Limita a spojitost funkce a zobrazení jedné reálné proměnné

Rozměr: px
Začít zobrazení ze stránky:

Download "Limita a spojitost funkce a zobrazení jedné reálné proměnné"

Transkript

1 Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé X je y = f R k, neboli y 1, y,..., y k = f 1, f,..., f k, kde f i jsou pro i = 1,,...,, k funkce na množině X, tj. nabývají reálné hodnoty, budeme se nejprve zabývat funkcemi f : X Y, kde X a Y jsou podmnožiny reálných čísel. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném bodě, tj. chováním funkce v nějakém nekonečně malém okolí tohoto bodu. Pomocí lokálního chování funkce v každém bodě množiny M pak usuzujeme na chování funkce na celé množině M, tzv. globální chování, které nás většinou zajímá. Je-li dána funkce y = f a bod a, který je vnitřní bod definičního oboru, snažíme se tuto funkci v bezprostředním okolí bodu a přibližně nahradit nějakou jednodušší funkcí, u které jsme schopni zkoumat její vlastnosti. V diferenciálním počtu budeme nahrazovat dané funkce polynomy, tj. budeme se snažit napsat f c 0 + c 1 a + c a +..., 1 kde c 0, c 1,... jsou nějaké konstanty. Ty se snažíme vybrat tak, aby chyba, kterou uděláme, když nahradíme funkci polynomem daného stupně byla v okolí bodu a, tj. pro malá a, co nejmenší. Například, pokud se snažíme nahradit funkci y = f a okolí budu = a lineární funkcí, tj. přímkou, je z grafického názoru přirozené vybrat tuto přímku tak, aby byla tečnou ke grafu funkce y = f v bodě [ a; fa ]. Jestliže do vztahu 1 dosadíme = a, dostaneme c 0 = fa. Vztah 1 pak můžeme pro a napsat jako f fa a c 1 + c a Konstantu c 1 dostaneme tak, že do pravé strany tohoto vztahu dosadíme = a. Bohužel na levé straně je neurčitý výraz 0. Přitom je pro každé z okolí bodu a na levé straně 0 definovaný výraz, který je pro malá a může skoro rovnat nějakému číslu c 1. Nejprve budeme přesně definovat, co máme na mysli tvrzením funkce y = f se v bezprostředním okolí bodu a skoro rovna A, tj. itu funkce. Definice. Necht je dána funkce f, bod a R, který je hromadný bod definičního oboru D f, a A R. Jestliže ε > 0 δ > 0 ; D f ; 0 < a < δ je A f < ε ke každému ε > 0 eistuje δ > 0 takové, že pro každé z definičního oboru funkce f, které se nerovná a a jehož vzdálenost od bodu a je menší než δ, je vzdálenost bodu f od bodu A menší než ε, řekneme, že funkce f má v bodě a itu A. Tento výrok budeme zapisovat jako f = A. 1

2 Limitě z této definice, tj. když bod a i ita A jsou konečná reálná čísla, se říká vlastní ita ve vlastním bodě. Budeme ještě definovat ity pro a = ±, tj. ity v nevlastním bodě, a ity, které jsou rovny ±, tzv. nevlastní ity. Definice. Necht je dána funkce f a bod a R, který je hromadným bodem D f. Jestliže K δ > 0 ; D f ; 0 < a < δ je f > K, 3 říkáme, že má funkce f v bodě a R itu +. Tento výrok zapisujeme jako f = +. Definice. Necht je dána funkce f a A R. Jestliže je + hromadným bodem D f a ε > 0 K R ; D f ; > K je A f < ε, 4 říkáme, že má funkce v bodě + vlastní itu A. Tento výrok zapisujeme jako f = A. Definice. Necht je dána funkce f a + je hromadným bodem D f. Jestliže K L ; D f ; > L je f > K, 5 říkáme, že funkce f má v bodě + itu + a píšeme f = +. Poznámka: Podobně se definují ity v bodě a ity rovné. Všechny definice ity lze jediným způsobem zapsat pomocí okolí bodů. Definice. Necht je dána funkce f, bod a R, který je hromadný bod D f a A R. Jestliže ke každému okolí UA bodu A eistuje okolí V a bodu a takové, že pro každé z definičního oboru funkce f, které je prvkem okolí V a a a patří hodnota funkce f do okolí UA bodu A, tj. UA V a ; D f V a ; a je f UA, 6 říkáme, že funkce f má v bodě a itu A. Limitu zobrazení f : X Y, kde X R a Y R k budeme definovat pomocí okolí bodu. Definice. Necht je f : X Y zobrazení množiny X R do množiny Y R k a a je hromadný bod množiny X a A R k. Jestliže UA V a ; D f V a, a je f UA 7 řekneme, že zobrazení f má v bodě a itu A.

