KNIHOVNIČKA FYZIKÁLNÍ OLYMPIÁDY č ročník FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE Úlohy pro kategorie E, F, G.

Rozměr: px
Začít zobrazení ze stránky:

Download "KNIHOVNIČKA FYZIKÁLNÍ OLYMPIÁDY č. 83. 53. ročník FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE 2011-2012. Úlohy pro kategorie E, F, G."

Transkript

1 KNIHOVNIČKA FYZIKÁLNÍ OLYMPIÁDY č ročník FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE Úlohy pro kategorie E, F, G. Hradec Králové 2011

2 Fyzikální olympiáda - leták pro kategorie E, F 53. ročník soutěže ve školním roce 2011/2012 Od školního roku 1959/60 probíhala v Československu soutěž Fyzikální olympiáda (FO), kterou dnes organizuje Ministerstvo školství, mládeže a tělovýchovy České republiky společně s Jednotou českých matematiků a fyziků. Od školního roku 1963/64 byla soutěž rozšířena o kategorii, určenou žákům základních devítiletých škol. V letošním roce je kategorie E určena žákům 9. tříd, kategorie F určena žákům 8. ročníků základních škol a jim věkově odpovídajícím žákům tříd nižšího gymnázia, tedy osmiletého a šestiletého. Soutěž je dobrovolná a probíhá na území České republiky jednotně. V prvním kole mají soutěžící za úkol vyřešit sedm úloh. Řešení odevzdají učiteli fyziky v těchto termínech: úlohu první až třetí zpravidla do konce listopadu 2011, úlohu čtvrtou až sedmou nejpozději do 15. března 2012, kdy končí první kolo soutěže. Řešení úloh učitel fyziky opraví a klasifikuje podle dispozic ÚKFO. Pro každou úlohu je stanoveno 10 bodů, jejichž rozložení je uvedeno v instruktážním řešení, které dostanou učitelé k dispozici. Plný počet bodů dostává řešitel, jestliže je úloha či její část řešena zcela bez chyb, nebo se v řešení vyskytují pouze drobné formální nedostatky. Jestliže řešení úlohy či její části v podstatě vystihuje úkol, ale má větší nedostatky po odborné stránce či vyskytují-li se v něm závažné formální nedostatky, je počet bodů snížen. Řešení je nevyhovující a přidělený počet bodů nízký nebo nulový, jestliže nedostatky odborného rázu jsou závažné, nebo je řešení z větší části neúplné. Řešení je také nevyhovující, chybí-li slovní výklad, nebo je-li neúplný, takže z něho nelze vyvodit myšlenkový postup podaného řešení. Příznivé hodnocení tedy předpokládá, že protokol o řešení obsahuje fyzikální vysvětlení, z něhož jasně vyplývá myšlenkový postup při řešení daného problému. K metodice řešení fyzikálních úloh připravila ÚKFO materiál pro učitele fyziky s mnoha konkrétními příklady. Návodné úlohy pro soutěž již několikrát vyšly v časopise Školská fyzika, pokusíme se je letos uveřejnit i na webových stránkách FO. Řešení úloh prvního kola opraví učitel fyziky společně s referentem FO na škole. Po ukončení prvního kola navrhne referent FO na škole úspěšné řešitele k postupu do druhého (okresního) kola a odešle opravené úlohy všech řešitelů společně s návrhem postupujících příslušné okresní komisi fyzikální olympiády (OKFO). O zařazení řešitele do druhého kola soutěže rozhodne OKFO po kontrole opravených úloh a sjednocení klasifikace. Vzhledem k organizaci soutěže je vhodné, aby si OKFO dala předložit první část opravených řešení již v prosinci. Počet účastníků může OKFO omezit dle dosaženého bodového hodnocení. Za úspěšného řešitele prvního kola je považován soutěžící, který byl hodnocen v pěti úlohách alespoň 5 body za každou úlohu, přičemž řešil experimentální úlohu (třeba i neúspěšně). Pozvání do druhého kola soutěže dostane pozvaný úspěšný řešitel FO od příslušné OKFO prostřednictvím školy. Druhé kolo se uskuteční v místě určeném OKFO v termínu, vyhlášeném ÚKFO, a to v celé republice v touž dobu ve středu 30. března Ve druhém kole je úkolem řešitele vyřešit čtyři teoretické úlohy, které zajišťuje jednotně pro celou republiku ÚKFO. Úspěšným řešitelem druhého kola, kde se také boduje, je účastník, který vyřešil alespoň dvě úlohy s bodovým hodnocením alespoň 5 bodů za každou a dosáhl přitom nejmenšího celkového počtu 14 bodů. OKFO potom opraví řešení úloh (nejlépe ještě v den soutěže) a sestaví pořadí úspěšných řešitelů. Všichni úspěšní řešitelé pak dostanou pochvalné uznání, nejlepší řešitelé budou odměněni podle směrnic MŠMT. Leták pro kategorie E, F, G připravila komise pro výběr úloh při ÚKFO České republiky pod vedením I. Volfa, za spolupráce J. Thomase, M. Randy, L. Richterka a M. Jarešové. MAFY Hradec Králové

3 ISBN dubna 2012 budou uspořádána třetí (oblastní) kola soutěže v kategorii E, a to ve vybraných místech. Do třetího kola jsou vybráni nejlepší účastníci druhého kola podle organizačního řádu Fyzikální olympiády; o jejich zařazení rozhoduje pořadatel třetího kola. Žáci jsou pozváni prostřednictvím školy. Všichni úspěšní řešitelé třetího kola obdrží pochvalná uznání a nejlepší soutěžící budou odměněni. Po ukončení každého kola soutěže jsou soutěžící seznámeni se správným řešením úloh, jež jsou zveřejněna ÚKFO. Doporučujeme, aby komise FO zajistily opravu úloh vyšších škol co nejdříve a velmi brzy informovaly účastníky soutěže i jejich školy a učitele fyziky o dosažených výsledcích. Doporučujeme také, aby učitelé fyziky, popř. referenti FO na školách provedli společně s řešiteli analýzu podaných řešení v prvním a druhém kole. Soutěžící i jejich učitele fyziky upozorňujeme, že každá KKFO zřizuje svou webovskou stránku, kde mohou najít další informace i výsledky soutěže. Texty úloh I. kola soutěže lze nalézt i na www stránkách, po ukončení kola lze nalézt i řešení úloh, a to na adrese: Tam je také seznam adres KKFO, odkaz na jejich webovské stránky. Naše adresa: ivo.volf@uhk.cz. Pokyny pro soutěžící Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru: Jméno a příjmení: Kategorie E, F: Třída: Školní rok: Škola: I. kolo: Vyučující fyziky: Posudek: Okres: Posuzovali: Úloha č.: Následuje stručný záznam textu úlohy a vysvětlení použitých znaků pro označení veličin. Zapište podrobný protokol o řešení úlohy, doplněný o příslušné obrázky a náčrtky. Nezapomeňte, že z protokolu musí být jasný myšlenkový postup při řešení úlohy. Na každý další list napište své jméno, příjmení, školu a číslo řešené úlohy, stránku protokolu o řešení. Texty úloh neopisujte, vysvětlete však vámi použité označení a udělejte stručný zápis a legendu. Používejte náčrtky. Řešení úloh pište čitelně a úhledně na listy formátu A4. Každou úlohu vypracujte na nový list papíru, pomocné obrázky nebo náčrtky schémat dělejte tužkou nebo vhodným fixem. Řešení úloh doprovázejte vždy takovým slovním výkladem, aby každý, kdo si vaše řešení přečte, porozuměl vašemu postupu řešení. Připomínáme ještě jednou, že řešení úlohy bez výkladu je hodnoceno jako nevyhovující. K označení veličin používejte obvyklé značky, které užíváte ve výuce fyziky. Naučte se, že podat dobrou zprávu o řešení problému je stejně tak důležité jako jeho vyřešení. Bude se vám to hodit v dalším studiu na střední škole. Úlohy řešte pokud možno nejprve obecně, potom proveďte číselné řešení. Nezapomínejte, že fyzikální veličiny jsou vždy doprovázeny jednotkami, že ve fyzice pracujeme často s čísly, která neznáme přesně, a výsledek je třeba zaokrouhlovat s ohledem na přijatelný počet platných míst daných veličin. U zlomků pište vodorovnou zlomkovou čáru. Při řešení úloh se opírejte především o učebnice fyziky. Váš učitel fyziky vám doporučí i jiné vhodné studijní pomůcky. K úspěšnému číselnému výpočtu používejte kalkulátory; výsledek však nezapomeňte zaokrouhlit na rozumný počet platných míst. Naučte se proto také odhadovat výsledek, což vám pomůže při kontrole vašich výpočtů. Kategorie E fyzikální olympiády je určena pro žáky 9. ročníků základních škol, čtvrtých ročníků osmiletých gymnázií a druhých ročníků šestiletých gymnázií, kategorie F fyzikální olympiády je určena žákům ročníků o rok nižších (8. ročníky ZŠ, 3. ročníky 3

