Zapojení odporových tenzometrů

Rozměr: px
Začít zobrazení ze stránky:

Download "Zapojení odporových tenzometrů"

Transkript

1 Zapojení odporových tenzometrů Zadání 1) Seznamte se s konstrukcí a použitím lineárních fóliových tenzometrů. 2) Proveďte měření na fóliových tenzometrech zapojených do můstku. 3) Zjistěte rovnici regresní přímky, proveďte cejchování. Tenzometry obecně. Tenzometr (viz Obrázek 1) je senzor určený k měření povrchového materiálu, s nímž je pevně spojen. K měření povrchového se využívá změna průřezu u elektrického vodiče, jež je současně s povrchem materiálu deformován. Sílu působící na nosník lze změřit pomocí fóliových tenzometrů, které budou reagovat na deformaci vznikající v místě kontaktu nosníku s tenzometrem. Odpor R [Ω] každého vodiče je závislý na jeho průřezu S [mm 2 ], délce l [m] a měrném odporu ρ [Ωmm 2 m -1 ]: R = ρ l S [Ω] Změnou délky vodiče (deformací tenzometru v tahu) se mění odpor vodiče - je měřitelný a dá se využít jako senzor na povrchu materiálu. Substrát (krycí fólie) Měřicí mřížka Směr deformace Výstupní vodiče Obrázek 1 Popis lineárního fóliového tenzometru. Vhodným uspořádáním vodiče na fólii lze dosáhnout potřebných parametrů vzhledem k požadavkům na přesnost a opakovatelnost měření. Současné fóliové tenzometry jsou vyráběny v mnoha provedeních pro různé účely. Důležitými kritérii při volbě geometrie fóliového tenzometru jsou: Znalost směru působení hlavního. Počet měřených os. Charakter materiálu homogenita. Prostorová omezení pro aplikaci senzoru.

2 a) b) c) Obrázek 2 a) jednoosý tenzometr b) tenzometrický kříž c) všesměrová tenzometrická růžice [zdroj: hbm.cz] Na obrázku 2 je vidět základní rozdělení fóliových tenzometrů dle jejich zatěžování. V praxi se využívají kombinace několika senzorů najednou. Na obrázku 3 je vidět aplikace tenzometrů pro různá měření. a) b) c) Obrázek 3 a) Určení hlavního směru v blízkosti svaru při zatěžovací zkoušce tlakové nádoby b) Zjišťování změny směru při dynamickém zatěžování lyže c) Kontrolní měření lisovací síly během provozu aplikace přímo na svorník lisu. [zdroj: hbm.cz] Vrstva vodivého materiálu na fólii je po celé délce neměnná, konstantní s přesně definovanými parametry průřezu a měrného odporu vodiče. S měnícím se protažením se mění i odpor na výstupu senzoru. Na obrázku 4 je vidět obecná deformační křivka oceli. Napětí odpovídající bodu A se nazývá mez úměrnosti. Do tohoto bodu protažení ε je materiál pružný a po odeznění působícího zatížení se vrátí zpět na svou původní délku l0. Mezi body 0 a A se materiál chová lineárně lze jej popsat pomocí rovnice přímky. Protažení senzoru nesmí přesáhnout mez úměrnosti σa použitého materiálu aby nedošlo k jeho trvalému poškození. Mezi body A a B už je chování tenzometru nelineární. V datovém listu každého tenzometru je údaj o maximálním prodloužení ε uveden. Obrázek 4 Tahová křivka oceli [zdroj]

3 Popis měření Laboratorní model představuje jedno z ramen dronu. Model je určen k analýze zatížení ramene při dynamickém manévrování. Hlavním úkolem aplikovaných tenzometrů je analýza silového zatížení nosníku. Obrázek 5 Instalace fóliových tenzometrů. Vlevo - hotové zapojení se zesilovačem. Vpravo použité 120Ω tenzometry. Cílem měření je určit parametry nosníku s tenzometrickým můstkem. Tenzometrický můstek Zapojení tenzometrů je nejčastěji provedeno do tzv. Wheastonova můstku viz obrázek 6, kde je naznačen princip zapojení. Obrázek 6 Wheastonův můstek. Obrázek 7 Základní zapojení tenzometru do můstku.