3 Pokud eistuje ita funkce nebo zobrazení, je jediná. To je tvrzení následující věty. Věta. Jestliže eistuje f = A je tato ita jediná. Důkaz: Necht eistují f = A a f = B a platí A B. Protože A B, eistují okolí UA a UB takové, že UA UB =. Podle definice ity 7 eistují okolí V A a a V B a bodu a takové, že pro každé D f V A a, a, je f UA a pro každé D f V B a, a, je f UB. Protože je bod a hromadný bod D f, obsahuje množina D f V A a V B a alespoň jeden bod a. Pak ale je f UA UB =. To je nemůže být pravda = spor. Proto není pravda tvrzení: Eistují f = A a f = B a platí A B, a tedy platí jeho negace. To je právě tvrzení uvedené věty. Poznámka: Důkaz tohoto typu se v matematice nazývá důkaz sporem. Jeho logická podstata spočívá A B je ekvivalentní výroku A B. Jeho negace je A B. Při důkazu sporem dokážeme, že tento výrok, tj. A B, neplatí. Proto musí platit jeho negace, tj. výrok A B, což je ekvivalentní výroku A B. Zobrazení f : X Y R k lze popsat pomocí k funkcí f = f 1, f,..., f k. Vyvstává otázka, jak souvisí ita zobrazení f = A = A 1, A,..., A k s itami funkcí f i. Odpověd dává následující věta. Věta. Limita zobrazení f = A = A 1, A,..., A k eistuje právě tehdy, když pro každé i = 1,,..., k eistují konečné ity f i = A i. Poznámka: Z přechozí věty je zřejmé, že při výpočtu ity zobrazení f : X Y R k vystačíme s výpočtem ity funkcí f : X Y R. Proto se v dalším omezíme na výpočet it reálné funkce jedné reálné proměnné. Je ale třeba poznamenat, že pokud aspoň jedna ita f i neeistuje nebo není konečná, ita zobrazení f v bodě a neeistuje. Limity funkcí počítáme většinou tak, že známe základní ity a ostatní ity počítáme pomocí základních it a určitých vět. Je věcí každého, jaké ity bude považovat za základní. Uvedeme některé ity, které byste měli umět zpaměti / = e, p e = 0, q p R, q > 0, ln p = 0, q p R, q > 0, sin = 1, e 1 = 1, ln1 + = 1 3

4 a vlastně všechny ity typu f + h f h 0 h = f, které se nazývají derivace funkce f. Pro algebraické operace s itami platí Věta. Jestliže eistují ity f = A R, g = B R a α, β R, a je-li a hromadný bod D f D g pro podíl D f/g pak platí αf + βg = αa + βb, f g = AB, f g = A B, za předpokladu, že jsou výrazy vpravo definovány v R. Připomeňme, že nejsou definovány výrazy typu, 0,, 0 0. Definici ity funkce můžeme ještě rozšířit tak, že nebudeme při itě uvažovat všechna D f, ale pouze M D f. V podstatě se jedná o itu zúžené funkce f M. Definice. Necht je dána funkce f, množina M D f, bod a, který je hromadný bod množiny M a A R. Jestliže UA V a ; M V a ; a je f UA, 8 říkáme, že funkce f má v bodě a vzhledem k množině M itu A. Toto tvrzení zapisujeme jako f = A. M Pro takové ity platí věta: Věta. Necht eistuje f = A. Necht je M D f a bod a je hromadný bod množiny M. Pak platí f = f = A. M Limity funkcí vzhledem k množinám budeme pro funkci jedné reálné proměnné používat pro M = a, + nebo M =, a. Jestliže je a R a M = a, +, resp. M =, a, mluvíme o itě funkce v bodě a zprava, resp. zleva. Definice. Necht je a R hromadný bod množiny D f a, + a A R. Jestliže UA δ > 0 ; D f ; 0 < a < δ je f UA, 9 říkáme, že funkce f má v bodě a itu zprava rovnou A a píšeme + f = A. Podobně, necht je a R hromadný bod množiny D f, a a A R. Jestliže UA δ > 0 ; D f ; 0 < a < δ je f UA, 10 4