4 osmiletých a 1. ročníky šestiletých gymnázií). Protože existuje příliš velká různorodost v učebních programech podle schválených vyučovacích programů, rozhodl ÚKFO při svém zasedání před několika lety zadávat pro tyto dvě kategorie společně nejméně 15 úloh, z nichž učitel fyziky vybere a vyznačí sedm úloh pro každou kategorii podle učiva, které bude ve škole probráno a procvičeno do konce března. Pro vyšší kola soutěže (okresní, oblastní) je nutné stanovit některá závazná témata. Kat. F: Mechanika (pohyby, síly, práce, výkon, energie) Hydromechanika (statika a dynamika kapalin, aerostatika) Termika (výměna tepla, teplo a práce, změny skupenství) Optika (jen paprsková optika - geometrická řešení) Kat. E: K výše uvedeným závazným tématům připojíme: Elektřina (stejnosměrný proud, obvody, účinky proudu) Souběžně s fyzikální olympiádou jsme zavedli od školního roku 1986/87 novou kategorii FO - ARCHIMÉDIÁDU - o níž informujeme ve druhé části tohoto letáku a jež je určena žákům 7. ročníků základních škol a 2. ročníků osmiletých gymnázií. Přejeme vám, abyste při řešení úloh fyzikální olympiády strávili pěkné chvíle, aby vás úlohy zaujaly, a tím aby se prohloubil váš dobrý vztah k fyzice. Fyzika je teoretickým základem techniky, která je pro současnou společnost zcela nepostradatelná. Fyzika je však i součástí lidské kultury, a proto by se měl s jejími výsledky seznámit každý člověk a najít k ní příznivý vztah. Proto žádáme vyučující fyziky, aby se v 53. ročníku FO tato soutěž rozšířila na všechny základní školy v České republice. A ještě něco: Předloni byly poprvé zařazeny úlohy, k jejichž řešení byl zapotřebí počítač a Internet. Stejně tomu bude letos. V Hradci Králové, červen 2011 ÚKFO ČR Domácí kolo , okresní kolo , krajské kolo E Chceme vás upozornit na další aktivity pro vás, žáky základních škol a nižších gymnázií: ASTRONOMICKÁ OLYMPIÁDA PRO ŽÁKY ZÁKLADNÍCH ŠKOL, kterou pořádá Astronomická společnost České republiky. Prosíme učitele fyziky, aby seznámili s touto soutěží zájemce z řad žáků základních škol i víceletých gymnázií. Podrobnosti jsou k dispozici na webové stránce Znáš časopis Rozhledy matematicko-fyzikální? Časopis se věnuje popularizaci matematiky, fyziky a astronomie, měl by být ve školní knihovně na každé střední i základní škole. Mnoho obsahu je věnováno práci se žáky, kteří mají prohloubený zájem o tyto předměty. Tento časopis po dva roky nevycházel, ale redakční rada připravila v lednu 2005 jeho renesanci. Informace na adrese: Jednota českých matematiků a fyziků, sekretariát, Matematický ústav AV ČR, Žitná 25, Praha 1. Předplatné časopisu zajistíte na adrese: firma MYRIS TRADE, s.r.o., P.O.BOX 2, V Štíhlách 1311, Praha 4, tel , myris@myris.cz. Zajistěte si alespoň jeden výtisk pro školu. 4

5 Úlohy pro 53. ročník fyzikální olympiády, kategorie E, F Z následujících úloh vyřešte ty, které vám doporučí váš vyučující fyziky. To samozřejmě neznamená, že se nemůžete pustit do řešení všech úloh. V organizačním řádu FO je určeno, že v 1. kole dostává soutěžící nabídku sedmi úloh, z toho jedna úloha je experimentální. Řešení alespoň pěti úloh musí odevzdat a měly by být hodnoceny aspoň 5 body z deseti možných. FO53EF1: Stavební materiál Palety s pórobetonovými tvárnicemi se z automobilu, jehož ložná plocha je ve výšce 1,6 m, zvedají na stavbě domu do výše 4. nadzemního podlaží; zvýšené přízemí má výšku podlahy 2,4 m nad terénem, změna výšky podlah mezi dvěma sousedními podlažími je 2,8 m. Tvárnice o rozměrech 300 mm x 249 mm x 599 mm mají hustotu 650 kg/m 3, prodávají se na dřevěných paletách o hmotnosti 65 kg, na každé je umístěno celkem 30 tvárnic a) Jak velkou práci musí vykonat jeřáb, jestliže zvedá paletu s tvárnicemi z automobilu do 4. podlaží? b) Jestliže účinnost, tj. poměr užitečné a celkové práce je u jeřábu 70%, jak velkou práci musí vykonat elektromotor jeřábu? c) Po upevnění palety lanky na rameno jeřábu nastane zvedání, které trvá 3,0 minuty. Jaký nejmenší výkon musí mít motor jeřábu? d) Jestliže ponese stavební dělník v krosně na zádech dvě tvárnice z přízemí a do 4. podlaží se dostane za 4,0 min, jaký je výkon dělníka? FO53EF2: Stavíme zeď z pórobetonu Při stavbě prodejny je třeba nejprve postavit zadní stěnu skladu o délce 24 m a o výšce 6,0 m, ve které nebudou ani dveře ani okna. Pórobetonové tvárnice mají rozměr 300 mm x 249 mm x 599 mm; hustota tvárnic je 650 kg/m 3. Tvárnice se kladou na betonový základ a vytvoří se stěna o šířce 30 cm. Cena jedné tvárnice je podle ceníku asi 140 Kč. a) Kolik tvárnic je třeba na postavení takové zdi? Stačí jeden kamión z prvního příkladu? Kolik korun budou stát tvárnice na tuto stěnu? b) Jaká je hmotnost uvedených tvárnic? Jakou silou působí na betonový základ? Jaký tlak tyto tvárnice vytváří na betonový základ? c) Kdyby stejná zeď byla vytvořena z cihel spojovaných klasickou maltou, byly by síla působící na základ a tlak na úrovni základu stejné nebo různé? Hustota cihel se pohybuje mezi 1400 až 2000 kg/m 3, pro výpočet berte střední hodnotu, a hustota malty spojující cihly je asi 1700 kg/m 3. d) Jak se dá vypočítat práce, kterou je třeba vykonat při postavení této stěny? FO53EF3: Pokusy na stavbě Žáček - fyzikáček se dostavil za tatínkem na stavbu, kde našel několik různých předmětů a vanu tvaru dutého kvádru s vodou. Jeho nalezené předměty byly: půl cihly o hustotě 1700 kg/m 3, půlka pórobetonové tvárnice o rozměrech 3,0 dm x 2,5 dm x 3,0 dm o hustotě 650 kg/m 3, půlka stejné tvárnice, určené k vnitřnímu zdění, o hustotě 550 kg/m 3, špalík tvaru kvádru o rozměrech 10 cm x 20 cm x 25 cm ze smrkového dřeva o hustotě 450 kg/m 3, a plechový kanystr tvaru kvádru o rozměrech dna 20 cm x 25 cm, objemu přibližně 15 litrů a o hmotnosti 0,50 kg, v němž je neprodyšně uzavřen zbytek oleje o hmotnosti 2,5 kg. Žáček začal klást postupně jednotlivé předměty na povrch vody. a) Co mohl pozorovat žáček - fyzikáček poté, co položil předměty na povrch vody? b) Dá se stanovit, do jaké hloubky se ponořily jednotlivé předměty po uvolnění ruky? Nakresli náčrty a snaž se vypočítat některý údaj, který by charakterizoval chování předmětů. c) Co se stalo s hladinou vody, když umístil všechny předměty na vodní hladinu? d) Náhle žáčka tatínek odvolal a předměty zůstaly ve vodě. Žáček se vrátil zpátky až druhý den ráno. Popište, co mohl žáček - fyzikáček vidět, když se nikdo jiný předmětů nedotýkal? 5

6 FO53EF4: Cesty po Austrálii Několik bohatých přátel se dohodlo, že uspořádají automobilový výlet po dálnici v jižní Austrálii, z okraje Perthu až na hranici města Adelaide. Pokusili se celou cestu naplánovat. Protože je lepší se opřít o mapu, najděte si na internetu příslušný článek volné encyklopedie Wikipedia (viz obrázek). a) Zjistěte si čísla dálkových silnic a na stránkách si odměřte vzdálenosti celé trasy. b) Najděte si příslušné dálkové trasy na seznamu Highways a zkontrolujte si své měření. c) Kdybyste jeli po celé trase mírnou rychlostí 90 km/h, jak dlouho by cesta trvala? d) Jak dlouho byste jeli stejnou rychlostí až do Brisbane, pokud pojedete po dálkových silnicích nejkratší cestou? e) Na silnici najdete zajímavou dopravní značku, kterou v České republice neuvidíte? Co tato značka vypovídá? FO53EF5: Rychlíková souprava Rychlíková souprava stojí u nádražního nástupiště a právě se dala do pohybu. Zrychluje se po dobu 40 s, až dosáhne rychlosti 72 km/h, touto stálou rychlostí jede po dobu 1,5 min a potom začne znova zrychlovat tak, že za dalších 50 s zvýší svou rychlost na 108 km/h. Touto rychlostí pokračuje rychlík po dobu 3,5 min a nakonec začne mírně brzdit, takže za dobu 2,5 min se zastaví u nástupiště následující železniční stanice. Rozjíždění a zpomalování rychlíku budeme považovat za lineární změny v závislosti na čase. a) Jak dlouho souprava jede z první stanice do druhé, tj. od startu k zastavení? b) Nakresli si graf závislosti rychlosti pohybu rychlíku na čase, v(t). c) Urči dráhu, kterou urazí rychlík při rovnoměrných pohybech. d) Urči, jakou dráhu ujel rychlík při zrychlování a při zpomalování. e) Jaká je vzdálenost obou železničních stanic? Jaké průměrné rychlosti rychlík dosáhl? FO53EF6: Kudy cestoval Marco Polo? Jeden z největších italských cestovatelů středověku byl Marco Polo, který se vydal na svých cestách až do daleké Číny. Jeho cestu lze přibližně sledovat na následující mapě: 6

