Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce"

Transkript

1 Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Článek se zabývá problematikou vlivu kondenzující vodní páry a jejího množství na stavební konstrukce, aplikací na střešní pláště, kde se kapilární vodivost kapalné vlhkosti projevuje nejčastěji a vyhodnocením působení na tepelně technické vlastnosti dané stavební konstrukce. Předmětem posuzování byly 4 typy plochých střešních konstrukcí, jejich porovnáním v konkrétních běžných i extrémních podmínkách. Úvod Nejexponovanější stavební částí budovy jsou konstrukce střešních plášťů zejména z tepelně technického hlediska. Dochází-li v ploché střešní konstrukci ke kondenzaci vodní páry, pak v její části vzniká kapalná vlhkost nerovnoměrně v čase, a proto je možné tento proces považovat za nestacionární. Důsledkem je vytváření vlhkostního spádu, nebo-li gradientu kapalné vlhkosti, jehož vlivem ve struktuře pórovitého materiálu dochází k pohybu kapalné vody prostřednictvím kapilár v podobě kapilární vodivost vlhkosti. Platné technické normy předepisují výpočtový postup pro stanovení roční bilance zkondenzované a vypařené vodní páry. Nezohledňují však zmíněný proces kapilární vodivosti, který se vznikem vlhkosti v důsledku kondenzace vodní páry téměř vždycky nastává. V neposlední řadě není nezohledněna ani skutečnost, že vlivem vzniklé vlhkosti se mění tepelně technické vlastnosti materiálů, ve kterých tato vlhkost vzniká. Předmětem zkoumání je tedy sledování vlivů kapalné vlhkosti na fyzikální vlastnosti materiálů, především na tepelnou vodivost, a změny jejího výskytu v čase v důsledku kapilární vodivosti. Předmětem posuzování byly čtyři různé ploché střešní konstrukce v běžných i extrémních klimatických podmínkách, a sice se započtením vlivu kapilární vodivosti. Vyjádření vlhkostního pole Kapalná vlhkost, vznikající ve stavební konstrukci vlivem kondenzace vodní páry je přenášena do svého okolí. Tento pohyb kapalné vlhkosti je závislý nejen na součiniteli vlhkostní vodivosti, ale také na vlhkostním spádu. Pro hustotu hmotnostního toku kapalné vody při gradientu vlhkosti platí: dum q = κ.ρ [kg.m -2.s -1 ] (1) m s. dx κ m [m 2.s -1 ] součinitel vlhkostní vodivosti při gradientu vlhkosti ρ s [kg.m -3 ] objemová hmotnost suchého materiálu u m [%] hmotnostní vlhkost u m / dx [m -1 ] gradient vlhkosti Zavedeme-li funkci w(x,τ), vyjadřující množství vody v kg.m -3 (množství vody na jednotkový objem) v závislosti na prostoru (x-ové souřadnici) a čase τ., pak musí platit, že časová změna množství kapalné vody v konstrukci je rovna záporně vzaté prostorové změně hustoty jejího hmotnostního toku: w ( x,τ ) q( x, τ ) = [kg.m -3.s -1 ] (2)

2 q [kg.m -2.s -1 ] hustota hmotnostního toku kapalné vody x [m] prostorová souřadnice τ [s] čas Po dosazení vztahu (1) do (2): w = κ m.ρs. u m [kg.m -3.s -1 ] (3) V rovnici (3) však vystupuje derivace hmotnostní vlhkosti a po derivaci podle x: du dx 1 dw = [m -1 ] (4) ρ dx m. s Dosazením vztahu (4) do rovnice (3) a po úpravě vychází parciální diferenciální rovnice: 2 w w = κ. [kg.m -3.s -1 ] (5) m 2 Pro řešení parciálních diferenciálních rovnic je zapotřebí stanovit počáteční a okrajové podmínky. V tomto případě se jedná vzhledem k řádům jednotlivých parciálních derivací o jednu podmínku počáteční a dvě podmínky okrajové. Počáteční podmínka vychází z úvahy, že konstrukce na začátku sledovaného období neobsahuje žádnou vodu. Proto hodnota funkce w v čase τ = 0 bude rovněž nulová: w(x,0) = 0 [kg.m -3 ] (6) V případě stanovení okrajových podmínek byla využita iterační modifikace Dirichletových podmínek. Nejvhodnější metodou numerického řešení této parciální diferenciální rovnice vlhkostního pole se jeví metoda sítí. Z hlediska časové diskretizace je možné hledat řešení jednou ze tří metod lišících se ve stanovení aproximace w j / : Eulerova metoda Implicitní Eulerova metoda Crank-Nicolsonova metoda Při řešení rovnice (5) byla provedena prostorová diskretizace tak, že konstrukce byla rozdělena na 500 prostorových diskretizačních jednotek. Podobně je tomu v případě časové diskretizace. Délka časové diskretizační jednotky byla stanovena je 36 sekund. Vzhledem k tomu, že všechny výše uvedené metody jsou iterační, lze integraci dílčích řešení považovat rovněž za iterační postup. Iterační postup integrace dílčích řešení však musí zohledňovat saturaci a destauraci kapalné vody v konstrukci, tedy vliv kondenzace a vypařování. Vzhledem k dostatečně malému časovému kroku lze zanedbat spojitost tohoto procesu v rámci jednoho dne. Navíc je patrno, že konkrétní hodnoty kondenzátu nebo množství vypařené vodní páry jsme schopni stanovit pouze diskrétně pro každou časovou diskretizační jednotku zvlášť. Proto se tento kondenzát, respektive množství vypařené vodní

3 páry, započítá jako kvantitativní přírůstek, ať už v kladné či záporné hodnotě, k počáteční podmínce dílčího řešení. Rovnice (5) je řešena pro každý den zvlášť. Grafické znázornění řešení parciální diferenciální rovnice Obr. 1 Graf funkce w(x,τ) Na obrázku 1 je znázorněno rozložení kapalné vody w v časoprostoru. Z fyzikálního hlediska se dá předpokládat, že v řešené dílčí časoprostorové oblasti bude voda konvergovat k rovnoměrnému rozložení, které lze zapsat: lim w x, τ = konst (7) τ ( ). w( x, τ ) lim = 0 τ 2 w( x, τ ) lim = 0 τ 2 Konstantu ve vztahu (7) můžeme vzhledem k integrační korekci vyjádřit: G konst. = (10) x x max min kde G je celkové množství kapalné vody daném časovém okamžiku. I tento předpoklad byl ověřen numerickým výpočtem. Z obrázku 2 je zřejmá jeho platnost. Za čas τ zde byla dosazena vysoká, avšak konečná hodnota. (8) (9)