5 říkáme, že funkce f má v bodě a itu zleva rovnou A a píšeme f = A. Limity zprava a zleva se nazývají jednostranné ity a itu f budeme nazývat oboustranná ita funkce f v bodě a. Věta. Pokud je bod a hromadným bodem množin D f a, + a D f, a eistuje oboustranná ita funkce f v bodě a právě tehdy, když eistují obě jednostranné ity funkce f v bodě a a jsou si rovny. Tato věta se často používá k tomu, abychom ukázali, že ita funkce neeistuje. Příklad. Ukažte, že neeistuje ita Řešení: Jestliže dosadíme = 1, vidíme, že se jedná o itu typu 4, tj. tato ita rovna ±. Protože pro > 1 je 1 > 0, platí = +, a protože pro < 1 je < 0, je =. A protože jsou tyto ity různé, oboustranná ita neeistuje. Jestliže předpokládáme, že bod a je hromadným bodem definičních oborů průniku všech funkcí, jsou následující věty bezprostředním důsledkem definice ity. Věta. Jestliže na nějakém okolí bodu a platí f g, je f g. Věta. Jestliže na nějakém okolí bodu a platí f g h, a eistují f = h = A, pak je g = A. sin Příklad: Dokažte, že 0 = 1. Řešení: Protože funkce f = sin sin je sudá, stačí ukázat, že 0 + = 1. Úhel v obloukové míře budeme měřit délkou oblouku na jednotkové kružnici se středem v počátku O = [0; 0] od kladné vodorovné polopřímky, na které leží bod P = [1; 0]. Bod M, který odpovídá velikosti úhlu 0 pak má souřadnice M = [cos ; sin ]. Obsah pravoúhlého trojúhelníka s přeponou OM a odvěsnou na polopřímce OP je roven P 1 = 1 cos sin a je menší než obsah kruhové výseče OP M, která je P = 1. Tedy pro 0, 1 π platí nerovnost cos sin = sin 1 cos. Na druhé straně je obsah výseče OP M menší než obsah pravoúhlého trojúhelníka a odvěsnou OP, jehož přepona leží na polopřímce OM, který je P 3 = 1 tg. Z toho dostaneme pro 0, 1 π nerovnost tg = sin cos = cos sin. 5

6 Celkově tedy pro 0, 1 π platí cos sin 1 cos. sin A protože cos = 1, je podle předchozí věty = 1. Věta. f = 0 právě tehdy, když f = 0. Věta. Jestliže je f = 0 a eistuje okolí bodu a, ve kterém je funkce g omezená, je fg = 0 Příklad: Protože 0 = 0 a platí nerovnost sin 1 1, je sin 1 = 0. 0 Nyní uvedeme větu, které se týká ity složené funkce h = g f. Jde o to, kdy můžeme počítat itu složené funkce počítat jako dvě ity, nejprve itu funkce f a následně itu funkce g. Přesněji, jsou dány funkce f : X Y a g : Y Z. Necht a je hromadný bod množiny X a f = A. Necht je A hromadný bod množiny Y a eistuje gy = B. Otázka y A je, kdy je h = g f = B? Příklad: Necht je f : R R definována předpisem f = 0 a g : R R definována jako gy = 0 pro y 0 a g0 = 1. Pak je f = 0 a g = 0. Ale pro složenou 0 0 funkci h = g f = g0 = 1 0. Tento příklad ukazuje, že obecně nelze itu složené funkce počítat jako dvě ity. Problém spočívá v tom, že při definici ity gy = B nebereme v úvahu samotný y A bod y = A. Proto musíme vyloučit případ, kdy v každém okolí bodu a eistuje bod a takový, že f = A, nebo do definice ity funkce gy zahrnout i bod A. Věta: Necht jsou dány funkce f : X Y, g : Y Z a h = g f : X Z. Necht a je hromadný bod množiny X a f = A. Necht je A hromadný bod množiny Y a eistuje gy = B. Necht eistuje prstencové okolí P a bodu a takové, že pro každé y A P a je f A. Pak je h = B. Jestliže do definice ity funkce f v bodě a zahrneme i samotný bod a dostaneme tzv. funkci spojitou v bodě a. Definice. Řekneme, že funkce f je spojitá v bodě a D f, jestliže platí ε > 0 δ > 0 ; D f ; a < δ je fa f < ε. 11 Podobně definujeme zobrazení spojité v bodě a. Pouze musíme použít vzdálenost dy 1, y v R k. Definice. Řekneme, že zobrazení f je spojité v bodě a D f, jestliže platí ε > 0 δ > 0 ; D f ; a < δ je d f, fa < ε. 1 6

