Repetitorium chemie 2016/2017. Metabolické dráhy František Škanta

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Repetitorium chemie 2016/2017. Metabolické dráhy František Škanta"

Transkript

1 Repetitorium chemie 2016/2017 Metabolické dráhy František Škanta

2 Metabolické dráhy Primární metabolismus-trávení Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů Oxidace mastných kyselin Syntéza mastných kyselin Fotosyntéza Světelná fáze Temnostní fáze

3 Jaký osud potká tuto Strasbuskou kachnu v našem těle?

4 Trávící soustava člověka

5 Vstřebávání

6 Vstřebávání tuků

7 Glykolýza

8 Glykolýza 1. fosforylace 2. štěpení hexosy na dvě vzájemně převoditelné triosy 3. vytvoření ATP na úrovni substrátu. Čistý zisk na 6 uhlíků: 2 ATP 2 NADH

9 Jaký je osud pyruátu bez přítomnosti kyslíku? Bez přístupu kyslíku nemůže být mitochondrií využita energie obsažená v NADH Buňka se proto musí NADH zbavit, jinak se systém inhibuje živočichové a baktérie rostliny a kvasinky

10 Matrix mitochodrie

11 Jaký je osud pyruátu v přítomnosti kyslíku? Pyruát vstupuje aktivním transportem (symport s H + ) do matrix mitochodrie, kde je na vnitřní membráně (pyruvátdehydrogenasovým komplexem) přeměněn na acetyl- CoA. Pyruvátdehydrogenasový komplex katalyzuje sekvencí tří reakcí: Pyruvát + CoA + NAD + acetyl CoA + CO 2 + NADH Komplex využívá pěti různých koenzymů: Thiaminpyrofosfát (TPP), koenzym A (CoA- SH), NAD +, FAD a lipoamid.

12 Srovnání glukózy a glukoneogeneze

13 Glukoneogeneza Syntéza glukosy z necukerných prekurzorů: Laktát, aminokyseliny (uhlíkatý řetězec glukogenních aminokyselin při hladovění) a glycerol. Hlavním místem glukoneogeneze jsou játra, malé množství v ledvinách, něco málo v mozku, kosterních svalech a srdečním svalu. Denní spotřeba glukosy mozkem u dospělého člověka je 120 g, což je většina spotřeby těla (160g). V tělních tekutinách je 20 g glukosy a zásoba ve formě glykogenu je 190g. Celkově je v těle zásoba glukosy asi na jeden den.

14 Reciproká regulace glykolýzy a glukoneogeneze Glukoneogeneze a glykolýza jsou dva protichůdné pochody ideální regulace = jeden pochod aktivní a druhý neaktivní. Insulin, signál sytosti, stimuluje expresi fosfofruktokinasy, pyruvátkinasy a bifunkčního enzymu, který vede k tvorbě a degradaci fruktosa-2,6-bisfosfátu. Glukagon, signál hladovění, inhibuje expresi těchto enzymů a stimuluje tvorbu fosfoenolpyruvátkarboxykinasy a fruktosa- 1,6-bisfosfatasy.

15 Substrátové cykly Čmelák může létat za potravou již při 10 C. Je schopen dosáhnout potřebnou teplotu v hrudi současnou vysokou aktivitou fosfofruktokinasy a fruktosa1,6bisfosfatasy. Hydrolýza ATP vytváří teplo. U lidí existuje onemocnění Maligní hypertermie, kdy dochází ke ztrátě kontroly, oba procesy probíhají současně plně a generují TEPLO.

16 Metabolické dráhy Primární metabolismus-trávení Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů Oxidace mastných kyselin Syntéza mastných kyselin Fotosyntéza Světelná fáze Temnostní fáze

17 Krebsův cyklus (1937) Sled 8 reakcí Jak probíhá? Oxidace acetyl-coa za vniku 2 CO 2 a energie uvolněná touto reakcí je uložena do koenzymů (3 NADH, 1 FADH) a 1 GTP (živočichové) nebo 1 ATP (rostliny a baktérie)

18

19 Centrální cyklus Má dvě části: katabolickou, kde se odbourává acetyl-coa Glykogen Glukosa Glykolýza Pyruvát Aminokyseliny CO 2 Mastné kyseliny Acetyl-CoA CITRÁTOVÝ CYKLUS 2 CO 2

20 Centrální cyklus anabolickou, která je zdrojem substrátů pro jiné dráhy

21 1. Kondensace 1. Kondenzace 2C 4C 6C 2. Oxidativní dekarboxylace 5C 5. Regenerace oxaloacetátu 4C 4. 4C Substrátová fosforylace 3. Oxidativní dekarboxylace

22 Metabolické dráhy Primární metabolismus Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů Oxidace mastných kyselin Syntéza mastných kyselin Fotosyntéza Světelná fáze Temnostní fáze

23 Co znamená? Oxidativní fosforylace Oxidace redukovaných koenzymů a přeměna ADP na ATP.

24 Jak mitochondrie generuje chemickou energii z živin?

25 Mitochondriální elektronový transport

26 Chemiosmotická hypotéza oxidativní fosforylace Mitchell, P., Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191, (1961). Volná energie elektronového transportu je realizována pumpováním H + z mitochondriální matrix do mezimembránového prostoru za tvorby elektrochemického H + gradientu přes membránu. Elektrochemický gradient je posléze uplatněn při syntéze ATP. Tato volná energie se nazývá protonmotivní síla.