7 a) Najdi trasu, popsanou v přiložené mapce, na soudobých mapách a stanov délku cesty mezi jednotlivými popsanými místy. b) Představ si, že máš k dispozici malé letadlo, jež dosáhne cestovní rychlosti 360 km/h. Podle popisu cesty stanov, kde jsou vhodná letiště, a urči, jak dlouho by daná cesta trvala dnes. c) Přečti si nebo alespoň prohlédni české vydání cestopisu Marka Pola. d) Na podrobnější satelitové mapě na se pokus sledovat cestu Marca Pola po střední a východní Asii. FO53EF7: Voda v rychlovarné konvici Do rychlovarné konvice s příkonem 2000 W bylo nalito 0,5 l vody o měrné tepelné kapacitě c = 4200 J / (kg K) a teplotě 20 C. Voda se ohřála na teplotu 100 C. a) Vypočítej teplo, které bylo potřeba k ohřátí vody. b) Voda se ohřívala 110 s. Vypočítej výkon rychlovarné konvice a její účinnost. c) Při dalším ohřívání bylo do konvice nalito 1,5 l vody opět o teplotě 20 C. Voda se nyní ohřívala 280 s. Vypočítej účinnost rychlovarné konvice a porovnej výsledky v případech b) a c). Čím je způsoben rozdílný výsledek? FO53EF8: Vlak mezi stanicemi Jeden strojvůdce vyjíždí ze stanice Výchozí, po dobu 100 s se rychlost vlaku rovnoměrně zvětšuje a v okamžiku, kdy vlak dosáhne rychlosti 72 km/h, začne vlak rovnoměrně brzdit, až po době 100 s zastaví ve stanici Následující. Další den jede ve vlaku po stejné trase ze stanice Výchozí druhý 7

8 strojvůdce, který rychlosti 72 km/h dosáhne již po době 50 s, chvíli touto rychlostí jede rovnoměrně a pak po stejnou dobu 50 s rovnoměrně brzdí, až zastaví ve stanici následující. a) Nakresli graf změn rychlosti vlaku v závislosti na čase pro vlak řízený prvním strojvůdcem. b) Bez výpočtu, jen prostou úvahou urči, který strojvůdce projel vzdálenost mezi stanicemi dříve. c) Nakresli do téhož grafu záznam změn rychlosti vlaku řízeného druhým strojvůdcem a ověř svou úvahu graficky. d) Ověř svou úvahu v části b) úlohy výpočtem. FO53EF9: Čištění bazénu a déšť Z hygienických důvodů bylo třeba vyčistit plavecký bazén, a proto byla vypuštěna voda. Bazén má rozměry 20 m x 50 m a vodorovné dno. Náhle se spustil prudký liják, který přinesl srážky 120 litrů ma čtverečný metr plochy bazénu. Pak se liják změnil na vytrvalý déšť, který způsobil srážky dalších 80 litrů na každý metr čtverečný. a) Do jaké výšky dosáhla celkem hladina dešťové vody v bazénu? b) Kolik vody napršelo do bazénu (urči objem i hmotnost vody) c) Ve skutečnosti nebývá dno bazénu vodorovné, ale mírně klopené, takže představuje změnu 10 cm na 5 metrů ve směru délky bazénu. Pomocí logické úvahy urči, zda po lijáku či po vytrvalém dešti bylo alespoň zaplněno celé skloněné dno bazénu. FO53EF10: Přeprava dubových kmenů Na přívěsu nákladního tahače je naloženo celkem 14 kmenů, každý o délce 6,0 m a průměru 45 cm na užším a 55 cm na širším konci, které je třeba dopravit na pilu. Hustota bukového dřeva je 720 kg/m 3. Hmotnost prázdného tahače je 6,0 t. a) Vymysli jednoduchý způsob, jak určit nejprve objem každého kmenu, nahradíme-li skutečný tvar válcem. Objem válce určíme V = π r 2. l, kde r je poloměr válce a l jeho délka. b) Jakou silou musí zvedat jeřáb při nakládání každý z kmenů? c) Jak určíte práci jeřábu při zvedání každého kmene na ložnou plochu? Výsledek své úvahy alespoň odhadněte. d) Na ložnou plochu, která je ohraničena na každém boku třemi kovovými svislými tyčemi, se naloží čtyři kmeny, na ně se umístí tři kmeny, poté opět čtyři a nakonec tři kmeny. Náklad je pak zajištěn řetězy. Nejprve dobře promysli a potom nakresli, jak vypadá náklad, pozorovaný zezadu. FO53EF11: Rychlíková souprava v pohybu Rychlíková souprava stojí u nádražního nástupiště a právě se dala do pohybu. Zrychluje se po dobu 40 s, až dosáhne rychlosti 72 km/h, touto stálou rychlostí jede po dobu 1,5 min a potom začne znova zrychlovat tak, že za dalších 50 s zvýší svou rychlost na 108 km/h. Touto rychlostí pokračuje rychlík po dobu 3,5 min. Nakonec začne vlak mírně brzdit, takže za dobu 2,5 min se zastaví u nástupiště následující železniční stanice. Rozjíždění a zpomalování rychlíku budeme považovat za lineární změny v závislosti na čase. a) Jak dlouho souprava jede z první stanice do druhé, tj. od startu k zastavení? b) Nakresli si graf závislosti rychlosti pohybu rychlíku na čase, v(t). c) Urči dráhu, kterou urazí rychlík při rovnoměrných pohybech. d) Urči, jakou dráhu ujel rychlík při zrychlování a při zpomalování. e) Jaká je vzdálenost obou železničních stanic? Jaké průměrné rychlosti rychlík dosáhl? Která část jízdy mezi stanicemi nejvýrazněji ovlivnila jeho rychlost? 8