4 Obrázek 7 ukazuje jedno ze základních zapojení tenzometru do můstku, z důvodu nízké citlivosti a chybějící teplotní kompenzace se nepoužívá. Obrázek 8 Poloviční tenzometrický můstek. Obrázek 9 Plný tenzometrický můstek s teplotní kompenzací. Obrázky 8 a 9 ukazují nejčastěji používaná zapojení z praxe. Poloviční můstek je dostatečně citlivý pro přesná měření v krátkodobém horizontu (do 30 vteřin), proto se využívá zejména při kontrolních měřeních. Plný můstek je vhodný pro dlouhodobá měření, není ovlivněn změnami teploty v okolí. Důležitým parametrem při zapojování tenzometrů do můstku je zachování rovnosti všech zapojených odporů: ===. Pokud narazíme na prostorová omezení a není možné použít plný můstek, odpory a se často nahrazují tenzometrem, který není aktivně spojen s materiálem. Docílí se tak teplotě kompenzační efekt i u polovičního můstku. Zpracování výstupního signálu Výstup z měřicího můstku je v jednotkách. Pro mnoho měřicích přístrojů je tato úroveň příliš nízká. Proto je výstup z můstku vždy zesílen pomocí zesilovačů (viz obrázek 5) k tomu určených. Zpracovaný signál za zesilovačem už lze různě upravit podle potřeby. Úroveň se pak pohybuje již ve voltech, např. ±10V. Takto upravený signál již lze měřit voltmetrem.

5 Změřené na můstku U [V] Změřené na můstku U [V] Převod elektrické veličiny na fyzikální Výstup můstku ve voltech není pro účely měření příliš praktický. V této úloze se seznámíme s metodou cejchování. Základem tohoto úkolu je změřit průběh zatížení alespoň ve dvou bodech. Těmito body povedeme přímku. Tabulka 1 Měření na můstku při různém zatížení. 3,5 3 2,5 2 1,5 1 0, ,5 1 1,5 2 Zatížení nosníku h [Kg] Nejprve zatížíme nosník 1 kg závažím a změříme na výstupu. Poté přidáme 0,5 kg závaží a změříme opět výstupní. Změřená data zapište do tabulky (viz tabulka 1). Nyní můžeme začít s tvorbou rovnice přímky, která je: y = k x + q Rovnici si upravíme pro naše potřeby výstup rovnice y je v našem případě na můstku U [V]. Proměnná hodnota x je v našem případě zatížení nosníku h [kg]. Po úpravě: U = k h + q Parametry rovnice k a q určují sklon přímky a její posunutí od nuly. Po úpravě: h = U q [kg] k Tabulka 2 Určení rovnice přímky proložení lineární regresní křivkou (přímkou). 3,5 3 2,5 2 1,5 1 0,5 0 y = 2,2x - 0,1 0 0,5 1 1,5 2 Zatížení nosníku h [Kg] Tabulka 2 ukazuje hotový vzorec rovnice přímky, který charakterizuje naši soustavu (nosník+tenzometry+zesilovač+měřidlo). Parametry k a q jsou k = 2,2, q = -0,1. Z toho získáme konečný ocejchovaný vztah pro výpočet hmotnosti působící na nosník:

6 h = U + 0,1 [kg] 2,2 Výsledek lze ještě upravit pro měření síly v Newtonech a to jednoduchou změnou rovnice. Víme že Newton je základní jednotka síly. Jedná se o odvozenou jednotku soustavy SI, rozměr v základních jednotkách je kg m s 2. Hmota 1 kg poblíž zemského povrchu má tíhu zhruba 9,80665 N (v závislosti na zeměpisné šířce). Úpravou rovnice h = U+0,1 2,2 9, [N] získáme vztah deklarující zatížení nosníku v Newtonech. Získali jsme dva vzorce, kterými lze vypočítat zatížení nosníku h v [N] nebo v [kg] na základě znalosti výstupního na měřicím můstku. Tento proces se nazývá cejchování.