7 Podobně jako pro ity platí následující věta: Věta. Zobrazení f : X Y R k je spojité v bodě a pravě tehdy, když jsou v bodě a spojité všechny funkce y i = f i. Poznámka: Body a D f, ve kterých je funkce f spojitá, jsou dvojího druhu: 1. a je izolovaný bod D f ;. a je hromadný bod D f a f = fa. Příklad: Dodefinujte funkci f = spojitá. ln1 + v bodě = 0 tak, aby byla v tomto bodě Řešení: Aby byla funkce f v bodě = a spojitá, musí platit fa = f. Proto musíme položit ln1 + f0 = = 1. 0 Věta. Necht jsou dány funkce f : X Y, g : Y Z a h = g f : X Z. Necht a je hromadný bod množiny X, f = A a necht je funkce gy spojitá v bodě A. Pak je h = g f = g f = ga. Definice. Necht je dáno zobrazení f a M D f. Říkáme, že zobrazení f je spojité na množině M, je-li spojité v každém bodě množiny M. Zobrazení f spojité na D f nazýváme spojité. Všechny elementární funkce, které jsme definovali v minulé přednášce jsou spojité. Například funkce f = 1 je spojitá, protože = 0 není prvkem D f. Proto se předcházející věta používá velmi často. Jako příklad ukážeme použití této věty při výpočtu it typu 1. Příklad: Je-li f = 0, pak platí 1 + f g = ep f g. 13 Řešení: Protože podle předpokladu je f = 0, eistuje okolí Ua bodu a takové, že pro každé Ua \ {a} je 1 + f > 0. Tedy podle definice platí v tomto okolí g 1 + f = e g ln 1+f. Protože je funkce e spojitá v R, platí g 1 + f = ep g ln 1 + f. 7

8 Protože je 0 ln1 + = 1, je funkce F definovaná pro 1, + předpisem ln1 + pro 0, F = 1 pro = 0 spojitá. Podle věty o itě součinu a uvedené věty o itě složené funkce je tedy g ln 1 + f = gf F f = protože F f = F 0 = 1. = g f F f = g f, Pro spojité funkce platí následující věta. Věta. Necht jsou funkce f : X Y a g : Y h = g f : X Z spojitá. Z spojité. Pak je složená funkce Pomocí it se počítají tzv. asymptoty ke grafu funkce y = f. Asymptoty jsou v podstatě přímky, ke kterým se blíží graf funkce v krajním bodě definičního oboru nebo v bodě nespojitosti funkce f. Definice. Přímka = a se nazývá svislou asymptotou ke grafu funkce y = f, jestliže v bodě a eistuje aspoň jedna nevlastní jednostranná ita funkce f, tj. když f = ± nebo f = ±. + Příklad: Funkce y = = má definiční obor, 1 1, +. Protože f =, + f = +, 1 + jsou přímky = a = 1 svislé asymptoty ke grafu funkce y = f. Ale protože není přímka = 1 asymptota. f = 0, 1 Definice. Přímka y = k + q se nazývá asymptota ke grafu funkce y = f v bodě +, resp. v bodě, jestliže f k q = 0, resp. f k q = Je-li k = 0 nazývá se asymptota vodorovná a je-li k 0 mluvíme o šikmé asymptotě. 8