9 FO53EF12: Ledovce v Arktidě jsou ohroženy? Dlouhodobá měření glaciologů (vědců, kteří se zabývají geofyzikálními problémy ledu) dospívají k závěrům, že v posledních letech neustále ubývá led v Arktidě, v okolí severního zeměpisného pólu. V zimě bývá rozloha ledu v Arktidě asi 12 miliónů km 2 a průměrná tloušťka ledu asi 5,0 m, v létě je rozloha ledové pokrývky asi 9 miliónu km 2 a průměrná tloušťka ledové vrstvy jen asi 3,0 m. Rozloha ledu v létě se však postupně zmenšuje. Hustota ledu je 920 kg/ m 3, hustota mořské vody 1020 kg/m 3. a) Vysvětli, proč právě v arktické a antarktické oblasti se led udržuje. Načrtni obrázek. b) Vypočti, jaký je objem ledu v Arktidě v zimě a v létě. c) Vypočti, jaká je hmotnost ledové vrstvy v Arktidě v zimě a v létě. d) Jestliže k roztátí 1 kg ledu je třeba dodat ledu 330 kj, urči, kolik tepla spotřebuje ledová vrstva k roztátí během jarního období. Odkud se teplo ledové vrstvě dodává. e) Najdi si na Wikipedii stránku, která se zabývá změnami ledové pokrývky v Arktidě. f) Proč může být ohrožena populace ledních medvědů? FO53EF13: Kolik spotřebuje počítač? V dnešní době se většina domácností snaží zmenšit energetickou spotřebu, a tím i rostoucí náklady. Jedním z velmi častých spotřebičů v domácnostech je počítač. a) Vypočítej elektrický příkon počítače při normálním provozu, je-li připojen ke střídavému napětí 230 V a odebírá-li ze sítě proud 0,5 A. b) Při startu počítače, nebo při hraní některých her se energetická spotřeba výrazně zvýší. Jaký proud odebírá počítač, je-li připojen k napětí 230 V a jeho příkon je 207 W? c) Dnešní průměrná cena elektrické práce je 4,5 Kč za každou kwh. Jestliže je počítač využíván ke hraní her průměrně 2,5 hodiny denně, jaká bude roční cena za spotřebu při hraní her? d) I přesto, že počítač vypneme, stále koná elektrickou práci. Jeho příkon je zmenšen asi na 10 W. Kolik korun zaplatíme za roční spotřebu spícího počítače, který nebude zapnutý, pouze jen zapojen do elektrické sítě? Jak se tato cena změní, nebude-li se jednat o domácnost, ale o školu s 50 počítači, když se nevypínají ani na noc nebo na víkendy? FO53EF14: Monitory u počítačů Není to moc dávno, kdy většina lidí měla na stole místo plochého LCD displeje rozměrnou CRT obrazovku. Aby se prodloužila její životnost a lehce se ušetřila energetická spotřeba, používal se na ní spořič obrazovky, čím obrazovka méně svítila, tím se její životnost více prodlužovala. U dnešních LCD displejích nemá spořič obrazovky žádný význam, naopak spotřebu zvyšuje. Místo spořiče se většinou monitor při nečinnosti vypne, nebo počítač přejde do tzv. režimu spánku. a) Kolik korun ušetříš za rok, jestliže místo spořiče obrazovky využíváš režim spánku. Příkon počítače při zapnutém spořiči je asi 90 W, při režimu spánku jen asi 12 W. Za každou spotřebovanou elektrickou práci 1 kwh zaplatíš 4,5 Kč. Počítač je zapnutý a nevyužíván denně průměrně 1 hodinu. b) Při snížení jasu monitoru si chráníme nejen zrak, ale i ušetříme. Kolik korun ušetříš při snížení jasu ze 100 % na 50 %. Příkon monitoru při jasu 100 % je 50 W a při jasu 50 % 40 W. Počítač je denně průměrně používán 6 hodin, z toho 1 hodinu je v režimu spánku. c) Při vypnutí počítače zůstává v pohotovostním režimu (tzv. stand-by). Jaké jsou výhody a nevýhody tohoto režimu. FO53EF15: Rezistory mezi dvěma body sítě Při sestavování elektrických obvodů se může stát, že mezi třemi body A, B, C elektrické sítě jsou zapojeny tři rezistory. V prvním případě vytvoří trojúhelník: mezi body A,C je rezistor R B, mezi body A, B je rezistor R C a mezi body B, C je rezistor R A. Můžeme však uvnitř trojúhelníku ABC zvolit bod O a rezistory R 1, R 2, R 3 zapojíme postupně mezi body A-O, B-O, C-O, takže vznikne trojcípá hvězda. 9

10 První zapojení rezistorů se nazývá do trojúhelníku a druhé do hvězdy. Existuje velmi jednoduchý způsob, jak ze zapojení do trojúhelníku, jež obsahuje uzavřenou smyčku a píšou se pro ni obtížně matematické vztahy, obdržet zapojení do hvězdy. Provede se to tak, že např. mezi dvěma body A, C při zapojení do trojúhelníku musíme uvážit dvě větve, v jedné je rezistor R B, ve druhé sériově zapojené rezistory R C a R A. Při zapojení do hvězdy jsou oba body sítě spojeny dvěma rezistory R 1 a R 3. Napište si obdobně vztahy pro dvojice bodů A, B a B, C a najděte způsob výpočtu. FO53EF16: Tělesa se po nakloněné rovině mohou sunout nebo valit Tělesa umístěná na nakloněnou rovinu se můžou sunout, valit, nebo zůstanou na místě, kam byly položeny. Záleží na tvaru tělesa, respektive na rozložení látky v tělese a na úhlu, který svírá nakloněná rovinou s rovinou horizontální. Na těleso, například tvaru krychle, umístěné na nakloněnou rovinu působí gravitační síla, kterou můžeme rozložit na dvě složky (viz. obrázek 1). První složka způsobuje pohyb tělesa po nakloněné rovině, druhá těleso k nakloněné rovině přitahuje. Dále na těleso působí nakloněná rovina normálovou silou a proti pohybu tělesa třecí silou. Jestliže úhel nakloněné roviny budeme zvětšovat, při určitém úhlu nebude již úsečka znázorňující gravitační sílu procházet podstavou tělesa, a může dojít k jeho převrácení (viz. obrázek 2). Jsou-li podmínky i nadále stejné, dochází k dalšímu převracení tělesa a těleso se začne valit. Příkladem takového tělesa je například tužka, která se i při malém úhlu nakloněné roviny začne valit. Ještě lepší je kulička. Úkolem úlohy je prozkoumání pohybu těles po nakloněné rovině při sunutí a valení. Obrázek 1 Obrázek 2 Úvodní otázky: 1) Kdy dojde při projíždění zatáčky automobilem ke smyku? 2) Kdy dojde při projíždění zatáčky automobilem k jeho převrácení na bok? 3) Čím je způsobeno, že terénní automobil Hummer na rozdíl od běžného městského automobilu může vyjet strmé kopce. 4) Plastové eurofólie se prodávají například po padesáti kusech. Jsou velmi hladké a tak se stává, že při rozdělání balíčku se všechny po sobě hladce sunou a rozsypají se. Jak by se daly eurofólie upravit, aby zůstaly průhledné, hladké a zároveň se po sobě nesmekaly? 5) Lepší pračky s vrchním plněním zastaví buben s prádlem po praní tak, aby byl víkem nahoru a nemusel s ním člověk otáčet. Těsně předtím můžeme slyšet, jak motor pračky lehce pootočí bubnem, aby dostal víko bubnu nahoru. Buben pračky se však častokrát vrátí do původní polohy. Vysvětli toto chování. Dřevěná kostička na nakloněné rovině Pomůcky: Delší dřevěná deska nebo prkno (asi 2 metry, je možné použít například i delší stůl, který lze vypodložit apod.), dřevěná krychle (vhodná je například kostička o délce strany asi 4 cm.), gumička, úhloměr. 10

11 Popis: Dřevěnou kostičku umísti na horní konec nakloněné roviny. Rovina musí být vypodložená tak, aby se kostička pohybovala dolů ve směru nejdelší hrany a nespadla z nakloněné roviny dříve, než bude na dolním konci. Proveď tři měření pro tři různé úhly. První úhel nakloněné roviny by měl být co nejmenší, ale zároveň takový, aby se kostička dala do pohybu. Druhý úhel by měl být asi kolem 40 a poslední úhel asi kolem 60. Poté navlékni na kostičku dvě gumičky, každou gumičku na jinou stranu. Proveď opět tři měření se stejnými úhly nakloněné roviny, jako jsi měl v prvním případě. Při každém měření zkus vypozorovat, jaký pohyb kostička koná a jak se tento pohyb mění s větším úhlem nakloněné roviny. Zamysli se ve všech třech případech nad výslednicí síly F 1 a třecí síly. Dutý a plně naplněný válec na nakloněné rovině. Pomůcky: Delší dřevěná deska nebo prkno (opět asi 2 metry), dutý otevíratelný válec (vhodná je například nádoba ve tvaru válce od léku nebo od instantního čaje), úhloměr, voda, olej a sypký materiál (písek, mouka apod.). Popis: Prázdný válec umísti na horní konec nakloněné roviny. Rovina musí být vypodložená tak, aby se válec pohyboval dolů ve směru nejdelší hrany a nespadl z nakloněné roviny dříve, než bude na dolním konci. Proveď jedno měření. Úhel nakloněné roviny by měl být co nejmenší, ale zároveň takový, aby se válec dal do pohybu. Poté naplň plně válec sypkým materiálem. Proveď opět jedno měření se stejným úhlem nakloněné roviny, jako jsi měl v prvním případě. Při každém měření zkus vypozorovat, jaký pohyb válec koná. Stejné měření proveď s válcem plně naplněným vodou a nakonec olejem. Porovnej pohyb válce ve všech čtyřech měřeních. Válec z poloviny naplněný na nakloněné rovině. Pomůcky: Stejné jako v předchozím měření Popis: Válec z poloviny naplněný sypkým materiálem umísti na horní konec nakloněné roviny. Rovina musí být vypodložená tak, aby se válec pohyboval dolů ve směru nejdelší hrany a nespadl z nakloněné roviny dříve, než bude na dolním konci. Proveď jedno měření. Úhel nakloněné roviny by měl být co nejmenší, ale zároveň takový, aby se válec dal do pohybu. Poté naplň z poloviny válec vodou. Proveď jedno měření. Úhel nakloněné roviny by opět měl být co nejmenší, ale zároveň takový, aby se válec dal do pohybu. Při každém měření zkus vypozorovat, jaký pohyb válec koná. Stejné měření proveď s válcem z poloviny naplněného olejem. Porovnej pohyb válce ve všech třech měřeních. Na závěr experimentální úlohy zodpověz úvodní problémové otázky. Olej nevylévej do odpadu, dá se použít ještě na smažení. K zápisu protokolu o řešení experimentální úlohy si zvol vhodný pracovní list, v němž uvedeš jednak všechny použité pomůcky, jednak popíšeš pokusy, které je potřeba vykonat, popíšeš pozorované výsledky. Pokus se také vysvětlit, proč děje probíhají tak, jak je můžeš pozorovat. Nezapomeň ke každému pokusu nakreslit situační nákresy a další obrázky, aby bylo jasné, jak jsi pokus vykonal. 11