27 53 50 NADH FADH 2 Volná energie vztažená na O 2 (kcal/mol) FMN Fe S Q Fe S Cyt b Fe S Cyt c Jak je tato energie využita? Cyt c Cyt a Cyt a Oxidačně-redukční reakce 1/2 O 2

28 Přehled elektronového transportu mitochondrie -0.4 NADH NAD + 2e - ( V) -0.2 KOMPLEX I ξ = V ( G = kj.mol -1 ) ADP + P i Rotenon, amytal ATP 0 ( V) Sukcinát 2e - FADH 2 KOMPLEX II CoQ ( V) ξ (V) +0.2 Fumarát KOMPLEX III ξ = V ( G = kj.mol -1 ) ADP + P i ATP Antimycin A Cytochrom c ( V) KOMPLEX IV ξ = V ( G = -112 kj.mol -1 ) 2e - ADP + P i ATP CN H + + 1/2 O 2 H 2 O ( V)

29 Komplexy sekvence elektronového transportu Komplexy jsou řazeny podle vzrůstajícího redukčního potenciálu. Komplex I: Katalyzuje oxidaci NADH koenzymem Q (CoQ). NADH + CoQ (oxidovaný) NAD + + CoQ (redukovaný) Komplex III: Katalyzuje oxidaci CoQ (red.) cytochromem c. CoQ (redukovaný) + 2 cytochrom c (oxidovaný) CoQ (oxidovaný) + 2 cytochrom c (redukovaný) Komplex IV: Katalyzuje oxidaci redukovaného cytochromu c kyslíkem terminálním akceptorem elektronů. 2 cytochrom c (red.) + ½ O 2 2 cytochrom c (oxid.) + H 2 O

30 Syntéza ATP Předpokládá se, že na vznik jedné molekuly ATP je zapotřebí zpětného přenosu tří až čtyř protonů. Tato syntéza ATP se nazývá oxidační fosforylace.

31 Aerobní zisk ATP z glukosy Glukosa 2 NADH 6 ATP 2 ATP 2 Pyruvát 2 NADH 6 ATP 2 Acetyl-CoA 6 NADH 18 ATP 2 FADH 2 4 ATP 2 GTP 2 ATP 31

32 Metabolické dráhy Primární metabolismus Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů Oxidace mastných kyselin Syntéza mastných kyselin Fotosyntéza Světelná fáze Temnostní fáze

33 Metabolismus lipidů

34 Triacylglyceroly Skladují velké množství metabolické energie. Kompletní oxidací 1g mastné kyseliny 38 kj energie 1g sacharidů nebo proteinů pouze 17 kj. 1g tuku skladuje 6 x více energie než 1 g hydratovaného glykogenu. Zásoby glykogenu a glukosy vystačí zásobovat organismus energií jeden den, proti tomu zásoby triacylglyceroly vystačí na týdny. U savců je hlavním místem akumulace triacylglycerolů cytoplasma adiposních buněk (tukových buněk).

35 Triacylglyceroly z potravy Triacylglyceroly ze střevní sliznice jsou z důvodu nerozpustnosti převáděny na micely za účasti žlučových kyselin. Žlučové kyseliny jsou amfipatické (obsahují polární i nepolární části), jsou syntetizovány v játrech a uvolňovány ze žlučníku. Žlučové kyseliny obalí triacylglyceroly a usnadní tak funkci hydrolytickým lipasám. O OH C H 3 CH 3 N H COO - CH 3 H H H HO H OH Glykocholát

36 Tvorba chylomikronů LUMEN SVALOVÁ BUŇKA Triacylglyceroly H 2 O Lipasy Mastné kyseliny Další lipidy a proteiny Chylomikrony Do lymfatického systému + Triacylglyceroly Monoacylglyceroly

37 Metabolické dráhy Primární metabolismus Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů Oxidace mastných kyselin Syntéza mastných kyselin Fotosyntéza Světelná fáze Temnostní fáze

38 Katabolismus lipidů

39 Hormonální regulace hydrolýzy triacylglycerolů Lipasy adiposních buněk jsou aktivovány adrenalinem, (nor ), glukagonem a ACTH. Insulin má inhibiční efekt na hydrolýzu triacylglycerolů. Hormon + Adenylátcyklasa GTP Volné mastné kyseliny 7TM receptor ATP camp Glycerol Proteinkinasa Proteinkinasa Diacylglycerol Další lipasy Triacylglycerollipasa Triacylglycerollipasa P Triacylglycerol

40 Lipolýzou uvolněné mastné kyseliny se váží na sérový albumin, který slouží jako jejich nosič do tkání. Glycerol se absorbuje v játrech. - O R 2 O O H 2 C C H O R 1 O O Lipasa HO CH 2 OH C H + O R 1 O - H 2 C Triacylglycerol O R 3 3 H 2 O 3 H + CH 2 OH Glycerol O R 2 O - O R 3 Mastné kyseliny

41 Aktivace mastných kyselin O - + ATP O + PP i R O R AMP Mastná kyselina Acyladenylát R O AMP + HS CoA R O S CoA + AMP Acyladenylát Acyl-CoA Na vnější membráně mitochondrie jsou mastné kyseliny aktivovány za katalýzy acylcoa synthetasy.