Tenzometry HBM. Petr Wasgestian petr.wasg@hbm.cz. http://www.hbm.cz

Tenzometry HBM. Petr Wasgestian petr.wasg@hbm.cz. http://www.hbm.cz HBM Petr Wasgestian petr.wasg@hbm.cz http://www.hbm.cz - v roce 1938 byl vynalezen první drátkový tenzometr - v roce 1952 byla technologie výroby změněna -> vznik fóliového tenzometru Tenzometr Tenzometry

Více

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM 9. MĚŘENÍ SÍLY TENZOMETICKÝM MŮSTKEM Úvod: Tenzometry se používají např. pro: Měření deformací objektů. Měření síly, tlaku, krouticího momentu, momentu síly, mechanického napětí spojů. Měření zatížení

Více

e, přičemž R Pro termistor, který máte k dispozici, platí rovnice

e, přičemž R Pro termistor, který máte k dispozici, platí rovnice Nakreslete schéma vyhodnocovacího obvodu pro kapacitní senzor. Základní hodnota kapacity senzoru pf se mění maximálně o pf. omu má odpovídat výstupní napěťový rozsah V až V. Pro základní (klidovou) hodnotu

Více

SNÍMAČE PRO MĚŘENÍ DEFORMACE

SNÍMAČE PRO MĚŘENÍ DEFORMACE SNÍMAČE PRO MĚŘENÍ DEFORMACE 8.1. Odporové tenzometry 8.2. Optické tenzometry 8.3. Bezkontaktní optické metody 8.1. ODOPROVÉ TENZOMETRY 8.1.1. Princip měření deformace 8.1.2. Kovové tenzometry 8.1.3. Polovodičové

Více

Vážicí technologie. Tenzometrické snímače zatížení. Thomas Hesse Thomas.hesse@hbm.com. www.hbm.com

Vážicí technologie. Tenzometrické snímače zatížení. Thomas Hesse Thomas.hesse@hbm.com. www.hbm.com Vážicí technologie Tenzometrické snímače zatížení Thomas Hesse Thomas.hesse@hbm.com www.hbm.com Referenční kilogramové závaží 31.07.09, Slide 2 Hottinger Baldwin Messtechnik GmbH Thomas Hesse Co je to

Více

TENZOMETRY tenzometr Použití tenzometrie Popis tenzometru a druhy odporovými polovodičovými

TENZOMETRY tenzometr Použití tenzometrie Popis tenzometru a druhy odporovými polovodičovými TENZOMETRY V současnosti obvyklý elektrický tenzometr je pasivní elektrotechnická součástka používaná k nepřímému měření mechanického napětí na povrchu součásti prostřednictvím měření její deformace. Souvislost

Více

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM 9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM Úkoly měření: 1. Změřte převodní charakteristiku deformačního snímače síly v rozsahu 0 10 kg 1. 2. Určete hmotnost neznámého závaží. 3. Ověřte, zda lze měření zpřesnit

Více

1 SENZORY SÍLY, TLAKU A HMOTNOSTI

1 SENZORY SÍLY, TLAKU A HMOTNOSTI 1 SENZORY SÍLY, TLAKU A HMOTNOSTI Senzory používající ve většině případů princip převodu síly, tlaku a tíhy na deformaci. Využívají fyzikálních účinků síly. Časově proměnná síla vyvolá zrychlení a hmotnosti

Více

VŠB-TU Ostrava 2006/2007. Měřící a senzorová technika Návrh měřícího řetězce. Ondřej Winkler

VŠB-TU Ostrava 2006/2007. Měřící a senzorová technika Návrh měřícího řetězce. Ondřej Winkler VŠB-TU Ostrava 2006/2007 Měřící a senzorová technika Návrh měřícího řetězce Ondřej Winkler SN171 Zadání: Navrhněte měřicí řetězec měření deformace zajišťující zjištění modulu pružnosti kompozitního materiálu.

Více

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku Měřicí řetězec fyzikální veličina snímač měřicí zesilovač A/D převodník počítač převod fyz. veličiny na elektrickou (odpor, proud, napětí, kmitočet...) převod na napětí a přizpůsobení rozsahu převodníku

Více

ρ = měrný odpor, ρ [Ω m] l = délka vodiče

ρ = měrný odpor, ρ [Ω m] l = délka vodiče 7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem

Více

Téma: Měření Youngova modulu pružnosti. Křivka deformace.