12 Archimédiáda 2012 kategorie G fyzikální olympiády Soutěž ARCHIMÉDIÁDA 2012 probíhá ve dvou částech a je určena žákům 7. ročníků základních škol a odpovídajících ročníků víceletých, tedy osmiletých i šestiletých gymnázií. První část soutěže se uskuteční v únoru až květnu roku Soutěžící obdrží k řešení pět úloh, které jsou uvedeny v tomto textu. Jejich řešení vyžaduje vědomosti a dovednosti, které jste získali během dosavadního studia v předmětu fyzika, dále schopnost fyzikálně uvažovat, používat jednoduché výpočty či grafy. Je vhodné, abyste zvažovali i o tom, že fyzikální problematika pomáhá vysvětlovat děje a jevy z běžného života, pomáhá také řešit problémy, o kterých jste se dozvěděli v jiných předmětech (např. v zeměpise). Některé zadané úlohy předpokládají také provedení jednoduchých pokusů. Řešení úloh zapisují řešitelé na papíry formátu A5 (malý sešit), každou úlohu na zvláštní papír, a odevzdávají je nejpozději začátkem května svému učiteli fyziky. Při řešení vám váš vyučující fyziky může doporučit vhodnou studijní literaturu, můžete se ho ptát i na to, jakým postupem byste se mohli k výsledku úlohy dostat. U všech úloh popište podrobně své úvahy při řešení. Učitel fyziky potom vaše řešení opraví, pravděpodobně s vámi pohovoří o řešení, nebo vám alespoň sdělí správné výsledky a hodnocení vašeho řešení. Úlohy byste měli řešit stručně, ale protokol o řešení musí být výstižný, doplněný výpočty, grafy, tabulkami naměřených hodnot či jinak získaných údajů. Při řešení kreslete obrázky a náčrtky. Stačí obrázky načrtnout od ruky, ale grafy pečlivě narýsujte, zejména pak tehdy, kdy máte z grafu něco zjistit. Pokusy můžete provádět doma nebo ve škole, musí však být načrtnuty a popsány použité pomůcky, uveden postup měření a zpracovány výsledky, plynoucí z vámi změřených hodnot. Učitel fyziky poskytne soutěžícím zejména při pokusech všestrannou pomoc. Druhá část soutěže proběhne koncem měsíce května a může být organizována jako soutěž jednotlivců nebo družstev podle dispozic, které obdrží učitelé od OKFO. Formu této části soutěže ponecháváme v kompetenci OKFO. Úkolem bude řešit různé úlohy, provádět a vysvětlovat pokusy, řešit hádanky nebo rébusy. Organizátor soutěže může také pověřit některé řešitele, aby si předem připravili referát, pokus či jiné vystoupení. Námětů získali učitelé fyziky za dobu trvání soutěže již značné množství. Druhé kolo lze organizovat pro soutěžící z jedné školy či z několika sousedních škol dohromady. Nevylučuje se ani případ, že toto kolo bude organizováno obdobně jako v kategoriích E, F, tj. řešením úloh pro účastníky z více škol nebo jako okresní kolo. Pro organizaci školního kola mají okresní výbory k dispozici starší metodickou příručku Archimédiáda, kterou vydalo před nějakou dobou MAFY v Hradci Králové. Chystáme novou přehlednou publikaci zadaných úloh v této soutěži; úlohy zadané za posledních 15 let můžeme najít na stránkách Fyzikální olympiády. Doufáme, že nejnižší kategorie naší soutěže fyzikální olympiády - ARCHIMÉDIÁDA se i letos bude žákům líbit; snažili jsme se zařadit úlohy s výzkumnou částí, jež povzbudí žáky 7. ročníků k dalšímu studiu fyziky. Podařilo se také vytvořit úlohy, k jejichž řešení potřebují řešitelé využít svůj nebo školní počítač, některé informace je nutno hledat na internetu. Na závěr soutěže je třeba účastníky upozornit, že pro zájemce o fyziku je připravena soutěž FYZIKÁLNÍ OLYMPIÁDA v další kategorii F, jež je určena žákům 8. ročníků základních škol a odpovídajících tříd víceletých gymnázií. Úlohy budou na školy doručeny začátkem září a najdou je učitelé fyziky v tomto letáku nebo i na našich internetových stránkách s adresou: V Hradci Králové, červen 2011 Ú K F O Č R 12

13 Úlohy 53. ročníku fyzikální olympiády, kat. G - Archimédiáda FO53G1: Převážíme materiál na stavbu Ve stavebnictví se používá řada nových materiálů; jedním z nich je tzv. pórobeton. V prodejní nabídce jsou uvedeny pórobetonové tvárnice o rozměrech 300 mm x 249 mm x 599 mm, hustota pórobetonových tvárnic k vnějšímu použití je 650 kg/m 3, prodávají se na dřevěných paletách o hmotnosti 65 kg, na každé je umístěno celkem 30 tvárnic. Palety se pak odvážejí na nákladních automobilech, kam se vejde vždy 42 palet. a) Rozměry tvárnic zaokrouhli na dm a urči objem a hmotnost jedné tvárnice. b) Jaká je hmotnost tvárnic na paletě? Jak jsou pravděpodobně naskládány? c) Jaká je hmotnost nákladu na nákladním automobilu? d) Jakou silou zvedá jednu paletu jeřáb, nakládá-li palety na ložnou plochu nákladního automobilu ze země? e) Vypiš, jaké jsou výhody práce s tvárnicemi oproti běžnému zdění s cihlami. Sežeň ke své odpovědi vhodné informace. FO53G2: Nový rychlovlak v Číně V roce 2011 začal v Čínské lidové republice jezdit nový moderní rychlovlak, spojující hlavní město Beijing s dalším velkoměstem Šanghaj. Trasa má délku 1318 km a vlak ji urazí za dobu 4 h 48 min. a) Jakou průměrnou rychlostí jezdí rychlovlaky po této trati? b) Rychlovlaky dosáhly na zkušební trati rychlosti až 486 km/h. Za jak dlouho by touto rychlostí urazily příslušnou vzdálenost mezi jmenovanými městy? c) Za jak dlouho by rychlovlaky urazily vzdálenost Praha Hradec Králové, tj. 116 km, kdyby jely průměrnou rychlostí, maximální rychlostí? d) Japonský rychlovlak Šinkanzen urazí trasu Tokio Ósaka, tj. vzdálenost 515 km za dobu 2 h 30 min. Jaké průměrné rychlosti dosahuje? Je tato rychlost větší než průměrná rychlost vlaku na trati Beijing Šanghaj? FO53G3: : Na cestě z hor domů Poté, co rodina strávila krásnou dovolenou nedaleko Kaprunu, se večer rozhodovala, kterou zpáteční cestu si zvolí zda tu nejrychlejší nebo tu nejkratší zpátky domů do Hradce Králové. Pomoz jim při výběru. a) Najdi start i cíl zpáteční cesty na severu a pomocí volby Najít trasu stanov délkové i časové parametry. b) Urči průměrnou rychlost jízdy po obou trasách. c) Rodina musela uvažovat i o případě, kdyby automobil nebyl schopný jízdy ani rychlé opravy; potom by se manželka a děti vydaly zpátky vlakem a zajistili případný převoz zpět auta domů. Otevři server a najdi alespoň jednu možnost návratové cesty. d) Do skicy mapky České republiky a Rakouska načrtni ve všech třech případech zvolenou cestu. FO52G4: Vlak jede z jedné stanice do druhé Jeden strojvůdce vyjíždí ze stanice Výchozí, po dobu 100 s se rychlost vlaku rovnoměrně zvětšuje a v okamžiku, kdy vlak dosáhne rychlosti 72 km/h, začne vlak rovnoměrně brzdit, 13