42 Transport aktivované mastné kyseliny do matrix mitochonodrie karnitinacyltransferasa I. Acyl-CoA CoA Karnitin Acylkarnitin Cytosol Translokasa Matrix Karnitin Acylkarnitin Acyl-CoA CoA karnitinacyltransferasa II

43 Reakční sekvence beta -oxidace thiolázová reakce Acyl CoA H H Dehydrogenase H R-CH 2 -C-C-COSCoA R-CH 2 -C=C-COSCoA H H β-ketoacyl CoA H R-CH 2 -C-C-COSCoA CoASH O H O Thiolase R-CH 2 -C-SCoA dehydrogenace I FAD FADH 2 + L-β-Hydroxyacyl CoA Dehydrogenase NADH + H + CH 3 -C-SCoA O NAD + H H H HO H trans- 2 -enoyl CoA H 2 O Enoyl CoA Hydratase R-CH 2 -C-C-COSCoA Matrix mitochondrií L-β-Hydroxyacyl CoA dehydrogenace II hydratace Opakuje se

44 Výtěžek kompletní oxidace palmitátu Palmitoyl CoA + 7 FAD + 7 NAD CoA + 7 H 2 O 8 acetyl CoA + 7 FADH NADH + 7 H + V dýchacím řetězci se získá z jednoho NADH asi 3 ATP a z jednoho FADH 2 asi 2 ATP. Sečteno: 7 x FADH 2 = 14 ATP 7 x NADH = 21 ATP Oxidace 8 acetyl CoA v citrátovém cyklu = 88 ATP Součet : 118 ATP Spotřeba na aktivaci mastné kyseliny: 2 ATP Konečný součet : 116 ATP

45 Metabolické dráhy Primární metabolismus Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů Oxidace mastných kyselin Syntéza mastných kyselin Fotosyntéza Světelná fáze Temnostní fáze

46 Anabolismus lipidů

47 Klíčovým krokem syntézy mastných kyselin je tvorba malonyl CoA Acetyl CoA + ATP + HCO 3 - malonyl CoA + ADP + P i + H + Katalyzuje acetyl CoA karboxylasa (obsahuje biotin) a je allostericky aktivována nadbytkem citrátu, naopak je inhibována nadbytkem Acetyl CoA, které nejsou dostatečně rychle esterifikovány. Dva kroky katalýzy. Multienzymový komplex acetyl CoA karboxyláza Acyl přenášející protein ACP-SH

48 Transfer acetylcoa do cytosolu MITOCHONDRIE CYTOSOL Biosyntéza MK Acetyl-CoA Citrát Citrát Acetyl-CoA + Oxaloacetát Oxaloacetát acetyl CoA karboxyláza NADH Malát Pyruvát Pyruvát NADPH

49 Kondenzace - zjednodušeně H 3 C O C S ACP + O - O C C H 2 O C S ACP KONDENZACE H 3 C O C C H 2 O C S ACP Acetyl-ACP Malonyl-ACP ACP + CO 2 Acetoacetyl-ACP

50 Synthasa MK

51 Biosyntéza mastných kyselin

52 Biosyntéza mastných kyselin Kondenzace Redukce I. Dehydratace Redukce II.

53 Rozdíly mezi odbouráváním a syntézou mastných kyselin 1. Syntéza mastných kyselin probíhá v cytoplasmě, odbourávání v matrix mitochondrií. 2. Meziprodukty syntézy mastných kyselin jsou kovalentně vázány na sulfhydrylové skupiny ACP (acyl carrier protein), kdežto meziprodukty degradace jsou vázány na SH skupinu CoA. 3. Enzymy syntézy vytvářejí polypeptidový řetězec (synthasa mastných kyselin). Enzymy degradace jsou umístěny volně v matrix. 4. Řetězec mastných kyselin se prodlužuje o dva uhlíky z acetyl CoA. Aktivovaným donorem dvou uhlíků je malonyl CoA a prodlužování řetězce je poháněno odštěpováním CO Redukčním činidlem při syntéze je NADPH, oxidačními činidly při degradaci jsou FAD + a NAD Prodlužování řetězce na synthase mastných kyselin končí tvorbou palmitátu (C 16 ). Další prodlužování řetězce a tvorba nenasycených kyselin probíhá na jiných enzymech.