4 Obr. 2 Graf funkce w(x,τ), ověření konvergence pro τ Aplikace kapilární vodivosti v bilančním výpočtu Byla provedena posouzení čtyř plochých střešních konstrukcí v běžných i v extrémních klimatických podmínkách. konstrukce č. 1: lehká konstrukce vyhovující požadavku ČSN z hlediska součinitele prostupu tepla: U < U N, konstrukce č. 2: lehká konstrukce nevyhovující požadavku ČSN z hlediska součinitele prostupu tepla: U > U N, konstrukce č. 3: těžká konstrukce vyhovující požadavku ČSN z hlediska součinitele prostupu tepla: U < U N, konstrukce č. 4: těžká konstrukce nevyhovující požadavku ČSN z hlediska součinitele prostupu tepla: U > U N. Konstrukce č. 1 Dřevo tvrdé 40 mm 600 kg.m ,220 W.m -1.K -1 Jutafol N 110 Special 0,4 mm 440 kg.m ,390 W.m -1.K -1 ORSIL S 160 mm 100 kg.m -3 1,5 0,043 W.m -1.K -1 Tab. 1 Skladba konstrukce č. 1

5 Konstrukce č. 2 Dřevo tvrdé 40 mm 600 kg.m ,220 W.m -1.K -1 ORSIL S 30 mm 100 kg.m -3 1,5 0,043 W.m -1.K -1 Tab. 2 Skladba konstrukce č. 2 Konstrukce č. 3 Železobetonová deska 70 mm 2400 kg.m ,580 W.m -1.K -1 Jutafol N 110 Special 0,4 mm 440 kg.m ,390 W.m -1.K -1 ORSIL S 160 mm 100 kg.m -3 1,5 0,043 W.m -1.K -1 Tab. 3 Skladba konstrukce č. 3 Konstrukce č. 4 Železobetonová deska 70 mm 2400 kg.m ,580 W.m -1.K -1 ORSIL S 30 mm 100 kg.m -3 1,5 0,043 W.m -1.K -1 Tab. 4 Skladba konstrukce č. 4 V posouzení byl započítán vliv kapilární vodivosti vlhkosti. Výsledky posouzení prokázaly, že započtení kapilární vodivosti do nestacionárního bilančního výpočtu má vliv na výsledné určení efektivního a extrémního součinitele prostupu tepla i na zjištění extrémní hodnoty hmotnostní vlhkosti v kritických dnech sledovaného období. U konstrukce č. 4 (těžká konstrukce nevyhovující požadavku ČSN z hlediska součinitele prostupu tepla: U > U N.) byl prokázán nárůst efektivního součinitele prostupu tepla téměř o 9 %, nárůst extrémního součinitele prostupu tepla téměř o 14 % a nárůst extrémní hodnoty hmotnostní vlhkosti v nejkritičtějším časovém okamžiku dokonce o 97 %. Změny součinitele prostupu tepla konstrukce č. 4 v závislosti na čase demonstruje obrázek č. 3, a sice v rozsahu sledovaného období, kterým byl jeden rok.

6 Obr. 3 Časový průběh okamžitého součinitele prostupu tepla konstrukce č. 4 Na obrázku č 4. jsou vyjádřeny zjištěné změny hmotnostní vlhkosti v nejkritičtějším místě sledované konstrukce. Obr. 4 Časový průběh hodnot hmotnostní vlhkosti v nejkritičtějším místě konstrukce Výše uvedené konstrukce byly pro srovnání položeny do extrémních klimatických podmínek. Pro tento účel byla zvolena oblast Krkonoš. Vstupní hodnoty okrajových podmínek (teploty a vlhkosti vzduchu exteriéru) pro tuto lokalitu byly převzaty z údajů Českého hydrometeorologického ústavu [1]. Také zde se prokázal velký vliv započtení kapilární vodivosti do nestacionárního bilančního výpočtu na sledované veličiny, a to dokonce mnohem zřetelněji. U konstrukce č. 4 v extrémních klimatických podmínkách byl prokázán nárůst efektivního součinitele prostupu tepla o 14 %, nárůst extrémního součinitele prostupu tepla o 22 % a nárůst extrémní hodnoty hmotnostní vlhkosti v nejkritičtějším časovém okamžiku dokonce o 146 %.

7 Závěr Bylo prokázáno, že kapilární vodivost kapalné vlhkosti má vliv na nestacionární bilanční výpočet především v případě plochých střešních konstrukcí a že způsobuje časové změny vlhkosti v použitých pórovitých materiálech, což ovlivní jejich schopnost tepelné vodivosti. Z tohoto důvodu se mění v čase také součinitel prostupu tepla celé konstrukce. Započtení jevu kapilární vodivosti kapalné vlhkosti do tepelně technických výpočtů přispívá ke komplexnějšímu posouzení stavebních konstrukcí i objektů jako celku a tím přispívá k objektivnějšímu hodnocení tepelně technické kvality objektu. Extrémní hodnoty hmotnostní vlhkosti v kritických dnech sledovaného období mohou za jistých okolností poškodit tepelně izolační vrstvu do takové míry, že již dál není schopna plnit svoji funkci. Na základě takto zjišťovaných skutečností je možné předcházet vadám a poruchám stavebních konstrukcí. Poděkování Tento příspěvek vznikl na základě plnění dílčích úkolů k výzkumnému záměru MSM Progresivní stavební materiály s využitím druhotných surovin a jejich vliv na životnost konstrukcí, zejména díky materiální podpoře ÚPST FAST VUT v Brně. Literatura [1] Denní klimatické údaje vybraných stanic ČHMÚ z let 1982 až 2002, ČHMÚ Praha 2002 [2] Dalík, J. Matematika, Numerické metody, Brno 1992 [3] Mrlík, F. Vlhkostné problémy stavebných materiálov a konštrukcií, ALFA Bratislava 1985 [4] Halahyja, M., Chmúrny, I., Sternová, Z. Stavebná tepelná technika, JAGA Bratislava 1998 [5] Škramlik, J. Kapilárná vodivost stavebních materiálů, disertační práce, Brno 2006 [6] Fuciman, O. Analýza vlhkostních procesů obalových konstrukcí, disertační práce, Brno 2005 [7] ČSN EN ISO 6946 Stavební prvky a stavební konstrukce tepelný odpor a součinitel prostupu tepla výpočtová metoda, 1998 [8] ČSN EN ISO Tepelně vlhkostní chování stavebních dílců a stavebních prvků vnitřní povrchová teplota pro vyloučení kritické povrchové vlhkosti a kondenzace uvnitř konstrukce výpočtové metody, 2002 [9] ČSN Tepelná ochrana budov, 2002 [10] ČSN Navrhování střech, 1998