14 až po době 100 s zastaví ve stanici Následující. Další den jede ve vlaku po stejné trase ze stanice Výchozí druhý strojvůdce, který rychlosti 72 km/h dosáhne již po době 50 s, chvíli touto rychlostí jede rovnoměrně a pak po stejnou dobu 50 s rovnoměrně brzdí, až zastaví ve stanici následující. a) Nakresli graf změn rychlosti vlaku v závislosti na čase pro vlak řízený prvním strojvůdcem. b) Bez výpočtu, jen prostou úvahou urči, který strojvůdce projel vzdálenost mezi stanicemi dříve. c) Nakresli do téhož grafu záznam změn rychlosti vlaku řízeného druhým strojvůdcem a ověř svou úvahu graficky. d) Ověř svou úvahu v části b) úlohy výpočtem. FO53G5: Určování těžiště rovinných obrazců Těžiště tenké desky je bod, v němž lze zavěsit nebo podepřít tuto desku, aby zůstala v určité, volné rovnovážné poloze. Tvým úkolem je stanovit experimentálně těžiště několika desek pravidelného nebo i nepravidelného tvaru, které si k experimentu sám(a) připravíš: a) Urči těžiště tenké desky, kterou si vyrobíš ze vhodného materiálu (tenký plech, tvrdý papír, sololit, plast) tvar trojúhelníku, obdélníku, lichoběžníku, kruhu, elipsy, nepravidelný tvar). b) K poloze těžiště můžeš dospět také na základě průsečíku těžnic (těžnice je ve fyzice na rozdíl od matematiky každá přímka, procházející těžištěm). Sestrojíš si především olovnici. Tenkou desku zvoleného tvaru (pravidelného či nepravidelného) opatříš na okraji několika malými otvory, jimiž lze protáhnout tenkou nit (nejlépe režná nit) a můžeš zavěsit tuto desku tak, aby byla ve svislé poloze. Pomocí olovnice stanovíš svislou těžnici. V průsečíku dvou, popř. tří těžnic najdeš těžiště (vysvětli, proč je lepší, budou-li těžnice alespoň tři). c) Sestroj z téhož materiálu tenkou desku tvaru České republiky, Slovenska, Rakouska, Polska, Evropy, Některou z výše uvedených metod zjisti, kde je těžiště zvoleného útvaru, a vysvětli, proč by bylo vhodné tam umístit hlavní město. Pokus se potvrdit, že skutečně Praha je srdcem Evropy. 14

15 Upozornění pro řešitele: Fyzikální úlohy, zadávané většinou ve školní výuce fyziky, bývají zpravidla jednoduché a při jejich řešení často vystačíš s užitím logických úvah nebo jen s jedním vzorcem, do něhož lze dosadit dané veličiny.ve fyzikální olympiádě zařazujeme naopak většinou úlohy problémové, u kterých je třeba nejprve formulovat podmínky, za nichž je vůbec možné úlohu řešit, zjednodušit situaci, které se daný problém týká, a zvážit dosažené výsledky s ohledem na vybrané vstupní údaje. Některé úlohy vyžadují spojit vědomosti z několika částí fyziky, jiné můžeme řešit jenom tehdy, když uvážíme informace z techniky nebo z dalších přírodovědných disciplín. Řešení každé úlohy musí být tedy doplněno dalším komentářem, nelze jen vybrat vhodný fyzikální vztah a zbavit se problému. Velmi důležitým krokem je tzv. diskuse řešení, která dává do souvislosti nejen dané a doplněné hodnoty veličin, ale také porovnává získané výsledky se skutečností či tabelárními hodnotami. V posledních letech zadáváme i takové úlohy, pro jejichž řešení je vhodné otevřít vhodné internetové stránky. A ještě několik rad, jak řešit fyzikální úlohy: 1. Pečlivě si prostuduj text úlohy a snaž se pochopit všechny jeho části. Velmi důležité je pochopit, o jakém problému se v úloze jedná. 2. Označ fyzikální veličiny tak, jak jste zvyklí z výuky fyziky, hodnoty si zpravidla hned převeď do mezinárodní soustavy jednotek. 3. Nezapomeň si nakreslit situační náčrtek, pomůže ti často rychle se orientovat v daném problému. 4. Proveď fyzikální analýzu situace vytvoř si zjednodušující modely a vyber vztahy, o nichž předpokládáš, že je použiješ při řešení. Vytvoř si rámcový plán řešení. 5. Úlohu řeš nejprve obecně, tj. nedosazuj za písmena dané hodnoty pomůže ti to často dostat se rychleji k cíli a řešíš současně všechny podobné úlohy. Tak dostaneš závěrečný vztah, kde na levé straně máš hledanou veličinu a napravo máš veličiny, jejichž hodnoty znáš z textu úlohy nebo je umíš zjistit. 6. Dosaď do vztahu místo hodnot veličin pouze jejich jednotky a proveď tak tzv. jednotkovou kontrolu. Vyjde-li ti správná jednotka výsledku, máš velkou naději, že daný vztah je správný. 7. Dosaď hodnoty veličin a známé konstanty, použij kalkulátor a snaž se pokud možno rychle a ekonomicky dostat k hodnotě výsledku. Nezapomeň na stanovení hledaného výsledku s přijatelným počtem platných číslic neopisuj tedy jen výsledek z kalkulátoru. 8. Pro kontrolu použij některé z grafických metod (někdy to bude jediný způsob, jak se dostat k výsledku, zvláště, není-li tvá matematická příprava dostatečná). Někdy musíš vykonat kontrolní experiment. 9. Nezapomeň provést diskusi řešení s ohledem na dané hodnoty veličin a vybraný model k řešení problému. 10. Stanov odpověď na otázku danou textem problému. Nezapomeň, že někdy jde jen o číselnou hodnotu hledané veličiny, jindy získaný výsledek je předpokladem pro vyslovení slovní odpovědi. Zdají se ti úlohy obtížné? Nezapomeň na známou pravdu: čím více si nakreslíš obrázků, čím více se v pokusech či představách se přiblížíš situaci, o níž se v úloze jedná, čím více uděláš přípravných činností, tím snadněji se potom dostaneš k výsledku. Další informace najdeš v učebnicích a na Internetu. 15

16 Letos k vám přichází již 53. ročník FYZIKÁLNÍ OLYMPIÁDY Zveme všechny zájemce o fyziku k řešení zajímavých úloh Informuj se u svého učitele fyziky Najdeš nás také na Internetu:

FO53G1: Převážíme materiál na stavbu Ve stavebnictví se používá řada nových materiálů; jedním z nich je tzv. pórobeton. V prodejní nabídce jsou

FO53G1: Převážíme materiál na stavbu Ve stavebnictví se používá řada nových materiálů; jedním z nich je tzv. pórobeton. V prodejní nabídce jsou FO53G1: Převážíme materiál na stavbu Ve stavebnictví se používá řada nových materiálů; jedním z nich je tzv. pórobeton. V prodejní nabídce jsou uvedeny pórobetonové tvárnice o rozměrech 300 mm x 249 mm

Více

Jubilejní 50. ročník FYZIKÁLNÍ OLYMPIÁDY

Jubilejní 50. ročník FYZIKÁLNÍ OLYMPIÁDY KNIHOVNIČKA FYZIKÁLNÍ OLYMPIÁDY č. 80 Jubilejní 50. ročník FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE 2008-2009 Úlohy pro kategorie E, F, G. HRADEC KRÁLOVÉ 2008 Fyzikální olympiáda - leták pro kategorie E, F

Více

Úlohy pro 53. ročník fyzikální olympiády, kategorie E, F

Úlohy pro 53. ročník fyzikální olympiády, kategorie E, F Úlohy pro 53. ročník fyzikální olympiády, kategorie E, F Z následujících úloh vyřešte ty, které vám doporučí váš vyučující fyziky. To samozřejmě neznamená, že se nemůžete pustit do řešení všech úloh. V

Více

FO53EF1: Stavební materiál Palety s pórobetonovými tvárnicemi se z automobilu, jehož ložná plocha je ve výšce 1,6 m, zvedají na stavbě domu do výše

FO53EF1: Stavební materiál Palety s pórobetonovými tvárnicemi se z automobilu, jehož ložná plocha je ve výšce 1,6 m, zvedají na stavbě domu do výše FO53EF1: Stavební materiál Palety s pórobetonovými tvárnicemi se z automobilu, jehož ložná plocha je ve výšce 1,6 m, zvedají na stavbě domu do výše 4. nadzemního podlaží; zvýšené přízemí má výšku podlahy

Více

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY Řešení úloh 1. kola 53. ročníku Fyzikální olympiády Kategorie G Archimédiáda FO53G1: Převážíme materiál na stavbu a) Rozměry tvárnice po zaokrouhlení

Více

Úlohy a řešení pro 52.ročník FO kategorie G Archimédiáda

Úlohy a řešení pro 52.ročník FO kategorie G Archimédiáda Úlohy a řešení pro 52.ročník FO kategorie G Archimédiáda Tento materiál je určen pro opravující protokolů o řešení úloh Archimédiády. Na základě tohoto řešení může učitel fyziky informovat své žáky. FO52G1:

Více

Úlohy pro 52. ročník fyzikální olympiády kategorie G

Úlohy pro 52. ročník fyzikální olympiády kategorie G FO52G1: Kolik naložíme Automobilový přívěs, který využívají chalupáři k přepravě materiálu, má nákladovou plochu o rozměrech: šířka 1,40 m, délka 1,60 m a výška hrazení 40 cm. Přívěs má nosnost 560 kg.