9 Je zřejmé, že pokud eistuje ita f = q, resp. f = q, je přímka y = q vodorovná asymptota ke grafu funkce v bodě +, resp. v bodě. Je-li přímka y = k + q asymptota ke grafu funkce y = f v bodě ±, je f k q 0 = ± Jestliže známe k, lze najít hodnotu q jako itu f f = k, tj. k = ± ±. q = ± f k. Příklad: V bodech ± najděte asymptoty funkce y = + +. Řešení: Pro jde o výraz typu +. Protože je = + = + = 1, = je přímka y = 1 vodorovná asymptota ke grafu funkce v bodě. Pro + se jedná o výraz + + a vodorovná asymptota v bodě = + neeistuje. Abychom našli šikmou asymptotu, najdeme nejprve k = + + =. Člen q je pak q = + = = + + = = Tedy v bodě + šikmá asymptota přímka y = + 1. Pro spojité funkce platí mnoho důležitých vět, z nichž některé lze najít ve skriptech. Zde uvedeme pouze jednu větu, kterou budeme potřebovat při výpočtu globálních etrémů spojité funkce na kompaktní, tj. omezené a uzavřené, množině M R. Věta. Je-li funkce f spojitá na kompaktní množině M, eistují body min, ma M takové, že pro každé M je f min f f ma. Tvrzení této, tzv. Weierstrassovy věty, lze vyjádřit tak, že každá funkce spojitá na kompaktní množině M má v množině M minimum a maimum. Důkaz: Aby bylo vidět, jak se v matematice dokazují věty a proč se většinou důkazům v přednášce vyhýbám, uvedeme pro zajímavost důkaz této věty. Zároveň na důkazu budeme demonstrovat důležitou vlastnost kompaktních množin, že pro každou posloupnost n 9

10 prvků kompaktní množiny M eistuje z ní vybraná podposloupnost, která má itu v M. Nejprve ukážeme, že každá funkce f, která je spojitá na kompaktní množině M je na M omezená. Předpokládejme, že funkce f na množině M omezená není. Pak je každému n N je množina M n = { M ; f > n } neprázdná. Z každé množiny M n vybereme prvek n. Takto dostaneme posloupnost n M. Protože je množina M kompaktní, eistuje posloupnost y n vybraná z posloupnosti n, která konverguje k prvku y M, tedy y n = y M. Podle definice vybrané posloupnosti je y n M n, a tedy n fy n > n. Protože je funkce f spojitá na množině M, je fy = n fy n = +, což je spor se spojitostí funkce f v bodě y M. Podobně se ukáže, že funkce f je na množině M omezená zdola. Označme A = { f R ; M }. Protože je funkce f na množině M omezená, je omezená i množina A, a proto eistují S = sup A R a s = inf A R. Podle definice suprema a infima platí pro každé M nerovnosti s f S. Pro každé n N označme A n = { M ; f > S 1 n }. Podle definice suprema, je pro každé n N množina A n neprázdná. Z každé množiny A n vybereme prvek n A n. Tím dostaneme posloupnost n M. Protože M je kompaktní, lze z ní vybrat posloupnost y n, která konverguje k prvku y M. Protože je y n A n, platí nerovnost S 1 n fy n S. Jestliže označíme y = n y n M, dostaneme ze spojitosti funkce f v bodě y S 1 = S fy n = fy S, n n n tj. fy = S. Tedy eistuje y = ma M, pro které platí S = f ma f M. Důkaz eistence prvku min M je obdobný. 10

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Pojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε.

Pojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε. LIMITA FUNKCE Pojem ity unkce charakterizuje chování unkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých unkce není deinovaná Zápis ( ) L Přesněji to vyjadřuje deinice: znamená, že pro

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

5. Limita a spojitost

5. Limita a spojitost 5. Limita a spojitost 5. Limita posloupnosti 5. Limita a spojitost Verze 16. prosince 2016 Diferenciální počet a integrální počet tvoří klasický základ Matematické analýzy. Diferenciální počet zkoumá lokální

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Metody výpočtu limit funkcí a posloupností

Metody výpočtu limit funkcí a posloupností Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

VII. Limita a spojitost funkce

VII. Limita a spojitost funkce VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Limita ve vlastním bodě

Limita ve vlastním bodě Výpočty it Definice (a případné věty) jsou z knihy [] příklady z [] [] a []. Počítám u zkoušky dvacátou itu hlavu mám dávno už do čista vymytu papír se značkami skvěje z čela mi pot v proudech leje než

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základ matematik pro FEK 7. přednáška Blanka Šedivá KMA zimní semestr 06/07 Blanka Šedivá (KMA) Základ matematik pro FEK zimní semestr 06/07 / 5 Jednostranné limit Definice: Vlastní limita ve vlastním

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

OBECNOSTI KONVERGENCE V R N

OBECNOSTI KONVERGENCE V R N FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce

Více

Management rekreace a sportu. 10. Derivace

Management rekreace a sportu. 10. Derivace Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu

Více

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace 22. & 23. & 24. Vlastnosti funkcí a jejich ita a derivace Základní vlastnosti Definiční obor Definiční obor je množina neznámých, pro něž je funkce definována. Obor hodnot Obor hodnot je množina všech