Téma: Měření Youngova modulu pružnosti. Křivka deformace. PROTOKOL O LABORATORNÍ PRÁCI Z YZIKY Téma úlohy: Měření Youngova modulu pružnosti. Křivka deformace. Pracoval: Třída: Datum: Spolupracovali: Teplota: Tlak: Vlhkost vzduchu: Hodnocení: Téma: Měření Youngova

Více

Laboratorní cvičení L4 : Stanovení modulu pružnosti

Laboratorní cvičení L4 : Stanovení modulu pružnosti Laboratorní cvčení L4 Laboratorní cvčení L4 : Stanovení modulu pružnost 1. Příprava Modul pružnost statcký a dynamcký (kap. 3.4.2., str. 72, str.36, 4) Měření statckého modulu pružnost (kap. 5.11.1, str.97-915,

Více

Měřící a senzorová technika Návrh měření odporových tenzometrů

Měřící a senzorová technika Návrh měření odporových tenzometrů VŠBTU Ostrava 2006/2007 Měřící a senzorová technika Návrh měření odporových tenzometrů Ondřej Winkler SN171 Zadání: Odporové tenzometry staré zpracování 1. Seznámit se s konstrukcí a použitím tenzometrů

Více

Kovove a) Snimače prilozne (obr) dratkove (navinuty drat) foliove (kovova folie na podlozce) b) Snimace lepene dratkove (navinuty drat na podlozce)

Kovove a) Snimače prilozne (obr) dratkove (navinuty drat) foliove (kovova folie na podlozce) b) Snimace lepene dratkove (navinuty drat na podlozce) Kovove a) Snimače prilozne (obr) dratkove (navinuty drat) foliove (kovova folie na podlozce) b) Snimace lepene dratkove (navinuty drat na podlozce) foliove (kovova folie na podlozce) Ad a) Odporove dratky

Více

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická

Více

2. Měření odporu rezistoru a volt-ampérové charakteristiky žárovky

2. Měření odporu rezistoru a volt-ampérové charakteristiky žárovky Fyzikální praktikum 1 2. Měření odporu rezistoru a volt-ampérové charakteristiky žárovky Jméno: Václav GLOS Datum: 5.3.2012 Obor: Astrofyzika Ročník: 1 Laboratorní podmínky: Teplota: 22,6 C Tlak: 1000,0

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 3. Vzduchová dráha - ZZE, srážky, impuls síly Autor David Horák Datum měření 21. 11. 2011 Kruh 1 Skupina 7 Klasifikace 1. PRACOVNÍ ÚKOLY: 1) Elastické srážky:

Více

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008

Více

Manuální, technická a elektrozručnost

Manuální, technická a elektrozručnost Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních

Více

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 1. Definice elektrického proudu 2. Jednoduchý elektrický obvod a) Ohmův zákon pro část elektrického obvodu b) Elektrický spotřebič

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření hladiny 2 P-10b-hl ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Hladinoměry Principy, vlastnosti, použití Jedním ze základních

Více

Fyzikální praktikum I

Fyzikální praktikum I Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum I Úloha č. II Název úlohy: Studium harmonických kmitů mechanického oscilátoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.3.2015 Datum odevzdání:...

Více

Vodivé plasty zajímavý materiál pro laboratorní práci

Vodivé plasty zajímavý materiál pro laboratorní práci Vodivé plasty zajímavý materiál pro laboratorní práci JOSEF HUBEŇÁK Přírodovědecká fakulta, Univerzita Hradec Králové, Hradec Králové Abstrakt Plasty jsou výbornými izolanty a zdroji elektrostatických

Více

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul

Více

6. MĚŘENÍ SÍLY A KROUTICÍHO MOMENTU

6. MĚŘENÍ SÍLY A KROUTICÍHO MOMENTU 6. MĚŘENÍ SÍLY A KROUTICÍHO MOMENTU 6.1. Úkol měření 6.1.1. Měření krouticího momentu a úhlu natočení a) Změřte krouticí moment M k a úhel natočení ocelové tyče kruhového průřezu (ČSN 10340). Měření proveďte

Více

Základní pojmy. p= [Pa, N, m S. Definice tlaku: Síla působící kolmo na jednotku plochy. diference. tlaková. Přetlak. atmosférický tlak. Podtlak.