VLIV KOTVENÍ PAROTĚSNÍCÍ VRSTVY NAJEJÍ VLASTNOSTI

VLIV KOTVENÍ PAROTĚSNÍCÍ VRSTVY NAJEJÍ VLASTNOSTI Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze VLIV KOTVENÍ PAROTĚSNÍCÍ VRSTVY NAJEJÍ VLASTNOSTI ABSTRAKT Při jednoduchém výpočtu zkondenzovaného množství vlhkosti uvnitř

Více

Protokol č. V- 213/09

Protokol č. V- 213/09 Protokol č. V- 213/09 Stanovení součinitele prostupu tepla U, lineárního činitele Ψ a teplotního činitele vnitřního povrchu f R,si podle ČSN EN ISO 10077-1, 2 ; ČSN EN ISO 10211-1, -2, a ČSN 73 0540 Předmět

Více

Obr. 3: Pohled na rodinný dům

Obr. 3: Pohled na rodinný dům Samostatně stojící dvoupodlažní rodinný dům. Obvodové stěny jsou vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis. Střecha je pultová bez. Je provedeno

Více

VLHKOST VE STŘEŠE JAKO ČASOVANÁ BOMBA

VLHKOST VE STŘEŠE JAKO ČASOVANÁ BOMBA VLHKOST VE STŘEŠE JAKO ČASOVANÁ BOMBA Petr Slanina Pro citování: Slanina, P. (2014). Vlhkost ve střeše jako časovaná bomba. In Zborník z bratislavského sympózia Strechy 2014 (pp. 42-48), Bratislava: STU

Více

s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8

s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8 s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8 s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y

Více

EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍČECHY ECHY DOLNÍ BAVORSKO Vytápěnía využitíobnovitelných zdrojůenergie se zaměřením na nízkoenergetickou a pasivní výstavbu Parametry pasivní výstavby Investice do Vaší

Více

Detail nadpraží okna

Detail nadpraží okna Detail nadpraží okna Zpracovatel: Energy Consulting, o.s. Alešova 21, 370 01 České Budějovice 386 351 778; 777 196 154 roman@e-c.cz Autor: datum: leden 2007 Ing. Roman Šubrt a kolektiv Lineární činitelé

Více

Parozábrany v plochých střechách

Parozábrany v plochých střechách Parozábrany v plochých střechách Ing. Petr Slanina 1. Úvod Při navrhování jednoplášťových plochých střech s klasickým pořadím vrstev nad prostory s tepelnými požadavky je nezbytné navrhnou ve střešním

Více

Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav

Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav Obsah: Úvod... 1 Identifikační údaje... 1 Seznam podkladů... 2 Tepelné technické posouzení... 3 Energetické vlastnosti objektu... 10 Závěr... 11 Příloha č.1: Tepelně technické posouzení konstrukcí obálky

Více

Jak správně navrhovat ETICS. Ing. Vladimír Vymětalík, VISCO s.r.o.

Jak správně navrhovat ETICS. Ing. Vladimír Vymětalík, VISCO s.r.o. Jak správně navrhovat ETICS Ing. Vladimír Vymětalík, VISCO s.r.o. Obsah přednášky! Výrobek vnější tepelně izolační kompozitní systém (ETICS)! Tepelně technický návrh ETICS! Požárně bezpečnostní řešení

Více

w w w. ch y t r a p e n a. c z

w w w. ch y t r a p e n a. c z CHYTRÁ PĚNA - střešní systém EKO H ROOF Jedním z mnoha využití nástřikové izolace Chytrá pěna EKO H ROOF jsou ploché střechy. Náš střešní systém je složen ze dvou komponentů, které jsou aplikovány přímo

Více

Vytápění BT01 TZB II - cvičení

Vytápění BT01 TZB II - cvičení Vytápění BT01 TZB II - cvičení BT01 TZB II HARMONOGRAM CVIČENÍ AR 2012/2012 Týden Téma cvičení Úloha (dílní úlohy) Poznámka Stanovení součinitelů prostupu tepla stavebních Zadání 1, slepé matrice konstrukcí

Více

Správné návrhy tepelné izolace plochých střech a chyby při realizaci Pavel Přech projektový specialista

Správné návrhy tepelné izolace plochých střech a chyby při realizaci Pavel Přech projektový specialista Správné návrhy tepelné izolace plochých střech a chyby při realizaci Pavel Přech projektový specialista Návrhy skladeb plochých střech Úvod Návrhy skladeb,řešení Nepochůzná střecha Občasně pochůzná střecha

Více

Tepelně technické vlastnosti zdiva

Tepelně technické vlastnosti zdiva Obsah 1. Úvod 2 2. Tepelná ochrana budov 3-4 2.1 Závaznost požadavků 3 2.2 Budovy které musí splňovat normové požadavky 4 ČSN 73 0540-2(2007) 5 2.3 Ověřování požadavků 4 5 3. Vlastnosti použitých materiálů

Více

Posudek k určení vzniku kondenzátu na izolačním zasklení oken

Posudek k určení vzniku kondenzátu na izolačním zasklení oken Posudek k určení vzniku kondenzátu na izolačním zasklení oken Firma StaniOn s.r.o. Kamenec 1685 Bystřice pod Hostýnem Zkušební technik: Stanislav Ondroušek Telefon: 773690977 EMail: stanion@stanion.cz

Více

VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO

VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO VZHLEDEM K POLOZE ČESKÉ REPUBLIKY PATŘÍ TEPELNĚ-VLHKOSTNÍ VLASTNOSTI KONSTRUKCÍ A STAVBY MEZI ZÁKLADNÍ POŽADAVKY SLEDOVANÉ ZÁVAZNOU LEGISLATIVOU. NAŠÍM CÍLEM JE