54 Živočichové nedokáží převést mastné kyseliny na glukosu!!! Proč? Acetyl-CoA nemůže být převeden na pyruvát nebo oxaloacetát, neboť vstupuje do citrátového cyklu a oba uhlíky se v jeho průběhu odštěpí jako CO 2. Rostliny mají další dva enzymy v tzv. glyoxylátovém cyklu a jsou schopné převést acetyl CoA na oxaloacetát.

55 Regulace metabolismu mastných kyselin Syntéza mastných kyselin probíhá za situace, kdy je dostatek sacharidů a energie a nedostatek mastných kyselin. Ústřední klíčovou roli hraje acetyl CoA karboxylasa. Karboxylasa je pod kontrolou adrenalinu, glukagonu a insulinu. Insulin stimuluje syntézu mastných kyselin aktivací karboxylasy, glukagon a adrenalin mají opačný účinek. Citrát, znak dostatku stavebních jednotek a energie, aktivuje karboxylasu. Palmitoyl CoA a AMP, naopak, inhibují karboxylasu.

56 Metabolické dráhy Primární metabolismus Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů Oxidace mastných kyselin Syntéza mastných kyselin Fotosyntéza Světelná fáze Temnostní fáze

57 Metabolické dráhy Primární metabolismus Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů Oxidace mastných kyselin Syntéza mastných kyselin Fotosyntéza Světelná fáze Temnostní fáze

58 Fotosyntéza

59 Chloroplasty Světlo absorbující pigmenty Světelná reakce C 3 rostliny (Calvinův - Bensonův cyklus) Fotorespirace C 4 rostliny (Hatch-Slackův cyklus) CAM rostliny

60 Chloroplast

61 Složení chloroplastu a mitochondrie

62 Chloroplast - fotosyntetická organela eukaryot

63 Pigmenty a antény

64 Struktury chlorofylů, xantofylů a karotenoidů CH 2 R 1 R 2 CH CH 3 H 3 C I N N + 3 II 4 R 3 H 3 C N N + CH CH 2 + Mg 2+ + Fe 2+ H 3 C IV N N III CH 3 H 3 C N N CH 3 CH 2 V CH 2 O C O CH 2 CH 2 O C O CH 2 CH 2 R 4 O CH COO COO Chlorofyl (Fe-protoporfyrin IX) R 1 R 2 R 3 R 4 Chlorofyl a Chlorofyl b Bakteriochlorofyl a Bakteriochlorofyl b CH CH 2 CH CH 2 O C CH 3 O C CH 3 CH 3 CH 2 CH 3 O C CH 3 a H a CH 3 CH 2 CH 3 CH 2 CH 3 a a CH CH 3 a značí, že mezi C3 a C4 se nevyskytuje dvojná vazba. P P P nebo G P P = G = H 2 C H 2 C Fytylový postranní řetězec Geranylový postranní řetězec

65 Model reakčního centra

66 Rostlina je zelená díky chlorofylu. Ale proč je chlorofyl zelený?

67 Absorpční spektra různých fotosyntetických pigmentů. Chlorofyl b Sluneční spektrum Absorbance Chlorofyl a Karotenoidy Fykoerythrin Fykocyanin Vlnová délka (nm)

68 Primární procesy fotosyntézy Procesy spojené s absorbcí a přeměnou světelné energie v energii chemickou Procesy: Fotolýza vody Cyklický a necylický transport e - Sekundární procesy fotosyntézy Fixace CO 2 a jeho následná redukce na cukr

69 Přehled fotosyntézy souhrnná reakce foto.obecně: Donor elektronů hυ CO 2 + 2H 2 A (CH 2 O) + 2A + H 2 O (1) hυ foto. oxygenní: CO 2 + 2H 2 O (CH 2 O) + O 2 + H 2 O (2) foto. anoxygenní: hυ CO 2 + 2H 2 S (CH 2 O) + 2S + H 2 O (3)

70 Primární procesy fotosyntézy Realizovány dvěma fotosystémy, které se vzájemně liší složením pigmentů Fotosystém I: absorbce dlouhovlnějšího záření v červené oblasti 700 nm, obsahuje karotenoidy, fykobiliny, chlorofyl a, chlorofyl b Fotosystém II: absorbuje krátkovlnější oblast záření 680 nm, obsahuje xantofyly, karotenoidy, fykobiliny, chlorofyl a, chlorofyl b

71 Schéma přenosu elektronů v thylakoidní membráně a Z schéma

72 Lokalizace systémů PSII, PSI, cytochromu b 6 f a ATP-synthasy na thylakoidech Fotosystém PSI ATP-synthasa Volná membrána (stromatální lamela) Fotosystém PSII Cytochrom b 6 f Převrstvená membrána (granum)