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

9. Limita a spojitost funkce

9. Limita a spojitost funkce Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 9. Limita a spojitost funkce OKOLÍ BODU, VNITŘNÍ A HRANIČNÍ BOD Okolí bodu a je libovolný interval (a r, a r), kde r > 0; značí se O (a,

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

Úvod základy teorie zobrazení

Úvod základy teorie zobrazení Úvod základy teorie zobrazení V přednášce se budeme zabývat diferenciálním a integrálním počtem funkcí více proměnných. Přednáška navazuje na přednášku atematická analýza 1 z prvního semestru. Proto se

Více

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu 22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte

Více

2.6. Limita funkce. Nechť c R jevnitřnínebokrajníbodintervaludefiničníhooborufunkce

2.6. Limita funkce. Nechť c R jevnitřnínebokrajníbodintervaludefiničníhooborufunkce 2.6. Limita funkce Nechť c R jevnitřnínebokrajníbod intervalu definičního oboru funkce f.(funkce v něm může, ale nemusí být definovaná.) Jestliže vzorům x blízkým bodu c, ale různýmod c, (tedy x (c d,

Více

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,

Více

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina Instrukce: Příklady řešte výhradně elementárně, bez použití nástrojů z diferenciálního a integrálního počtu. Je-li součástí řešení úlohy podmnožina reálných čísel, vyjádřete ji jako disjunktní sjednocení

Více

Základy matematické analýzy (BI-ZMA)

Základy matematické analýzy (BI-ZMA) Příklady ke cvičení z předmětu Základy matematické analýzy (BI-ZMA) Matěj Tušek Katedra matematiky České vysoké učení technické v Praze BI-ZMA ZS 009/00 Evropský sociální fond Praha & EU: Investujeme do

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

1 Základní pojmy. 1.1 Množiny

1 Základní pojmy. 1.1 Množiny 1 Základní pojmy V této kapitole si stručně připomeneme základní pojmy, bez jejichž znalostí bychom se v dalším studiu neobešli. Nejprve to budou poznatky z logiky a teorie množin. Dále se budeme věnovat

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim 3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

a = a 0.a 1 a 2 a 3...

a = a 0.a 1 a 2 a 3... Reálná čísla Definice 1 Nekonečným desetinným rozvojem čísla a nazýváme výraz a = a 0.a 1 a 2 a 3... kde a 0 je celé číslo a každé a i, i =1, 2,... je jedna z číslic 0,...,9. Pokud existuje m N takové,

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více

Aplikovaná matematika I, NMAF071

Aplikovaná matematika I, NMAF071 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad 1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M06, GA0 M05 DIFERENCIÁLNÍ POČET I DERIVACE FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset by L

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

Aplikace derivace ( )

Aplikace derivace ( ) Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH Reálná funkce dvou proměnných a definiční obor Kartézský součin R R značíme R 2 R 2 je množina všech uspořádaných dvojic reálných čísel (rovina) Prvk R 2 jsou bod v rovině

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

(,b)={x IR;x < b} (otevřenýinterval) a,b ={x IR;a x b} (uzavřenýinterval)

(,b)={x IR;x < b} (otevřenýinterval) a,b ={x IR;a x b} (uzavřenýinterval) A definice a tvrzení 1 c phabala 2010 Definice a tvrzení Reálná osa Značení(populární číselné množiny. IN přirozenáčísla1,2,3,4,... IN 0 = IN {0}={0,1,2,3,4,...} Z celáčísla0,1,-1,2,-2,3,-3,... IQ racionální

Více

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde Homogenní rovnice Uvažujme rovnici kde y = f(, y), (4) f(λ, λy) = f(, y), λ. Tato rovnice se nazývá homogenní rovnice 1. řádu. Ukážeme, že tuto rovnici lze převést substitucí na rovnici se separovanými

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

Reálné posloupnosti 1. Reálné posloupnosti

Reálné posloupnosti 1. Reálné posloupnosti Reálné posloupnosti Reálné posloupnosti Intervaly otevřený interval (a, b) = {x R, a < x < b}; polouzavřený interval (a, b = {x R, a < x b}; uzavřený interval a, b = {x R, a x b}; otevřený neomezený interval

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011 Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:

Více

GONIOMETRIE A TRIGONOMETRIE

GONIOMETRIE A TRIGONOMETRIE GONIOMETRIE A TRIGONOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více