Více

Zkoušky otvorových výplní Technický a zkušební ústav stavební Praha, s.p. 2006

Zkoušky otvorových výplní Technický a zkušební ústav stavební Praha, s.p. 2006 TZÚS, s.p., pobočka Praha 1/ Mechanické zkoušky 2/ Klimatické zkoušky 3/ Tepelně technické zkoušky 1/ Mechanické zkoušky odolnost proti svislému zatížení deformace křídla při zatížení svislou silou v otevřené

Více

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ÚVOD 2 ENERGETICKY

Více

Skladba konstrukce (od interiéru k exteriéru) Vlastnosti konstrukce

Skladba konstrukce (od interiéru k exteriéru) Vlastnosti konstrukce Obvodová stěna s předstěnou U=0,18 W/m 2.K Materiál l [W.m 1.K 1 ] m Třída 12,5 Sádrovláknitá deska Fermacell 0,320 13,00 A2 40 Dřevovláknitá izolace Steico Flex/ latě 40x50 0,038 0,50 E 160 Dřevovláknitá

Více

STAVEBNÍ FYZIKA Tepelné mosty

STAVEBNÍ FYZIKA Tepelné mosty Obecně jsou části stavebních konstrukcí, ve kterých dochází z důvodů materiálových nebo konstrukčních k vyšším ztrátám tepla než v okolních stavebních konstrukcích. Tyto zvýšené ztráty tepla mají za následek

Více

ENERGETICKÁ NÁROČNOST BUDOV

ENERGETICKÁ NÁROČNOST BUDOV ENERGETICKÁ NÁROČNOST BUDOV Ing. Jiří Labudek, Ph.D. 1. ENERGIE, BUDOVY A EVROPSKÁ UNIE Spotřeba energie trvale a exponenciálně roste a dle prognózy z roku 2007 lze očekávat v období 2005 až 2030 nárůst

Více

PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ

PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ Ing. Jindřich Mrlík O netěsnosti a průvzdušnosti stavebních výrobků ze zkušební laboratoře; klasifikační kriteria průvzdušnosti oken a dveří, vrat a lehkých obvodových plášťů;

Více

BYTOVÝ DŮM MINSKÁ 190/62, BRNO zpracovaný podle vyhlášky 148/2007 Sb.

BYTOVÝ DŮM MINSKÁ 190/62, BRNO zpracovaný podle vyhlášky 148/2007 Sb. ZPRACOVATEL : PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY BYTOVÝ DŮM MINSKÁ 190/62, BRNO zpracovaný podle vyhlášky 148/2007 Sb. PROJEKTOVANÝ STAV KRAJSKÁ ENERGETICKÁ AGENTURA, S.R.O. VRÁNOVA 1002/131, BRNO TERMÍN

Více

Přesvědčivost výsledků výpočtu potřeby tepla na vytápění pasivních domů

Přesvědčivost výsledků výpočtu potřeby tepla na vytápění pasivních domů Přesvědčivost výsledků výpočtu potřeby tepla na vytápění pasivních domů Pavel Kopecký, Kamil Staněk, Jan Antonín, ČVUT, Fakulta stavební Thákurova 7, 166 29 Praha 6 Tel.: +420 224 354 473, e-mail: pavel.kopecky@fsv.cvut.cz

Více

PORUCHY DVOUPLÁŠŤOVÝCH PLOCHÝCH STŘECH

PORUCHY DVOUPLÁŠŤOVÝCH PLOCHÝCH STŘECH PORUCHY DVOUPLÁŠŤOVÝCH PLOCHÝCH STŘECH Miloslav Novotný 1 Abstrakt Dvouplášťové ploché střechy jsou v současné době vzhledem k zásadnímu zvýšení kvality materiálů pro jednoplášťové ploché střechy (tepelné

Více

Ověřovací nástroj PENB MANUÁL

Ověřovací nástroj PENB MANUÁL Ověřovací nástroj PENB MANUÁL Průkaz energetické náročnosti budovy má umožnit majiteli a uživateli jednoduché a jasné porovnání kvality budov z pohledu spotřeb energií Ověřovací nástroj kvality zpracování

Více

ENERGETICKÁ NÁROČNOST BUDOV - ZMĚNY LEGISLATIVY

ENERGETICKÁ NÁROČNOST BUDOV - ZMĚNY LEGISLATIVY ENERGETICKÁ NÁROČNOST BUDOV - ZMĚNY LEGISLATIVY Tereza Šulcová tech.poradce@uralita.com 602 439 813 www.ursa.cz Směrnice o energetické náročnosti budov 2010/31/EU Směrnice ze dne 19.května 2010 o energetické

Více

VÝPOČET TEPELNÝCH ZTRÁT

VÝPOČET TEPELNÝCH ZTRÁT VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota

Více

Pohled na energetickou bilanci rodinného domu

Pohled na energetickou bilanci rodinného domu Pohled na energetickou bilanci rodinného domu Miroslav Urban Katedra technických zařízení budov Stavební fakulta, ČVUT v Praze Univerzitní centrum energeticky efektivních budov UCEEB 2 Obsah prezentace

Více

rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva

rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva Jiří Novák činnost technických poradců v oblasti stavebnictví květen 2006 Obsah Obsah...1 Zadavatel...2

Více

Statický výpočet střešního nosníku (oprava špatného návrhu)

Statický výpočet střešního nosníku (oprava špatného návrhu) Statický výpočet střešního nosníku (oprava špatného návrhu) Obsah 1 Obsah statického výpočtu... 3 2 Popis výpočtu... 3 3 Materiály... 3 4 Podklady... 4 5 Výpočet střešního nosníku... 4 5.1 Schéma nosníku

Více

DOBA KONDENZACE VODNÍCH PAR V OBLASTI ZASKLÍVACÍ SPÁRY OKENNÍCH KONSTRUKCÍ

DOBA KONDENZACE VODNÍCH PAR V OBLASTI ZASKLÍVACÍ SPÁRY OKENNÍCH KONSTRUKCÍ DOBA KONDENZACE VODNÍCH PAR V OBLASTI ZASKLÍVACÍ SPÁRY OKENNÍCH KONSTRUKCÍ Ing. Roman Jirák, Ph.D. V posledních letech je vidět progresivní trend snižovaní spotřeby energie provozu budov. Rozšiřují se