73 Z-schéma světelné fáze fotosyntézy Elektrony mohou dosáhnout na ferredoxin-nadp+ reduktasu (FNR), která katalyzuje redukci NADP+. Oxidace vody a tok elektronů přes Q cyklus generuje transmembránový protonový gradient s vyšší koncentrací protonů na straně thylakoidní dutiny (lumen - uvnitř). Energie gradientu se uplatňuje při tvorbě ATP. Různé prosthetické skupiny fotosyntetického aparátu rostlin mohou být seřazeny podle redukčního potenciálu v diagramu zvaném Z-schéma. Elektrony uvolněné z P680 po absorpci fotonů jsou nahrazovány elektrony z fotolýzy vody. Každý elektron prochází řetězcem přenašečů do hotovosti plastochinonových molekul. Vytvořený redukovaný plastochinol redukuje cytochrom b 6 f komplex, za současného transportu protonů do thylakoidů. Cytochrom b 6 f přenáší elektrony na plastocyanin (PC) a ten regeneruje fotooxidovaný P700 v PSI. Elektrony emitované z PSI redukují přes řetězec přenašečů NADP+ na NADPH. Necyklický proces. V cyklickém procesu se elektrony vrací zpět na cytochrom b 6 f a přitom se přenášejí další protony do thylakoidu.

74 Calvin-Bensonův cyklus (cyklus PRC)

75 Fotosyntetické procesy v chloroplastech - souhrn

76

77 Biosyntéza sacharidů: Celková stechiometrie Calvin-Bensonova cyklu: 3 CO ATP + 6 NADPH GAP + 9 ADP + 8 Pi + 6 NADP + Vytvořený GAP může být využit k řadě biosyntéz, buď vně nebo uvnitř chloroplastu. Může být převeden na fruktosa-6-fosfát dalším postupem cyklu a poté na glukosa-1-fosfát (G1P) (fosfoglukosaisomerasa a fosfoglukosamutasa). G1P je prekurzor všech dalších sacharidů rostlin. Hlavní složka škrobu, a-amylosa, je syntetizována v stromatu chloroplastu jako dočasná skladovatelná forma glukosy. a-amylosa je také syntetizována jako dlouhodobá skladovatelná forma v jiných částech rostlin jako jsou listy, semena a kořeny. Celulosa tvořena dlouhými řetězci b(1 4)-vázanými glukosovými jednotkami je hlavním polysacharidem rostlin. Je syntetizována z UDP-glukos v rostlinné plasmové membráně a vylučována do extracelulárního prostoru.

78 Fotorespirace CO 2 soutěží s O 2 o vazbu na Rubisco (Karboxylace nebo Oxygenace)

79 Fotorespirace je devastující proces jehož výsledkem je neužitečná spotřeba světlem vytvořeného NADPH a ATP!!!

80 CO 2 koncentrační mechanismy rostlin C4

81 Rostliny C 4 koncentrují na povrchu listu CO 2. Řada rostlin se evolučně přizpůsobila kolísání koncentrace O 2 a CO 2 tak, že koncentrují ve fotosyntetických buňkách CO 2 a zabraňují fotorespiraci. Např. cukrovka, cukrová třtina, kukuřice a mnoho plevelných rostlin. Typické pro tropické oblasti. List má charakteristickou anatomii pod vrstvou buněk tzv. mesofylu jsou soustředěny pochvy cévních svazků. V mesofylových buňkách není ribulosabisfosfátkarboxylasa!!

82

83 Cyklus C 4 M. Hatch a R. Slack (1960) V mesofylu reaguje vstupující CO 2 ve formě HCO 3 - s fosfoenolpyruvátem za tvorby oxaloacetátu (čtyři uhlíky, proto C 4 ). Oxaloacetát je redukován NADPH na malát, který je transportován do buněk cévních svazků, kde je oxidativně dekarboxylován na CO 2, pyruvát a NADPH. Takto koncentrovaný CO 2 vstupuje do Calvinova cyklu. Pyruvát je transportován zpět do mesofylu, kde je fosforylován za katalýzy pyruvát-fosfátdikinasy za tvorby fosfoeneolpyruvátu. Při aktivaci přechází ATP na AMP + PP i. PP i je posléze hydrolyzován všudepřítomnou pyrofosfatasou na 2 x P i. Oxid uhličitý je koncentrován v buňkách cevních svazků na úkor spotřeby 2 ATP / CO 2. Fotosyntéza C 4 rostlin spotřebovává celkem 5 ATP na rozdíl od C 3 rostlin, které spotřebují 3 ATP.

84 Rostliny CAM

85 CAM rostliny jako varianta rostlin C 4. Dráha byl poprvé popsána u tučnolistých rostlin a odtud název CAM crassulacean acid metabolism. U CAM rostlin je časově oddělen záchyt CO 2 a Calvin-Bensonův cyklus. CAM rostliny otevírají stomata (póry v listech) v noci a zachycují CO 2 drahou C 4 ve formě malátu. Pro zachycení CO 2 je nutné velké množství fosfoenolpyruvátu. To se získává štěpením škrobu a glykolýzou. Během dne je malát štěpen za tvorby CO 2 vstupujícího do Calvin Bensonova cyklu a pyruvátu použitého na resyntézu škrobu. Celý tento proces je veden také z důvodu zabránění ztrátě vody!!! Stejnou drahou probíhá fotosyntéza u sukulentů.