Základní pojmy. p= [Pa, N, m S. Definice tlaku: Síla působící kolmo na jednotku plochy. diference. tlaková. Přetlak. atmosférický tlak. Podtlak. Základní pojmy Definice tlaku: Síla působící kolmo na jednotku plochy F p= [Pa, N, m S 2 ] p Přetlak tlaková diference atmosférický tlak absolutní tlak Podtlak absolutní nula t 2 ozdělení tlakoměrů Podle

Více

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem MěřENÍ MODULU PRUžNOSTI V TAHU TEREZA ZÁBOJNÍKOVÁ 1. Teorie 1.1. Měření modulu pružnosti z protažení drátu. Pokud na drát působí síla ve směru jeho délky, drát se prodlouží. Je li tato jeho deformace pružná

Více

Laboratorní úloha č. 4 - Kmity II

Laboratorní úloha č. 4 - Kmity II Laboratorní úloha č. 4 - Kmity II Úkoly měření: 1. Seznámení s měřením na přenosném dataloggeru LabQuest 2 základní specifikace přístroje, způsob zapojení přístroje, záznam dat a práce se senzory, vyhodnocování

Více

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer Laboratorní úloha č. 3 Spřažená kyvadla Max Šauer 17. prosince 2003 Obsah 1 Úkol měření 2 2 Seznam použitých přístrojů a pomůcek 2 3 Výsledky měření 2 3.1 Stanovení tuhosti vazbové pružiny................

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

Určení hmotnosti zeměkoule vychází ze základního Newtonova vztahu (1) mezi gravitačním zrychlením a g a hmotností M Z gravitačního centra (Země).

Určení hmotnosti zeměkoule vychází ze základního Newtonova vztahu (1) mezi gravitačním zrychlením a g a hmotností M Z gravitačního centra (Země). Projekt: Cíl projektu: Určení hmotnosti Země Místo konání: Černá věž - Klatovy, Datum: 28.10.2008, 12.15-13.00 hod. Motto: Krása středoškolské fyziky je především v její hravosti, stejně tak jako je krása

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5.

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A:Měření

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Základními vlastnosti pevných látek jsou KRYSTALICKÉ A AMORFNÍ LÁTKY Jak vzniká pevná látka z kapaliny Krystalické látky se vyznačují uspořádáním Dělíme je na 2 základní

Více

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM 9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM Úkoly měření: A) Měření převodní charakteristiky snímače typu S 1. Změřte převodní charakteristiku deformačního snímače síly při zatížení v rozsahu 0 10 kg v zapojení

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Úvod: 2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Termočlánky patří mezi nejpoužívanější senzory teploty v průmyslu. Fungují v širokém rozsahu teplot od kryogenních (- 200 C) po velmi vysoké (2500 C). Jsou velmi robustní

Více

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY 2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Otázky k úloze (domácí příprava): Jaká je teplota kompenzačního spoje ( studeného konce ), na kterou koriguje kompenzační krabice? Dá se to zjistit jednoduchým měřením? Čemu

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9.

A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9. A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A: Cejchování

Více

MĚŘENÍ TEPLOTY TERMOČLÁNKY

MĚŘENÍ TEPLOTY TERMOČLÁNKY MĚŘENÍ TEPLOTY TERMOČLÁNKY Úkoly měření: 1. Změřte napětí termočlánku a) přímo pomocí ručního multimetru a stolního multimetru U3401A. Při výpočtu teploty uvažte skutečnou teplotu srovnávacího spoje termočlánku,

Více

6. MĚŘENÍ SÍLY A KROUTICÍHO MOMENTU

6. MĚŘENÍ SÍLY A KROUTICÍHO MOMENTU 6. MĚŘENÍ SÍLY A ROUTICÍHO MOMENTU 6.1. Úkol měření 6.1.1. Měření krouticího momentu a úhlu natočení a) Změřte krouticí moment M k a úhel natočení ocelové tyče kruhového průřezu (ČSN 10340). Měření proveďte