Více

Směrnice EP a RADY 31/2010/EU

Směrnice EP a RADY 31/2010/EU Ing. Jaroslav Šafránek,CSc Centrum stavebního inženýrství a.s. Směrnice EP a RADY 31/2010/EU Zavádí nové požadavky na energetickou náročnost budov Revize zák. č. 406/2000 Sb. ve znění zák. č. 318/2012

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Nízkoenergetický rodinný dům v Roztokách u Prahy - praktické zkušenosti z realizace dřevostavby, porovnání s návrhem

Nízkoenergetický rodinný dům v Roztokách u Prahy - praktické zkušenosti z realizace dřevostavby, porovnání s návrhem Nízkoenergetický rodinný dům v Roztokách u Prahy - praktické zkušenosti z realizace dřevostavby, porovnání s návrhem Jan Růžička*) **), Radek Začal**) *) Fakulta stavební ČVUT v Praze, Thákurova 7, 166

Více

Ing. Pavel Šuster. březen 2012

Ing. Pavel Šuster. březen 2012 1. VŠEOBECNĚ 1.1. Předmět 1.2. Úkol 1.3. Zadavatel 1.4. Zpracovatel 1.5. Vypracoval 1.6. Zpracováno v období Bytový dům Peškova 6, Olomouc Jiří Velech byt pod střechou v 5.NP Diagnostika parametrů vnitřního

Více

Tepelná technika II. Ing. Pavel Heinrich. heinrich@heluz.cz. Produkt manažer. 5.4.2012 Ing. Pavel Heinrich

Tepelná technika II. Ing. Pavel Heinrich. heinrich@heluz.cz. Produkt manažer. 5.4.2012 Ing. Pavel Heinrich Tepelná technika II Ing. Pavel Heinrich Produkt manažer heinrich@heluz.cz 5.4.2012 Ing. Pavel Heinrich 1 Tepelná technika II Zdivo a ČSN 73 0540-2:2011 Konstrukční detaily Vzduchotechnika Technologie zdění

Více

TEPELNÁ OCHRANA BUDOV VE STAVEBNÍM SYSTÉMU KB-BLOK

TEPELNÁ OCHRANA BUDOV VE STAVEBNÍM SYSTÉMU KB-BLOK systém vibrolisovaných betonových prvků TECHNICKÁ ČÁST TEPELNÁ OCHRANA BUDOV VE STAVEBNÍM SYSTÉMU KB-BLOK TECHNICKÁ ČÁST TECHNICKÁ ČÁST TEPELNÁ OCHRANA BUDOV VE STAVEBNÍM SYSTÉMU KB-BLOK Zpracoval: Ing.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Kolektor: SK 218 Objednatel:

Více

PROJEKT PRO STAVEBNÍ POVOLENÍ AREÁL BYDLENÍ CHMELNICE, BRNO - LÍŠEŇ zpracovaný podle vyhlášky 148/2007 Sb.

PROJEKT PRO STAVEBNÍ POVOLENÍ AREÁL BYDLENÍ CHMELNICE, BRNO - LÍŠEŇ zpracovaný podle vyhlášky 148/2007 Sb. PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY ZPRACOVATEL : TERMÍN : 11.9.2014 PROJEKT PRO STAVEBNÍ POVOLENÍ AREÁL BYDLENÍ CHMELNICE, BRNO - LÍŠEŇ zpracovaný podle vyhlášky 148/2007 Sb. PROJEKTOVANÝ STAV KRAJSKÁ

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy Protokol k průkazu energetické náročnosti budovy (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Účel budovy: Kód obce: 535389 Kód katastrálního území: 793353 Parcelní

Více

Problematika dodržení normy ČSN 730540 při výrobě oken

Problematika dodržení normy ČSN 730540 při výrobě oken Problematika dodržení normy ČSN 730540 při výrobě oken Tato norma platná od 1.12.2002 stanovuje z hlediska výroby oken určených pro nepřerušovaně vytápěné prostory 2 zásadní hodnoty: 1.součinitel prostupu

Více

Termografická diagnostika pláště objektu

Termografická diagnostika pláště objektu Termografická diagnostika pláště objektu Firma AFCITYPLAN s.r.o. Jindřišská 17 Praha 1 Zkušební technik: Ing. Daniel Bubenko Telefon: EMail: +420 739 057 826 daniel.bubenko@afconsult. com Přístroj TESTO

Více

B. ZKUŠEBNÍ OTÁZKY PRO ENERGETICKÉ SPECIALISTY OPRÁVNĚNÉ KE ZPRACOVÁVÁNÍ PRŮKAZŮ ENERGETICKÉ NÁROČNOSTI BUDOV

B. ZKUŠEBNÍ OTÁZKY PRO ENERGETICKÉ SPECIALISTY OPRÁVNĚNÉ KE ZPRACOVÁVÁNÍ PRŮKAZŮ ENERGETICKÉ NÁROČNOSTI BUDOV B. ZKUŠEBNÍ OTÁZKY PRO ENERGETICKÉ SPECIALISTY OPRÁVNĚNÉ KE ZPRACOVÁVÁNÍ PRŮKAZŮ ENERGETICKÉ NÁROČNOSTI BUDOV Ministerstvo průmyslu a obchodu 2015 ENERGETICKÝ AUDIT, ENERGETICKÝ POSUDEK A SOUVISEJÍCÍ LEGISLATIVA

Více

Dřevo hoří bezpečně chování dřeva a dřevěných konstrukcí při požáru

Dřevo hoří bezpečně chování dřeva a dřevěných konstrukcí při požáru ČVUT v Praze, Fakulta stavební Katedra ocelových a dřevěných konstrukcí Dřevo hoří bezpečně chování dřeva a dřevěných konstrukcí při požáru Petr Kuklík České Budějovice, Kongresové centrum BAZILIKA 29.

