito

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady

Více

2.8.6 Čísla iracionální, čísla reálná

2.8.6 Čísla iracionální, čísla reálná .8.6 Čísla iracionální, čísla reálná Předpoklady: 0080 Př. : Doplň tabulku (všechny sloupce je možné vypočítat bez kalkulačky). 00 x 0 0,0004 00 900,69 6 8 x 0,09 0, x 0 0,0004 00 x 0 0,0 0 6 6 900 0 00

Více

Volitelné předměty Matematika a její aplikace

Volitelné předměty Matematika a její aplikace Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Matematika a její aplikace Cvičení z matematiky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Cvičení z matematiky

Více

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7. A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence

Více

Management rekreace a sportu. 10. Derivace

Management rekreace a sportu. 10. Derivace Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS EVOLUČNÍ NÁVRH OBRAZŮ

Více

Fraktální geometrie Plasnice,

Fraktální geometrie Plasnice, Fraktální geometrie Plasnice, 11.7.2007 Projektanti: Konzultant: Martin Čermák Lukáš Slavata Martin Švec Cíl: vykreslování různých fraktálů pomocí programu (IDL) Teorie: Fraktál je geometrický obrazec,

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Matematika 3. období 8. ročník Počet hodin : 144 Učební texty : J.Coufalová : Matematika pro 8.ročník ZŠ (Fortuna) O.Odvárko, J.Kadleček : Sbírka úloh z matematiky pro

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

Matematika. 9. ročník. Číslo a proměnná. peníze, inflace. finanční produkty, úročení. algebraické výrazy, lomené výrazy (využití LEGO EV3)

Matematika. 9. ročník. Číslo a proměnná. peníze, inflace. finanční produkty, úročení. algebraické výrazy, lomené výrazy (využití LEGO EV3) list 1 / 5 M časová dotace: 4 hod / týden včetně 1 hod z disponibilní časové dotace Matematika 9. ročník M 9 1 06 M 9 1 07 M 9 1 08 řeší aplikační úlohy na procenta (i pro případ, že procentová část je

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Základní škola Náchod Plhov: ŠVP Klíče k životu

Základní škola Náchod Plhov: ŠVP Klíče k životu VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA 5. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování a aktivizace

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných

Více

Procedurální modelování

Procedurální modelování Procedurální modelování Pavel Strachota FJFI ČVUT v Praze 19. března 2015 Obsah 1 Fraktální geometrie 2 Modelování rostlin a ekosystémů 3 Systémy částic Úvod - způsoby vytváření 3D modelů ruční zadání

Více

TEMATICKÝ PLÁN. září říjen

TEMATICKÝ PLÁN. září říjen TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené

Více

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní

Více

Numerické metody a statistika

Numerické metody a statistika Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 016-017 ( ) Numerické metody a statistika 016-017 1 / Numerické integrování ( ) Numerické metody a statistika 016-017 / Geometrický význam integrálu

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze

Více

Vyučovací předmět: Matematika Ročník: 7.

Vyučovací předmět: Matematika Ročník: 7. Vyučovací předmět: Matematika Ročník: 7. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo I. čtvrtletí 40 hodin Opakování učiva z 6. ročníku (14) Přesahy a vazby, průřezová témata v oboru

Více

FYZIKÁLNÍ CHAOS A FRAKTÁLY

FYZIKÁLNÍ CHAOS A FRAKTÁLY FYZIKÁLNÍ CHAOS A FRAKTÁLY Pavel Stránský www.pavelstransky.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta Univerzity Karlovy Gymnázium Brandýs nad Labem 15. února 2016 Co si odnášíme

Více

volitelný předmět ročník zodpovídá CVIČENÍ Z MATEMATIKY 8. MACASOVÁ Učivo obsah

volitelný předmět ročník zodpovídá CVIČENÍ Z MATEMATIKY 8. MACASOVÁ Učivo obsah Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout

Více

Fraktalista Benoît Mandelbrot ( ) aneb soběpodobnost a fraktály na scéně. Alena Šolcová FIT ČVUT v Praze

Fraktalista Benoît Mandelbrot ( ) aneb soběpodobnost a fraktály na scéně. Alena Šolcová FIT ČVUT v Praze Fraktalista Benoît Mandelbrot (1924-2010) aneb soběpodobnost a fraktály na scéně Alena Šolcová FIT ČVUT v Praze Od náhodnosti a nepředvídatelnosti k hledání matematických pravidel. Triumf Descartovy Geometrie.

Více

Matematika. 7. ročník. Číslo a proměnná celá čísla. absolutní hodnota čísla. zlomky. racionální čísla

Matematika. 7. ročník. Číslo a proměnná celá čísla. absolutní hodnota čísla. zlomky. racionální čísla list 1 / 9 M časová dotace: 4 hod / týden Matematika 7. ročník (M 9 1 01) provádí početní operace v oboru celých a racionálních čísel; čte a zapíše celé číslo, rozliší číslo kladné a záporné, určí číslo

Více

----- Studijní obory. z matematiky. z matematiky. * Aplikovaná matematika * Matematické metody v ekonomice

----- Studijní obory. z matematiky. z matematiky. * Aplikovaná matematika * Matematické metody v ekonomice Minimum Maximum Minimum Maximum Studijní obory z matematiky z matematiky z matematiky z matematiky * Aplikovaná matematika * Matematické metody v ekonomice * Obecná matematika Navazující magisterský studijní

Více

Konvexní obal a množina

Konvexní obal a množina Definice M Množina se nazývá konvení, jestliže úsečka spojující libovolné dva její bod je částí této množin, tj. ab, M, t 0, : ta+ ( tb ) M konvení množina a b a b nekonvení množina Definice Konvení obal

Více

Základní topologické pojmy:

Základní topologické pojmy: Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 9. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor účelně a efektivně

Více

7.1.3 Vzdálenost bodů

7.1.3 Vzdálenost bodů 7.. Vzdálenost bodů Předpoklady: 70 Př. : Urči vzdálenost bodů A [ ;] a B [ 5;] obecný vzorec pro vzdálenost bodů A[ a ; a ] a [ ; ]. Na základě řešení příkladu se pokus sestavit B b b. y A[;] B[5;] Z

Více

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, kruhy a válce, úměrnost, geometrické konstrukce, výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

Vyučovací předmět / ročník: Matematika / 4. Učivo

Vyučovací předmět / ročník: Matematika / 4. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel : počítání do dvaceti - číslice

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Josef Pojar 31.1.2007. Transitivita znamená, že aplikace transformace na libovolný daný interval I 1 ho roztahuje

Josef Pojar 31.1.2007. Transitivita znamená, že aplikace transformace na libovolný daný interval I 1 ho roztahuje Sférické kyvadlo Josef Pojar 31.1.2007 1 Teoretický úvod 1.1 Chaotický pohyb Abychom mohli klasifikovat chování systému jako chaotické musí systém vykazovat následující vlastnosti : musí být citlivý na

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více