86 Proč musely zahynout tyto ryby? Rubisco odčerpalo veškerou zásobu hydrogenuhličitanu (pufr), čímž se zvýšilo ph vody nad 8,4. Při této hodnotě amoniak přijímá proton a mění se na amonný kation. Ten je toxický.

Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku?

Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku? Repetitorium chemie X. 2011/2012 Metabolické dráhy František Škanta Metabolické dráhy xidativní fosforylace xidace mastných kyselin 1. fosforylace 2. štěpení hexosy na dvě vzájemně převoditelné triosy

Více

Repetitorium chemie 2015/2016. Metabolické dráhy František Škanta

Repetitorium chemie 2015/2016. Metabolické dráhy František Škanta Repetitorium chemie 2015/2016 Metabolické dráhy František Škanta Metabolické dráhy Primární metabolismus Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů Oxidace

Více

FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI

FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI Pavel Peč Katedra biochemie Přírodovědecké fakulty Univerzita Palackého v Olomouci Fotosyntéza fixuje na Zemi ročně asi 1011 tun uhlíku, což reprezentuje 1018 kj energie.

Více

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.

Více

Biochemie II 2009/10. Metabolismus. František Škanta

Biochemie II 2009/10. Metabolismus. František Škanta Biochemie II 2009/10 Metabolismus František Škanta Metabolické dráhy Primární metabolismus Metabolismus sacharidů Glykolýza Krebsův cyklus xidativní fosforylace Metabolismus lipidů xidace mastných kyselin

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

ANABOLISMUS SACHARIDŮ

ANABOLISMUS SACHARIDŮ zdroj sacharidů: autotrofní org. produkty fotosyntézy heterotrofní org. příjem v potravě důležitou roli hraje GLUKÓZA METABOLISMUS SACHARIDŮ ANABOLISMUS SACHARIDŮ 1. FOTOSYNTÉZA autotrofní org. 2. GLUKONEOGENEZE

Více

Katabolismus - jak budeme postupovat

Katabolismus - jak budeme postupovat Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův

Více

Odbourávání lipidů, ketolátky

Odbourávání lipidů, ketolátky dbourávání lipidů, ketolátky Josef Fontana EB - 56 bsah přednášky Energetický význam TAG Jednotlivé dráhy metabolismu lipidů lipidy jako zdroj energie degradace TAG v buňkách, β-oxidace MK tvorba a využití

Více

Biosyntéza sacharidů 1

Biosyntéza sacharidů 1 Biosyntéza sacharidů 1 S a c h a r id y p o tr a v y (š k r o b, g ly k o g e n, sa c h a r o sa, a j.) R e z e r v n í p o ly sa c h a r id y J in é m o n o sa c h a r id y Trávení (amylásy - sliny, pankreas)

Více

B4, 2007/2008, I. Literák

B4, 2007/2008, I. Literák B4, 2007/2008, I. Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují pořádek ve světě, který spěje k čím dál většímu chaosu Druhá věta termodynamiky: Ve vesmíru nebo jakékoliv izolované

Více

Obecný metabolismus.

Obecný metabolismus. mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

35.Fotosyntéza. AZ Smart Marie Poštová

35.Fotosyntéza. AZ Smart Marie Poštová 35.Fotosyntéza AZ Smart Marie Poštová m.postova@gmail.com Fotosyntéza - úvod Syntéza glukosy redukcí CO 2 : chlorofyl + slun.zareni 6 CO 2 + 12H 2 O C 6 H 12 O 6 + 6O 2 + 6H 2 O (Kyslík vzniká fotolýzou

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotosyntéza Fotosyntéza pohlcení energie slunečního záření a její přeměna na chemickou energii rovnováha fotosyntetisujících a heterotrofních

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABLISMUS SAHARIDŮ GLUKNEGENEZE GLUKNEGENEZE entrální úloha glukosy Palivo Prekursor strukturních sacharidů a jiných molekul Syntéza glukosy z necukerných prekurzorů Laktát Aminokyseliny (uhlíkatý řetězec

Více

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - katabolismus

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - katabolismus Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolusmus lipidů - katabolismus Trávení, aktivace a transport tuků Oxidace mastných kyselin Ketonové látky Úvod Oxidace MK je centrální

Více

14. Fyziologie rostlin - fotosyntéza, respirace

14. Fyziologie rostlin - fotosyntéza, respirace 14. Fyziologie rostlin - fotosyntéza, respirace Metabolismus -přeměna látek a energií (informací) -procesy: anabolický katabolický autotrofie Anabolismus heterotrofie Autotrofní organismy 1. Chemoautotrofy

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Regulace metabolických drah na úrovni buňky

Regulace metabolických drah na úrovni buňky Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace

Více

Vyjádření fotosyntézy základními rovnicemi

Vyjádření fotosyntézy základními rovnicemi FOTOSYNTÉZA Fotochemický proces, při němž fotosynteticky aktivní pigmenty v zelených částech rostlin přijímají energii světelného záření a přeměňují ji na energii chemickou. Ta je dále využita při biologických