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy Protokol k průkazu energetické náročnosti budovy (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Účel budovy: Kód obce: Kód katastrálního území: Parcelní číslo: Vlastník

Více

č.. 6: Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018

č.. 6: Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Pedologické praktikum - téma č.. 6: Práce v pedologické laboratoři - půdní fyzika Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Půdní

Více

Tepelné mosty v pasivních domech

Tepelné mosty v pasivních domech ing. Roman Šubrt Energy Consulting Tepelné mosty v pasivních domech e-mail: web: roman@e-c.cz www.e-c.cz tel.: 777 96 54 Sdružení Energy Consulting - KATALOG TEPELNÝCH MOSTŮ, Běžné detaily - Podklady pro

Více

I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU

I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU I. diskusní fórum K projektu Cesty na zkušenou Na téma Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) které se konalo dne 30. září 2013 od 12:30 hodin v místnosti H108

Více

Posouzení ohrožení osob polykarbonátovými konstrukcemi

Posouzení ohrožení osob polykarbonátovými konstrukcemi Posouzení ohrožení osob polykarbonátovými konstrukcemi Ing. Jiří Pokorný, Ph.D. Hasičský záchranný sbor Moravskoslezského kraje územní odbor Opava Těšínská 39, 746 0 Opava e-mail: jiripokorny@mujmail.cz

Více

Termodiagnostika v praxi, aneb jaké měření potřebujete

Termodiagnostika v praxi, aneb jaké měření potřebujete Termodiagnostika v praxi, aneb jaké měření potřebujete 2012 Ing. Viktor Zwiener, Ph.D. Tepelné ztráty v domech jsou způsobeny prostupem tepla konstrukcemi s nedostatečným tepelným odporem nebo prouděním

Více

ČSN EN ISO 9001:2009 PROMASPRAY T. tepelně izolační nástřik na stavební konstrukce. www.promatpraha.cz

ČSN EN ISO 9001:2009 PROMASPRAY T. tepelně izolační nástřik na stavební konstrukce. www.promatpraha.cz ČSN EN ISO 9001:2009 PROMASPRAY T tepelně izolační nástřik na stavební konstrukce PROMASPRAY T PROMASPRAY T Jednosložková suchá omítková směs pro použití ve stavebnictví Úvod PROMASPRAY T je průmyslově

Více

ZAKLÁDÁNÍ PASIVNÍCH DOMŮ V ENERGETICKÝCH A EKONOMICKÝCH SOUVISLOSTECH. Ing. Ondřej Hec ATELIER DEK

ZAKLÁDÁNÍ PASIVNÍCH DOMŮ V ENERGETICKÝCH A EKONOMICKÝCH SOUVISLOSTECH. Ing. Ondřej Hec ATELIER DEK 1 ZAKLÁDÁNÍ PASIVNÍCH DOMŮ V ENERGETICKÝCH A EKONOMICKÝCH SOUVISLOSTECH Ing. Ondřej Hec ATELIER DEK 2 ÚVOD PASIVNÍ DOMY JSOU OBJEKTY S VELMI NÍZKOU POTŘEBOU ENERGIE NA VYTÁPĚNÍ PRO DOSAŽENÍ TOHOTO STAVU

Více

- zásady návrhu - základní skladby - stabilizace střešních plášťů

- zásady návrhu - základní skladby - stabilizace střešních plášťů JEDNOPLÁŠŤOVÉPLOCHÉSTŘECHY - zásady návrhu - základní skladby - stabilizace střešních plášťů Ing. Tomáš PETŘÍČEK e-mail: petricek.t@fce.vutbr.cz 02/2012, Brno snímek: 1 ZÁKLADNÍ INFORMACE Plochá střecha

Více

A. 1 Skladba a použití nosníků

A. 1 Skladba a použití nosníků GESTO Products s.r.o. Navrhování nosníků I Stabil na účinky zatížení výchozí normy ČSN EN 1990 Zásady navrhování konstrukcí ČSN EN 1995-1-1 ČSN 731702 modifikace DIN 1052:2004 navrhování dřevěných stavebních

Více

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled Petr Hájek, Ctislav Fiala Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

ZPRÁVA ENVIROS, s.r.o. - LEDEN 2013 SPOLEČENSTVÍ NA STEZCE 489/6 PRAHA 10 PRŮKAZ ENERGETICKÉ NÁROČNOSTI BYTOVÉHO DOMU

ZPRÁVA ENVIROS, s.r.o. - LEDEN 2013 SPOLEČENSTVÍ NA STEZCE 489/6 PRAHA 10 PRŮKAZ ENERGETICKÉ NÁROČNOSTI BYTOVÉHO DOMU ZPRÁVA ENVIROS, s.r.o. - LEDEN 2013 SPOLEČENSTVÍ NA STEZCE 489/6 PRAHA 10 PRŮKAZ ENERGETICKÉ NÁROČNOSTI BYTOVÉHO DOMU PRŮKAZ ENERGETICKÉ NÁROČNOSTI BYTOVÉHO DOMU Název publikace Referenční číslo Průkaz

Více

OPRAVA HYDROIZOLACE STŘECHY NAD BAZÉNEM

OPRAVA HYDROIZOLACE STŘECHY NAD BAZÉNEM OPRAVA HYDROIZOLACE STŘECHY NAD BAZÉNEM TECHNIK ATELIERU DEK, PŮSOBÍCI NA POBOČCE V BRNĚ, SE VYDAL ZA REALIZAČNÍ FIRMOU, ABY JÍ POSKYTL TECHNICKOU PODPORU PŘI ŘEŠENÍ OBNOVY HYDROIZOLACE STŘECHY BAZÉNOVÉ

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

Nízkoenergetické a pasivní stavby

Nízkoenergetické a pasivní stavby Nízkoenergetické a pasivní stavby Bakalářský studijní program Ing. Pavlína Charvátová 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými

Více

TOB - Tepelná ochrana budov

TOB - Tepelná ochrana budov Charakteristika programu TOB Program TOB v. 13 je určen k posuzování stavebních konstrukcí dle ČSN 73 0540-2:2007 Tepelná ochrana budov a ČSN EN ISO 6946 Tepelný odpor a součinitel prostupu tepla. Umožňuje

Více

Kondenzace vlhkosti na oknech

Kondenzace vlhkosti na oknech Kondenzace vlhkosti na oknech Úvod: Problematika rosení oken je věčným tématem podzimních a zimních měsíců. Stále se nedaří vysvětlit jev kondenzace vlhkosti na zasklení široké obci uživatelů plastových

Více

Vzor průkazu energetické náročnosti budovy

Vzor průkazu energetické náročnosti budovy Vzor průkazu energetické náročnosti budovy Příloha č. 4 k vyhlášce č. 148/2007 Sb. (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, popisné číslo, PSČ): Účel budovy: Kód obce: Kód

Více

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D17_Z_MOLFYZ_Jevy_na_rozhrani_pevneho_tel esa_a_kapaliny_pl Člověk a příroda Fyzika

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Svatý Jan - Radobyl - 8, 262 56 Krásná Hora parc. č. st. 53 dle Vyhl.