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě nízkofrekvenční nevýkonový tranzistor KC 639. Mezní hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě nízkofrekvenční nevýkonový tranzistor KC 639. Mezní hodnoty jsou uvedeny v tabulce: RIEDL 3.EB 10 1/11 1.ZADÁNÍ a) Změřte statické hybridní charakteristiky tranzistoru KC 639 v zapojení se společným emitorem (při měření nesmí dojít k překročení mezních hodnot). 1) Výstupní charakteristiky

Více

4 Viskoelasticita polymerů II - creep

4 Viskoelasticita polymerů II - creep 4 Viskoelasticita polymerů II - creep Teorie Ke zkoumání mechanických vlastností viskoelastických polymerních látek používáme dvě nestacionární metody: relaxační test (podrobně popsaný v úloze Viskoelasticita

Více

Předpjatý beton Přednáška 4

Předpjatý beton Přednáška 4 Předpjatý beton Přednáška 4 Obsah Účinky předpětí na betonové prvky a konstrukce Staticky neurčité účinky předpětí Konkordantní kabel Lineární transformace kabelu Návrh předpětí metodou vyrovnání zatížení

Více

Měření na nízkofrekvenčním zesilovači. Schéma zapojení:

Měření na nízkofrekvenčním zesilovači. Schéma zapojení: Číslo úlohy: Název úlohy: Jméno a příjmení: Třída/Skupina: / Měřeno dne: Měření na nízkofrekvenčním zesilovači Spolupracovali ve skupině Zadání úlohy: Na zadaném Nf zesilovači proveďte následující měření

Více

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení)

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A8B268P A:Měření odporových teploměrů v ultratermostatu

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Speciální praktikum z abc

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Speciální praktikum z abc Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Speciální praktikum z abc Zpracoval: Jan Novák Naměřeno: 1. ledna 2001 Obor: F Ročník: IV Semestr: IX Testováno:

Více

= K, kde K je tzv. gauge factor - deformační citlivost (hlavní parametr tenzometru) l r

= K, kde K je tzv. gauge factor - deformační citlivost (hlavní parametr tenzometru) l r MĚŘENÍ SÍLY - TENZOMETRY Pro odporový tenzometr platí vztah mezi relativní změnou odporu a poměrným prodloužením nebo zkrácením: R = K, kde K je tzv. gauge factor - deformační citlivost (hlavní parametr

Více

Zkoušení ztvrdlého betonu Objemová hmotnost ztvrdlého betonu

Zkoušení ztvrdlého betonu Objemová hmotnost ztvrdlého betonu Objemová hmotnost ztvrdlého betonu ČSN EN 12390-7 Podstata zkoušky Stanoví se objem a hmotnost zkušebního tělesa ze ztvrdlého betonu a vypočítá se objemová hmotnost. Metoda stanovuje objemovou hmotnost

Více

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Úkoly měření: 1. Měření na digitálním osciloskopu a přenosném dataloggeru LabQuest 2. 2. Ověřte Faradayovy zákony pomocí pádu magnetu skrz trubici

Více

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4

MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4 MĚŘENÍ Laboratorní cvičení z měření Měření oteplovací charakteristiky, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu: VY_32_INOVACE_

Více

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY . MĚŘENÍ TEPLOTY TEMOČLÁNKY Úkol měření Ověření funkce dvoudrátového převodníku XT pro měření teploty termoelektrickými články (termočlánky) a kompenzace studeného konce polovodičovým přechodem PN.. Ověřte

Více

Pracoviště 1. Vliv vnitřního odporu voltmetru na výstupní napětí můstku. Přístroje: Úkol měření: Schéma zapojení:

Pracoviště 1. Vliv vnitřního odporu voltmetru na výstupní napětí můstku. Přístroje: Úkol měření: Schéma zapojení: Přístroje: Pracoviště 1. Vliv vnitřního odporu voltmetru na výstupní napětí můstku zdroj stejnosměrného napětí 24 V odporová dekáda 2 ks voltmetr 5kΩ/ V, rozsah 1,2 V voltmetr 1kΩ/ V, rozsah 1,2 V voltmetr

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: X Název: Hallův jev Pracoval: Pavel Brožek stud. skup. 12 dne 19.12.2008 Odevzdal dne:

Více

7. Základní formulace lineární PP

7. Základní formulace lineární PP p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje

Více

Senzory tlaku. df ds. p = F.. síla [N] S.. plocha [m 3 ] 1 atm = 100 kpa. - definice tlaku: 2 způsoby měření tlaku: změna rozměrů.