Více

Předmět: KBB/BB1P; KBB/BUBIO

Předmět: KBB/BB1P; KBB/BUBIO Předmět: KBB/BB1P; KBB/BUBIO Energie z mitochondrií a chloroplastů Cíl přednášky: seznámit posluchače se základními principy získávání energie v mitochondriích a chloroplastech Klíčová slova: mitochondrie,

Více

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron). Otázka: Fotosyntéza a biologické oxidace Předmět: Biologie Přidal(a): Ivana Černíková FOTOSYNTÉZA = fotosyntetická asimilace: Jediný proces, při němž vzniká v přírodě kyslík K přeměně jednoduchých látek

Více

FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie

FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie Fotosyntéza FOTOSYNTÉZA - soubor chemických reakcí - probíhá v rostlinách a sinicích - zachycení a využití světelné energie - tvorba složitějších chemických sloučenin z CO 2 a vody - jediný zdroj kyslíku

Více

Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa

Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa Konsultační hodina základy biochemie pro 1. ročník Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa Přírodní látky 1 Co to je? Cukry (Sacharidy) Organické látky,

Více

Ukládání energie v buňkách

Ukládání energie v buňkách Ukládání energie v buňkách Josef Fontana EB - 58 Obsah přednášky Úvod do problematiky zásobních látek lidského organismu Přehled zásobních látek v těle Metabolismus glykogenu Struktura glykogenu Syntéza

Více

Sacharidy a polysacharidy (struktura a metabolismus)

Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Metabolismus lipidů - odbourávání. VY_32_INOVACE_Ch0212

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Metabolismus lipidů - odbourávání. VY_32_INOVACE_Ch0212 Vzdělávací materiál vytvořený v projektu P VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Regulace metabolizmu lipidů

Regulace metabolizmu lipidů Regulace metabolizmu lipidů Principy regulace A) krátkodobé (odpověď s - min): Dostupnost substrátu Alosterické interakce Kovalentní modifikace (fosforylace/defosforylace) B) Dlouhodobé (odpověď hod -

Více

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje

Více

Metabolismus krok za krokem - volitelný předmět -

Metabolismus krok za krokem - volitelný předmět - Metabolismus krok za krokem - volitelný předmět - Vladimíra Kvasnicová pracovna: 411, tel. 267 102 411, vladimira.kvasnicova@lf3.cuni.cz informace, studijní materiály: http://vyuka.lf3.cuni.cz Sylabus

Více

11. Metabolismus lipidů

11. Metabolismus lipidů 11. Metabolismus lipidů Obtížnost A Následující procesy a metabolické reakce, vedoucí ke zkrácení řetězce mastné kyseliny, vázané v triacylglycerolu, a vzniku acetyl-coa, seřaďte ve správném pořadí: a)

Více

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,

Více

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, 2004. Biologie 6, 2015/2016, Ivan Literák

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, 2004. Biologie 6, 2015/2016, Ivan Literák BUŇKA A ENERGIE kajman brýlový Caiman crocodilus Kostarika, 2004 Biologie 6, 2015/2016, Ivan Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují POŘÁDEK VE SVĚTĚ, KTERÝ SPĚJE K ČÍM

Více

Intermediární metabolismus. Vladimíra Kvasnicová

Intermediární metabolismus. Vladimíra Kvasnicová Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,

Více

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D. Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé

Více

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD Ukázky z pracovních listů z biochemie pro SŠ A ÚVD 1) Doplň chybějící údaje. Jak se značí makroergní vazba? Kolik je v ATP makroergních vazeb? Co je to ADP Kolik je v ADP makroergních vazeb 1) Pojmenuj

Více

Bp1252 Biochemie. #8 Metabolismus živin

Bp1252 Biochemie. #8 Metabolismus živin Bp1252 Biochemie #8 Metabolismus živin Chemické reakce probíhající v organismu Katabolické reakce přeměna složitějších látek na jednoduché, jsou většinou exergonické. Anabolické reakce syntéza složitějších

Více

Praktické cvičení č. 11 a 12 - doplněno

Praktické cvičení č. 11 a 12 - doplněno Praktické cvičení č. 11 a 12 - doplněno Téma: Metabolismus eukaryotické buňky Pomůcky: pracovní list, učebnice botaniky Otázky k opakování: Co je anabolismus a co je katabolisimus? Co jsou enzymy a jak

Více

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující

Více

Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké

Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké Fotosyntéza Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké rostliny. Zelené rostliny patří mezi autotrofy

Více

Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K

Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K Test pro přijímací řízení magisterské studium Biochemie 2017 1. Napište vzorce aminokyselin Q a K Dále zakroužkujte správné tvrzení (pouze jedna správná odpověď) 2. Enzym tyrozinkinasu řadíme do třídy

Více

Integrace a regulace savčího energetického metabolismu

Integrace a regulace savčího energetického metabolismu Základy biochemie KBC / BCH Integrace a regulace savčího energetického metabolismu Inovace studia biochemie prostřednictvím e-learningu CZ.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským

Více

Dýchací řetězec (Respirace)