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Svatý Jan - Radobyl - 8, 262 56 Krásná Hora parc. č. st. 53 dle Vyhl. PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Svatý Jan Radobyl 8, 262 56 Krásná Hora parc. č. st. 53 dle Vyhl. 148/2007 Sb Zadavatel: Jiří Sedlák, Krásná Hora 124, 262 56 Energetický auditor: ING.

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY bytový dům, Lumiérů 390/3, Praha Hlubočepy, 152 00 parc. č. 866 dle Vyhl. 148/2007 Sb

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY bytový dům, Lumiérů 390/3, Praha Hlubočepy, 152 00 parc. č. 866 dle Vyhl. 148/2007 Sb PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY bytový dům, Lumiérů 390/3, Praha Hlubočepy, 152 00 parc. č. 866 dle Vyhl. 148/2007 Sb Zadavatel: Ivo Bláha, Lumiérů 390/3, Praha Hlubočepy, 152 00 Energetický auditor:

Více

Obsah dokumentace: A. PRŮVODNÍ ZPRÁVA B. SOUHRNNÁ TECHNICKÁ ZPRÁVA C. SITUAČNÍ VÝKRESY D. DOKUMENTACE OBJEKTŮ A TECHNICKÝCH A TECHNOLOGICKÝCH ZAŘÍZENÍ E. DOKLADOVÁ ČÁST 1) Stavební objekty SO 2) Inženýrské

Více

Věc: Stížnost na rozpor mezi českou a evropskou technickou normou dopis č.3. Vážený pane inženýre,

Věc: Stížnost na rozpor mezi českou a evropskou technickou normou dopis č.3. Vážený pane inženýre, Ing. Milan Holeček Předseda úřadu Úřad pro technickou normalizaci, metrologii a statní zkušebnictví Gorazdova 24 P.O. Box 49 128 01 Praha 2 V Praze dne 3.února 2012 Věc: Stížnost na rozpor mezi českou

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

IDEÁLNÍ NÁVRH PLOCHÉ STŘECHY Z HLEDISKA ŠÍŘENÍ VLHKOSTI. Petr Slanina

IDEÁLNÍ NÁVRH PLOCHÉ STŘECHY Z HLEDISKA ŠÍŘENÍ VLHKOSTI. Petr Slanina IDEÁLNÍ NÁVRH PLOCHÉ STŘECHY Z HLEDISKA ŠÍŘENÍ VLHKOSTI Petr Slanina Ing. Petr Slanina Fakulta stavební, ČVUT v Praze, Česká republika, petr.slanina@fsv.cvut.cz IDEÁLNÍ NÁVRH PLOCHÉ STŘECHY Z HLEDISKA

Více

Půdní vestavba v ZŠ Dolní Bečva

Půdní vestavba v ZŠ Dolní Bečva Změna Stručný popis změny Datum Podpis Zodpovědný projektant: Ing. Petr Vašíček Ing. Petr Vašíček Ing. Petr Vašíček Místo stavby: Katastr: Investor: stavby: Objekt: Projektant: Dolní Bečva 578, p.č. st.

Více

Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu

Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu Aby bylo možno provést porovnání energetické náročnosti pasivního domu (PD), nízkoenergetického domu

Více

NOBASIL PTN PTN. www.knaufinsulation.cz. Deska z minerální vlny

NOBASIL PTN PTN. www.knaufinsulation.cz. Deska z minerální vlny Deska z minerální vlny NOBASIL PTN MW-EN 13162-T6-DS(TH)-CP5-SD20-WS-WL(P) MW-EN 13162-T6-DS(TH)-CP5-SD15-WS-WL(P) MW-EN 13162-T6-DS(TH)-CP5-SD10-WS-WL(P) EC certifikáty shody Reg.-Nr.: K1-0751-CPD-146.0-01-01/07

Více

ZATEPLOVACÍ SYSTÉMY - ZÁSADY SPRÁVNÉHO NAVRHOVÁNÍ

ZATEPLOVACÍ SYSTÉMY - ZÁSADY SPRÁVNÉHO NAVRHOVÁNÍ ZATEPLOVACÍ SYSTÉMY - ZÁSADY SPRÁVNÉHO NAVRHOVÁNÍ DŮVODY PROČ ZATEPLOVAT Když se řekne zateplovací systém, téměř každý si vybaví nějakou fasádu kde viděl, jak se na celou plochu fasády,,něco,, lepí. Pravděpodobně

Více

Ceníkový katalog. od 1. 4. 2015. Dejte Vaší stavbě zelenou NYNÍ V ŠEDÉ I BÍLÉ

Ceníkový katalog. od 1. 4. 2015. Dejte Vaší stavbě zelenou NYNÍ V ŠEDÉ I BÍLÉ Ceníkový katalog od 1. 4. 2015 Dejte Vaší stavbě zelenou NYNÍ V ŠEDÉ I BÍLÉ Proč Pórobeton Ostrava? Jsme ryze česká společnost s více jak 50 letou tradicí. Díky zásadní modernizaci výrobní technologie

Více

REKONSTRUKCE STŘEŠNÍHO PLÁŠTĚ NA OBJEKTECH Č. 1-4 DOMOVA PRO SENIORY ĎÁBLICE - STŘEDISKO SLUNEČNICE, NA HRANICÍCH 674, 181 00 PRAHA 8

REKONSTRUKCE STŘEŠNÍHO PLÁŠTĚ NA OBJEKTECH Č. 1-4 DOMOVA PRO SENIORY ĎÁBLICE - STŘEDISKO SLUNEČNICE, NA HRANICÍCH 674, 181 00 PRAHA 8 REKONSTRUKCE STŘEŠNÍHO PLÁŠTĚ NA OBJEKTECH Č. 1-4 DOMOVA PRO SENIORY ĎÁBLICE - STŘEDISKO SLUNEČNICE, NA HRANICÍCH 674, 181 00 PRAHA 8 PROJEKTOVÁ DOKUMENTACE PRO VÝBĚROVÉ ŘÍZENÍ A. PRŮVODNÍ ZPRÁVA PRAHA