Senzory tlaku. df ds. p = F.. síla [N] S.. plocha [m 3 ] 1 atm = 100 kpa. - definice tlaku: 2 způsoby měření tlaku: změna rozměrů. Senzory tlaku - definice tlaku: 2 způsoby měření tlaku: p = df ds F.. síla [N] S.. plocha [m 3 ] 1 atm = 100 kpa p F pružný člen změna rozměrů přímý (intrinsický) senzor senzor mechanického napětí (v prostředích,

Více

BEZSTYKOVÁ KOLEJ NA MOSTECH

BEZSTYKOVÁ KOLEJ NA MOSTECH Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku

( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku 1 ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku Úkol č.1: Získejte mechanickou hysterezní křivku pro dráty různé tloušťky

Více

Výhody/Použití. Neomezená mez únavy při ± 100% jmenovitého zatížení. Nanejvýš odolný vůči příčným silám a ohybovým momentům

Výhody/Použití. Neomezená mez únavy při ± 100% jmenovitého zatížení. Nanejvýš odolný vůči příčným silám a ohybovým momentům Datový list Snímač síly Série RF-I (160 kn 4000 kn) Výhody/Použití Třída přesnosti 0,05 Pro statické i dynamické síly v tahu a tlaku Neomezená mez únavy při ± 100% jmenovitého zatížení Obzvláště odolný

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Měření modulu pružnosti v tahu. stud. skup.

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Měření modulu pružnosti v tahu. stud. skup. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. IX Název: Měření modulu pružnosti v tahu Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 13.3.2013 Odevzdal

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Měření permitivity a permeability vakua

Měření permitivity a permeability vakua Měření permitivity a permeability vakua Online: http://www.sclpx.eu/lab3r.php?exp=2 Permitivita i permeabilita vakua patří svojí hodnotou měřenou v základních jednotkách SI mezi poměrně malé fyzikální

Více

VÝROBA TENZOMETRŮ A SNÍMAČŮ

VÝROBA TENZOMETRŮ A SNÍMAČŮ VÝROBA TENZOMETRŮ A SNÍMAČŮ Vyrábíme snímače osazené polovodičovými nebo kovovými tenzometry pro měření sil, hmotnosti, tlaku, kroutícího momentu, zrychlení. Dodáváme polovodičové křemíkové tenzometry,

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2012/2013 8.6 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření

Více

Měřící a senzorová technika

Měřící a senzorová technika VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ Měřící a senzorová technika Semestrální projekt Vypracovali: Petr Osadník Akademický rok: 2006/2007 Semestr: zimní Původní zadání úlohy

Více

Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci. Zde budou normové hodnoty vypsány do tabulky!!!

Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci. Zde budou normové hodnoty vypsány do tabulky!!! Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci jméno: stud. skupina: příjmení: pořadové číslo: datum: Materiály: Lepené lamelové dřevo třídy GL 36h : norma ČSN EN 1194 (najít si hodnotu modulu

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku Autor: Michal Šofer Verze 0 Ostrava 20 Zadání: Proveďte

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače

Více

Zkoušení kompozitních materiálů

Zkoušení kompozitních materiálů Zkoušení kompozitních materiálů Ivan Jeřábek Odbor letadel FS ČVUT v Praze 1 Zkoušen ení kompozitních materiálů Zkoušky materiálových charakteristik Zkouška kompozitních konstrukcí 2 Zkoušen ení kompozitních

Více

kde U výst je napětí na jezdci potenciometru, R P2 je odpor jezdce potenciometru, R P celkový odpor potenciometru a U je napětí přivedené

kde U výst je napětí na jezdci potenciometru, R P2 je odpor jezdce potenciometru, R P celkový odpor potenciometru a U je napětí přivedené EDL 3.EB 2 /7.ZADÁÍ a) Změřte průběh výstupního napětí potenciometru v závislosti na poloze jezdce při různém zatížení, které je dáno různými hodnotami poměru / Z, například 0; 0,5; ; 5; 0 b) Změřenou