Více

58. ročník FYZIKÁLNÍ OLYMPIÁDY

58. ročník FYZIKÁLNÍ OLYMPIÁDY 58. ročník FYZIKÁLNÍ OLYMPIÁDY ve školním roce 2016 2017 Úlohy pro kategorii G (Archimédiáda) http://fyzikalniolympiada.cz Hradec Králové 2016 Archimédiáda 2016 kategorie G Fyzikální olympiády Soutěž Fyzikální

Více

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 65. ROČNÍK, 2015/2016 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste

Více

56. ročník FYZIKÁLNÍ OLYMPIÁDY

56. ročník FYZIKÁLNÍ OLYMPIÁDY KNIHOVNIČKA FYZIKÁLNÍ OLYMPIÁDY č. 91 56. ročník FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE 2014-2015 Úlohy pro kategorie E, F, G. Hradec Králové 2014 Fyzikální olympiáda - leták pro kategorie E, F 56. ročník

Více

KATEGORIE D. Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru:

KATEGORIE D. Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru: KATEGORIE D Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru: Jméno a příjmení: Kategorie: D Třída: Školní rok: Škola: I. kolo: Vyučující fyziky: Posudek: Okres: Posuzovali: Úloha

Více

Řešení úloh 2. kola 54. ročníku Fyzikální olympiády

Řešení úloh 2. kola 54. ročníku Fyzikální olympiády Řešení úloh 2. kola 54. ročníku Fyzikální olympiády Úlohy okresního kola jsou určeny pro zájemce o fyziku, tudíž byly zvoleny tak, aby na jednu stranu mohl skoro každý soutěžící získat alespoň polovinu

Více

FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE 2001-2002

FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE 2001-2002 KNIHOVNIČKA FYZIKÁLNÍ OLYMPIÁDY č. 46 43. ročník FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE 2001-2002 Úlohy pro kategorie E, F, G. Hradec Králové 2001 Fyzikální olympiáda - leták pro kategorie E, F 43. ročník

Více

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 65. ROČNÍK, 2015/2016 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste

Více

Úlohy pro 52. ročník fyzikální olympiády, kategorie EF

Úlohy pro 52. ročník fyzikální olympiády, kategorie EF FO52EF1: Dva cyklisté Dva cyklisté se pohybují po uzavřené závodní trase o délce 1 200 m tak, že Lenka ujede jedno kolo za dobu 120 s, Petr za 100 s. Při tréninku mohou vyjet buď stejným směrem, nebo směry

Více

V 1 = 0,50 m 3. ΔV = 50 l = 0,05 m 3. ρ s = 1500 kg/m 3. n = 6

V 1 = 0,50 m 3. ΔV = 50 l = 0,05 m 3. ρ s = 1500 kg/m 3. n = 6 ÚLOHY - ŘEŠENÍ F1: Objem jedné dávky písku u nakládače je 0,50 m 3 a dávky se od této hodnoty mohou lišit až o 50 litrů podle toho, jak se nabírání písku zdaří. Suchý písek má hustotu 1500 kg/m 3. Na valník

Více

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 65. ROČNÍK, 2015/2016 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste

Více

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 63. ROČNÍK, 2013/2014 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste

Více

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 9 M9PBD19C0T02 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

59. ročník FYZIKÁLNÍ OLYMPIÁDY

59. ročník FYZIKÁLNÍ OLYMPIÁDY 59. ročník FYZIKÁLNÍ OLYMPIÁDY ve školním roce 2017 2018 Úlohy pro kategorie E a F http://fyzikalniolympiada.cz Hradec Králové 2017 FYZIKÁLNÍ OLYMPIÁDA leták pro kategorie E a F 59. ročník soutěže ve školním

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena

Více

HYDRAULICKÉ ZAŘÍZENÍ

HYDRAULICKÉ ZAŘÍZENÍ METODICKÝ LIST /8 HYDRAULICKÉ ZAŘÍZENÍ Tematický okruh Učivo Ročník Časová dotace Klíčové kompetence MECHANICKÉ VLASTNOSTI KAPALIN HYDRAULICKÉ ZAŘÍZENÍ 7. vyučovací hodiny. Kompetence k učení - pozorováním

Více

MATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAIZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 7 M7PAD19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Charakteristika předmětu:

Charakteristika předmětu: Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Člověk a příroda Seminář z fyziky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Seminář z fyziky je vzdělávací

Více

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7. A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Rozumíme dobře Archimedovu zákonu?

Rozumíme dobře Archimedovu zákonu? Rozumíme dobře Archimedovu zákonu? BOHUMIL VYBÍRAL Přírodovědecká fakulta Univerzity Hradec Králové K formulaci Archimedova zákona Archimedův zákon platí za podmínek, pro které byl odvozen, tj. že hydrostatické

Více

58. ročník fyzikální olympiády kategorie G okresní kolo školní rok

58. ročník fyzikální olympiády kategorie G okresní kolo školní rok 58. ročník fyzikální olympiády kategorie G Zadání 1. části K řešení můžeš použít kalkulačku i tabulky. 1. Neutrální atom sodíku má ve svém jádru a) 10 protonů b) 11 protonů c) 10 elektronů d) 12 protonů

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD2C0T0 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

Rovnoměrný pohyb IV

Rovnoměrný pohyb IV 2.2.4 Rovnoměrný pohyb IV Předpoklady: 02023 Pomůcky: Př. : erka jede na kole za kamarádkou. a) Za jak dlouho ujede potřebných 6 km rychlostí 24 km/h? b) Jak daleko bude po 0 minutách? c) Jak velkou rychlostí

Více

5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m

5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m 1. Vypočítejte šířku jezera, když zvuk šířící se ve vodě se dostane k druhému břehu o 1 s dříve než ve vzduchu. Rychlost zvuku ve vodě je 1 400 m s -1. Rychlost zvuku ve vzduchu je 340 m s -1. 1) 449 m

Více

MATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A

MATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A MATEMATIKA v úpravě pro neslyšící MAMZD9C0T0 DIDAKTICKÝ TEST 2 SP-3-T SP-3-T-A Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %. Základní informace k zadání zkoušky Didaktický test obsahuje

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost

ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S1_D05_Z_MECH_Rovnomerne_zrychleny_pohyb_z pomaleny_pohyb_pl Člověk a příroda Fyzika

Více

Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...

Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,... Vzorové příklady k přijímacím zkouškám ) Doplňte číselné řady o další dvě čísla. a), 6,, 4, 48, 96,... b) 87, 764, 6, 4, 4,... c), 6, 8,,, 0, 6,... d),,, 7,,, 7, 9,,... e) ; ; ; ; ; 8 ) Doplňte číslo místo.

Více

59. ročník FYZIKÁLNÍ OLYMPIÁDY

59. ročník FYZIKÁLNÍ OLYMPIÁDY 59. ročník FYZIKÁLNÍ OLYMPIÁDY ve školním roce 2017 2018 Úlohy pro kategorii G (Archimédiáda) http://fyzikalniolympiada.cz Hradec Králové 2017 Archimédiáda 2017 kategorie G Fyzikální olympiády Soutěž Fyzikální

Více

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 7 M7PCD19C0T03 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

MATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA+ DIDAKTICKÝ TEST MAIPD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Výpočet povrchu, objemu a hmotnosti kovových rour

Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Výpočet povrchu, objemu a hmotnosti kovových rour Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Předmět: Matematika Téma: Výpočet povrchu, objemu a hmotnosti kovových rour Věk žáků: 13 15 let Časová dotace:

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný

Více

Příklady na 13. týden

Příklady na 13. týden Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby

Více

Autor: Jana Krchová Obor: Fyzika FYZIKÁLNÍ VELIČINY. Délka Doplň ve větě chybějící slova: Fyzikální veličina je těles, kterou lze..

Autor: Jana Krchová Obor: Fyzika FYZIKÁLNÍ VELIČINY. Délka Doplň ve větě chybějící slova: Fyzikální veličina je těles, kterou lze.. FYZIKÁLNÍ VELIČINY Délka Doplň ve větě chybějící slova: Fyzikální veličina je těles, kterou lze.. Doplň chybějící písmena : Každá fyzikální veličina má: 1) - - z v 2) z - - - k 3) - - k l - d - - j - -

Více

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy Doučování sekunda měsíc Probírané učivo Základní učivo září Opakování učiva z primy Desetinná čísla Krychle a kvádr Prvočísla a čísla složená Společný násobek a dělitel Prvočísla a čísla složená Trojúhelník

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

Husky KTW, s.r.o., J. Hradec

Husky KTW, s.r.o., J. Hradec Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Předmět: Matematika Téma: Goniometrie při měření výrobků Věk žáků: 15-16 let Časová dotace: Potřebné pomůcky,

Více

Výpočet dráhy. Autor: Pavel Broža Datum: 12. 4. 2014 Cílový ročník: 7. Život jako leporelo, registrační číslo CZ.1.07/1.4.00/21.

Výpočet dráhy. Autor: Pavel Broža Datum: 12. 4. 2014 Cílový ročník: 7. Život jako leporelo, registrační číslo CZ.1.07/1.4.00/21. Výpočet dráhy Autor: Pavel Broža Datum: 12. 4. 2014 Cílový ročník: 7. Život jako leporelo, registrační číslo CZ.1.07/1.4.00/21.3763 Výpočet dráhy vzor 1 Auto jelo po dálnici průměrnou rychlostí 120 km/h.

Více

Identifikace práce prosíme vyplnit čitelně tiskacím písmem

Identifikace práce prosíme vyplnit čitelně tiskacím písmem Identifikace práce prosíme vyplnit čitelně tiskacím písmem Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na http://olympiada.astro.cz/korespondencni. Jeho vyplnění je nutné.