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy Protokol k průkazu energetické náročnosti budovy (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Slivenec "Na Štěpánce" etapa II Lb 4 Účel budovy: bytový dům Kód obce:

Více

Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod -

Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod - Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod - M. Jahoda Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty,

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

ENERGETICKÁ OPTIMALIZACE PAVILONU ŠKOLNÍ JÍDELNY - ŽDÍREC NAD DOUBRAVOU

ENERGETICKÁ OPTIMALIZACE PAVILONU ŠKOLNÍ JÍDELNY - ŽDÍREC NAD DOUBRAVOU ENERGETICKÁ OPTIMALIZACE PAVILONU ŠKOLNÍ JÍDELNY - ŽDÍREC NAD DOUBRAVOU Technická zpráva 1.Identifikační údaje Název stavby: Energetická optimalizace školní jídelny Ždírec nad Doubravou Místo stavby: Kraj:

Více

tpf.cz @tpf.cz www.t 40 621 E : tpf@ T: +420 271740621 00 Praha 10 12/273 101 TPF s.r.o. Krymská

tpf.cz @tpf.cz www.t 40 621 E : tpf@ T: +420 271740621 00 Praha 10 12/273 101 TPF s.r.o. Krymská 12/273 101 00 Praha 10 T : +420 27174 40 621 E : tpf@ @ www.t LEHKÉ OBVODOVÉ PLÁŠTĚ (LOP) Ing. Roman Zahradnický TPF s.r.o., Krymská 12/273, 10100 Praha 10 T: +420 271740621 M: +420 602321149 zahradnicky@

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

TERMOGRAFIE A PRŮVZDUŠNOST LOP

TERMOGRAFIE A PRŮVZDUŠNOST LOP 1 TERMOGRAFIE A PRŮVZDUŠNOST LOP 5 5 národní konference LOP 20.3. 2012 Clarion Congress Hotel Praha **** národ Ing. Viktor ZWIENER, Ph.D. 2 prodej barevných obrázků 3 prodej barevných obrázků 4 laický

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.12

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.12 Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.12 Radek FABIAN 1, Filip ČMIEL 2 POSOUZENÍ KONSTRUKČNÍCH OPATŘENÍ TERMOVIZNÍM

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,

Více

NAVRHOVÁNÍ PLOCHÝCH STŘECH SYSTÉMOVÁ PLOCHÁ STŘECHA. IZOLACE puren PIR. Prezentující : Luděk Kovář

NAVRHOVÁNÍ PLOCHÝCH STŘECH SYSTÉMOVÁ PLOCHÁ STŘECHA. IZOLACE puren PIR. Prezentující : Luděk Kovář NAVRHOVÁNÍ PLOCHÝCH STŘECH SYSTÉMOVÁ PLOCHÁ STŘECHA IZOLACE puren PIR Prezentující : Luděk Kovář SP-T zateplená střecha na trapézovém plechu s tepelnou izolací z PIR desek, mechanicky kotvená, [U=0,22

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Typ budovy, místní označení: RD - Rodinný dům Adresa budovy: Celková podlahová plocha A c : 146.

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Typ budovy, místní označení: RD - Rodinný dům Adresa budovy: Celková podlahová plocha A c : 146. PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Typ budovy, místní označení: RD - Rodinný dům Adresa budovy: Celková podlahová plocha A c : 146.8 m 2

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

pasivní domy HELUZ FAMILY nízkoenergetické domy energeticky úsporné domy NOVINKA PRO PASIVNÍ A NÍZKOENERGETICKÉ STAVBY

pasivní domy HELUZ FAMILY nízkoenergetické domy energeticky úsporné domy NOVINKA PRO PASIVNÍ A NÍZKOENERGETICKÉ STAVBY NG nová generace stavebního systému pasivní domy nízkoenergetické domy A B HELUZ FAMILY energeticky úsporné domy C D HELUZ FAMILY NOVINKA PRO PASIVNÍ A NÍZKOENERGETICKÉ STAVBY HELUZ FAMILY 50 nadstandardní

Více

BDX. Zateplovací sada. Zateplovací sada BDX se skládá ze tří částí:

BDX. Zateplovací sada. Zateplovací sada BDX se skládá ze tří částí: BDX Zateplovací sada Zateplovací sada BDX se skládá ze tří částí: a montážními úhelníky pro snadnou instalaci. Izolační rám BDX Tepelně izolační rám z polyethylenové pěnové izolace snízkým součinitelem

Více

Stavební materiály ze dřeva šetrné k životnímu prostředí. Přehled výrobků. staráme se. o vaše zdraví a pohodlí. Samozřejmě lépe izolovat

Stavební materiály ze dřeva šetrné k životnímu prostředí. Přehled výrobků. staráme se. o vaše zdraví a pohodlí. Samozřejmě lépe izolovat Stavební materiály ze dřeva šetrné k životnímu prostředí Přehled výrobků staráme se o vaše zdraví a pohodlí Samozřejmě lépe izolovat DŘEVO A KONOPÍ - DARY PŘÍRODY Dřevo jako přírodní obnovitelný stavební

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

Ocelové konstrukce požární návrh

Ocelové konstrukce požární návrh Ocelové konstrukce požární návrh Zdeněk Sokol František Wald, 17.2.2005 1 2 Obsah prezentace Úvod Přestup tepla do konstrukce Požárně nechráněné prvky Požárně chráněné prvky Mechanické vlastnosti oceli

Více

Infračervená termografie ve stavebnictví

Infračervená termografie ve stavebnictví Infračervená termografie ve stavebnictví Autor: Ing. Marcela POČINKOVÁ, Ph.D., Ing. Olga RUBINOVÁ, Ph.D. Termografické měření a následná diagnostika je metodou pro bezkontaktní a poměrně rychlý průzkum

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Kondenzace vodní páry na zasklení

Kondenzace vodní páry na zasklení Kondenzace vodní páry na zasklení Snaha snížit co nejvíce náklady na vytápění a energetickou náročnost vůbec a současně zvýšit standard bydlení (v souladu s požadavky obyvatel a příslušných norem) vede

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více