Více

Kapacitní senzory. ε r2. Změna kapacity důsledkem změny X. b) c) ε r1. a) aktivní plochy elektrod. b)vzdálenosti elektrod

Kapacitní senzory. ε r2. Změna kapacity důsledkem změny X. b) c) ε r1. a) aktivní plochy elektrod. b)vzdálenosti elektrod Kapacitní senzory a) b) c) ε r1 Změna kapacity důsledkem změny a) aktivní plochy elektrod d) ε r2 ε r1 e) ε r2 b)vzdálenosti elektrod c)plochy dvou dielektrik s různou permitivitou d) tloušťky dvou dielektrik

Více

6 ZKOUŠENÍ STAVEBNÍ OCELI

6 ZKOUŠENÍ STAVEBNÍ OCELI 6 ZKOUŠENÍ TAVEBNÍ OCELI 6.1 URČENÍ DRUHU BETONÁŘKÉ VÝZTUŽE DLE POVRCHOVÝCH ÚPRAV 6.1.1 Podstata zkoušky Různé typy betonářské výztuže se liší nejen povrchovou úpravou, ale i různými pevnostmi a charakteristickými

Více

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín

Více

4. Zpracování signálu ze snímačů

4. Zpracování signálu ze snímačů 4. Zpracování signálu ze snímačů Snímače technologických veličin, pasivní i aktivní, zpravidla potřebují převodník, který transformuje jejich výstupní signál na vhodnější formu pro další zpracování. Tak

Více

Praktikum I úloha IX. Měření modulu pružnosti v tahu

Praktikum I úloha IX. Měření modulu pružnosti v tahu Praktikum I úloha IX. Měření modulu pružnosti v tahu Štěpán Roučka úkol 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

Laboratorní úloha č. 2 - Vnitřní odpor zdroje

Laboratorní úloha č. 2 - Vnitřní odpor zdroje Laboratorní úloha č. 2 - Vnitřní odpor zdroje Úkoly měření: 1. Sestrojte obvod pro určení vnitřního odporu zdroje. 2. Určete elektromotorické napětí zdroje a hodnotu vnitřního odporu R i zdroje včetně

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření průtoku 17.SPEC-t.4 ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další pokračování o principech měření Průtok je určen střední

Více

PŮDORYSNĚ ZAKŘIVENÁ KONSTRUKCE PODEPŘENÁ OBLOUKEM

PŮDORYSNĚ ZAKŘIVENÁ KONSTRUKCE PODEPŘENÁ OBLOUKEM PŮDORYSNĚ ZAKŘIVENÁ KONSTRUKCE PODEPŘENÁ OBLOUKEM 1. Úvod Tvorba fyzikálních modelů, tj. modelů skutečných konstrukcí v určeném měřítku, navazuje na práci dalších řešitelských týmů z Fakulty stavební Vysokého

Více

7. MĚŘENÍ LINEÁRNÍHO POSUVU

7. MĚŘENÍ LINEÁRNÍHO POSUVU 7. MĚŘENÍ LINEÁRNÍHO POSUVU Seznamte se s fyzikálními principy a funkcí následujících senzorů polohy: o odporový o optický inkrementální o diferenciální indukční s pohyblivým jádrem LVDT 1. Odporový a

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

Automatizační technika Měření č. 6- Analogové snímače

Automatizační technika Měření č. 6- Analogové snímače Automatizační technika Měření č. - Analogové snímače Datum:.. Vypracoval: Los Jaroslav Skupina: SB 7 Analogové snímače Zadání: 1. Seznamte se s technickými parametry indukčních snímačů INPOS. Změřte statické

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak)

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Autor: Doc. Ing. Josef Formánek, Ph.D. Tvorba grafické vizualizace principu

Více

Měření vlastností lineárních stabilizátorů. Návod k přípravku pro laboratorní cvičení v předmětu EOS.

Měření vlastností lineárních stabilizátorů. Návod k přípravku pro laboratorní cvičení v předmětu EOS. Měření vlastností lineárních stabilizátorů Návod k přípravku pro laboratorní cvičení v předmětu EOS. Cílem měření je seznámit se s funkcí a základními vlastnostmi jednoduchých lineárních stabilizátorů

Více