Více

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 63. ROČNÍK, 2013/2014 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste

Více

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 9 M9PCD19C0T03 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,

Více

S = 2. π. r ( r + v )

S = 2. π. r ( r + v ) horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má

Více

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7. A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence

Více

Rovnoměrný pohyb II

Rovnoměrný pohyb II 2.2.12 Rovnoměrný pohyb II Předpoklady: 020210 Pomůcky: Př. 1: Jakou vzdálenost urazí za pět minut automobil jedoucí rychlostí 85 km/h? 5 t = 5min = h, v = 85 km/h 5 s = vt = 85 km = 7,1 km Automobil jedoucí

Více

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová Vyučovací volitelný předmět Cvičení z matematiky je zařazen samostatně na druhém

Více

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6) Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015

Více

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 7 M7PBD19C0T02 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST Maimální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je

Více

MATEMATIKA ZÁKLADNÍ ÚROVEŇ

MATEMATIKA ZÁKLADNÍ ÚROVEŇ NOVÁ MTURITNÍ ZKOUŠK Ilustrační test 2008 Základní úroveň obtížnosti MVCZMZ08DT MTEMTIK ZÁKLDNÍ ÚROVEŇ DIDKTICKÝ TEST Testový sešit obsahuje 8 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Určování hustoty látky

Určování hustoty látky Určování hustoty látky Očekávané výstupy dle RVP ZV: využívá s porozuměním vztah mezi hustotou, hmotností a objemem při řešení praktických problémů Předmět: Fyzika Učivo: měření fyzikální veličiny hustota

Více

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE 1 Rozhodni a zdůvodni, zda koná práci člověk, který a) vynese tašku do prvního patra, b) drží činku nad hlavou, c) drží tašku s nákupem na zastávce autobusu, d)

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ...

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ... Dynamika 43 Odporové síly a) Co je příčinou vzniku odporových sil?... b) Jak se odporové síly projevují?... c) Doplňte text nebo vyberte správnou odpověď: - když se těleso posouvá (smýká) po povrchu jiného

Více

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,

Více

Úvodní list. 45 min, příp. další aktivita (*) mimo běžnou školní výuku

Úvodní list. 45 min, příp. další aktivita (*) mimo běžnou školní výuku Úvodní list Předmět: Fyzika Cílová skupina: 8. nebo 9. ročník ZŠ Délka trvání: 45 min, příp. další aktivita (*) mimo běžnou školní výuku Název hodiny: Měření tlaku vzduchu v terénu Vzdělávací oblast v

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

KNIHOVNIČKA FYZIKÁLNÍ OLYMPIÁDY č. 80. Jubilejní 50. ročník FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE 2008-2009. Úlohy pro kategorie E, F, G.

KNIHOVNIČKA FYZIKÁLNÍ OLYMPIÁDY č. 80. Jubilejní 50. ročník FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE 2008-2009. Úlohy pro kategorie E, F, G. KNIHOVNIČKA FYZIKÁLNÍ OLYMPIÁDY č. 80 Jubilejní 50. ročník FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE 2008-2009 Úlohy pro kategorie E, F, G. HRADEC KRÁLOVÉ 2008 Fyzikální olympiáda - leták pro kategorie E, F

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Identifikace práce prosíme vyplnit čitelně tiskacím písmem

Identifikace práce prosíme vyplnit čitelně tiskacím písmem Identifikace práce prosíme vyplnit čitelně tiskacím písmem Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na http://olympiada.astro.cz/korespondencni. Jeho vyplnění je nutné.

Více

Derivace. 1. Užitím definice derivace vypočtěte derivaci funkce v daném bodě x 0.

Derivace. 1. Užitím definice derivace vypočtěte derivaci funkce v daném bodě x 0. Derivace 1. Užitím definice derivace vypočtěte derivaci funkce v daném bodě x 0. a) f(x) = 2x 2 x + 5, x 0 = 3 b) f(x) = x 2 4x, x 0 = 1 c) f(x) = sin x, x 0 = 0 d) f(x) = cos x, x 0 = π 6 e) f(x) = 1

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 7. ročník M.Macháček : Fyzika pro ZŠ a VG 6/1 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7/1 (Prometheus), M.Macháček : Fyzika pro

Více

MATEMATIKA. 1 Základní informace k zadání zkoušky

MATEMATIKA. 1 Základní informace k zadání zkoušky MATEMATIKA PŘIJÍMAČKY MSK 2011 DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů 1 Základní informace k zadání zkoušky Didaktický test obsahuje 15 úloh. Časový limit pro řešení didaktického testu je

Více

Očekávané ročníkové výstupy z matematiky 9.r.

Očekávané ročníkové výstupy z matematiky 9.r. Pomůcky: tabulky, kalkulačky 2. pololetí Soustavy lineárních rovnic 1A x y = 1 2x + 3y = 12 1B x y = -3 2x y = 0 2A x y = -2 2x 2y = 2 2B x y = -2 3x 3y = 6 3A y = 2x + 3 x = 0,5. (y 3) 3B x = 2y + 5 y

Více

Vyučovací předmět / ročník: Matematika / 4. Učivo

Vyučovací předmět / ročník: Matematika / 4. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

Název: Měření zrychlení těles při různých praktických činnostech

Název: Měření zrychlení těles při různých praktických činnostech Název: Měření zrychlení těles při různých praktických činnostech Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry

Více

Povrch a objem těles

Povrch a objem těles Povrch a objem těles ) Kvádr: a.b.c S =.(ab+bc+ac) ) Krychle: a S = 6.a ) Válec: π r.v S = π r.(r+v) Obecně: S podstavy. výška S =. S podstavy + S pláště Vypočtěte objem a povrch kvádru, jehož tělesová

Více

KNIHOVNIČKA FYZIKÁLNÍ OLYMPIÁDY č. 83. 51. ročník FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE 2009-2010. Úlohy pro kategorie E, F, G.

KNIHOVNIČKA FYZIKÁLNÍ OLYMPIÁDY č. 83. 51. ročník FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE 2009-2010. Úlohy pro kategorie E, F, G. KNIHOVNIČKA FYZIKÁLNÍ OLYMPIÁDY č. 83 51. ročník FYZIKÁLNÍ OLYMPIÁDY VE ŠKOLNÍM ROCE 2009-2010 Úlohy pro kategorie E, F, G. Znak JČMF HRADEC KRÁLOVÉ 2009 Znak MAFY Fyzikální olympiáda - leták pro kategorie

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Změny skupenství látek - tání, tuhnutí VY_32_INOVACE_F0114.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Změny skupenství látek - tání, tuhnutí VY_32_INOVACE_F0114. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Měření velikosti gravitační síly

Měření velikosti gravitační síly Jméno: Školní rok: Měření velikosti gravitační síly Třída: Laboratorní práce číslo: Úkol: Zjisti, jak velikou gravitační silou na tebe působí Země. Pomůcky, které jsem použil/la: Siloměr, několik závaží

Více

Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Výpočet objemu a hmotnosti technických sít

Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Výpočet objemu a hmotnosti technických sít Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Předmět: Matematika Téma: Výpočet objemu a hmotnosti technických sít Věk žáků: 13 15 let Časová dotace: 1

Více

Příklady pro 8. ročník

Příklady pro 8. ročník Příklady pro 8. ročník Procenta: 1.A Vyjádřete v procentech: a) desetina litru je % b) polovina žáků je % c) pětina výměry je % d) padesátina délky je % e) tři čtvrtiny objemu je % f) dvacetina tuny je

Více

Čtyřúhelníky. Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno:

Čtyřúhelníky. Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno: Čtyřúhelníky Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 3: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 4: Sestroj rovnoběžník ABCD, je-li

Více

MATEMATIKA V ÚPRAVĚ PRO NESLYŠÍCÍ DIDAKTICKÝ TEST 12 SP-3-T SP-3-T-A

MATEMATIKA V ÚPRAVĚ PRO NESLYŠÍCÍ DIDAKTICKÝ TEST 12 SP-3-T SP-3-T-A MATEMATIKA V ÚPRAVĚ PRO NESLYŠÍCÍ DIDAKTICKÝ TEST 12 SP-3-T SP-3-T-A Obsah testového sešitu je chráněn autorskými právy. Jakékoli jeho uži, jakož i uži jakékoli jeho čás pro komerční účely či pro jejich

Více

volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ

volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky provádí operace s celými čísly (sčítání, odčítání, násobení

Více

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210 Tření a valivý odpor II Předpoklady: Př : Urči zrychlení soustavy závaží na obrázku Urči vyznačenou sílu, kterou působí provázek na závaží Hmotnost kladek i provázku zanedbej Koeficient tření mezi závažími

Více

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2013

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2013 VERZE A - PONDĚLÍ MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2013 POČET TESTOVÝCH POLOŽEK: 16 MAXIMÁLNÍ POČET BODŮ: 50 (100%) ČASOVÝ LIMIT PRO ŘEŠENÍ TESTU: 60 minut POVOLENÉ POMŮCKY ŘEŠITELE:

Více