Dýchací řetězec (Respirace) Dýchací řetězec (Respirace) Buněčná respirace (analogie se spalovacím motorem) Odbourávání glukosy (včetně substrátových fosforylací) C 6 H 12 O 6 + 6O 2 ---------> 6 CO 2 + 6H 2 O + 38 ATP Oxidativní

Více

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák BUŇKA A ENERGIE kajman brýlový Caiman crocodilus Kostarika, 2004 Biologie 8, 2017/2018, Ivan Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují POŘÁDEK VE SVĚTĚ, KTERÝ SPĚJE K ČÍM

Více

Dýchací řetězec. Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci)

Dýchací řetězec. Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci) Dýchací řetězec Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci) Odbourávání glukosy (včetně substrátových fosforylací) C 6 H 12 O 6 + 6O 2 -->6 CO 2 + 6H 2 O + 38 ATP Dýchací

Více

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza

Více

Citrátový cyklus. Tomáš Kučera.

Citrátový cyklus. Tomáš Kučera. itrátový cyklus Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017 Schéma energetického

Více

Fotosyntéza a Calvinův cyklus. Eva Benešová

Fotosyntéza a Calvinův cyklus. Eva Benešová Fotosyntéza a Calvinův cyklus Eva Benešová Fotosyntéza světlo CO 2 + H 2 O O 2 + (CH 2 O) světlo 6CO 2 + 6H 2 O 6O 2 + C 6 H 12 O 6 Opět propojení toku elektronů se syntézou ATP. Zachycení světelné energie

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - anabolismus

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - anabolismus Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolusmus lipidů - anabolismus LIPIDY Zásobárna energie Hlavní složka buněčných membrán Pigmenty (retinal, karoten), kofaktory (vitamin

Více

Fotosyntéza (2/34) = fotosyntetická asimilace

Fotosyntéza (2/34) = fotosyntetická asimilace Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější

Více

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Glykolýza a neoglukogenese

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Glykolýza a neoglukogenese Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Glykolýza a neoglukogenese z řečtiny glykos sladký, lysis uvolňování sled metabolických reakcí od glukosy přes fruktosa-1,6-bisfosfát

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216. Vzdělávací materiál vytvořený v projektu VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Transport elektronů a oxidativní fosforylace Oxidativní fosforylace vs. fotofosforylace vyvrcholení katabolismu Všechny oxidační degradace

Více

Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014

Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Fyziologie rostlin 9. Fotosyntéza část 1. Primární fáze fotosyntézy Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření -

Více

ení k tvorbě energeticky bohatých organických sloučenin

ení k tvorbě energeticky bohatých organických sloučenin Fotosyntéza mimořádně významný proces, využívající energii slunečního zářenz ení k tvorbě energeticky bohatých organických sloučenin (sacharidů) z jednoduchých anorganických látek oxidu uhličitého a vody

Více

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty triviální (glukóza, fruktóza ) vědecké (α-d-glukosa) organické látky nezbytné pro život hlavní zdroj energie

Více

LÁTKOVÝ A ENERGETICKÝ METABOLISMUS

LÁTKOVÝ A ENERGETICKÝ METABOLISMUS LÁTKOVÝ A ENERGETICKÝ METABOLISMUS Metabolismus = neustálý příjem, přeměna a výdej látek = probíhá po celou dobu života rostliny Dva typy procesů : ANABOLICKÉ KATABOLICKÉ ANABOLISMUS - energie se spotřebovává

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Citrátový a glyoxylátový cyklus Buněčná respirace I. Fáze Energeticky bohaté látky jako glukosa, mastné kyseliny a některé aminokyseliny

Více

33.Krebsův cyklus. AZ Smart Marie Poštová

33.Krebsův cyklus. AZ Smart Marie Poštová 33.Krebsův cyklus AZ Smart Marie Poštová m.postova@gmail.com Metabolismus Metabolismus je souhrn chemických reakcí v organismu. Základní metabolické děje jsou: a) katabolické odbourávací (složité látky

Více

Lipidy. Nesourodá skupina látek Látky nerozpustné v polárních rozpouštědlech Složky: MK, alkoholy, N látky, sacharidy, kyselina fosforečná

Lipidy. Nesourodá skupina látek Látky nerozpustné v polárních rozpouštědlech Složky: MK, alkoholy, N látky, sacharidy, kyselina fosforečná Lipidy Nesourodá skupina látek Látky nerozpustné v polárních rozpouštědlech Složky: MK, alkoholy, N látky, sacharidy, kyselina fosforečná Rozdělení: 1. neutrální lipidy (tuky, triacylglyceroly) 2. Vosky

Více

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy JAN ILLNER Dýchací řetězec & oxidativní fosforylace Tvorba energie v živých systémech ATP zdroj E pro biochemické procesy Tvorba

Více

OXIDATIVNÍ FOSFORYLACE

OXIDATIVNÍ FOSFORYLACE OXIDATIVNÍ FOSFORYLACE OBSAH Mitochondrie Elektronový transport Oxidativní fosforylace Kontrolní systém oxidativního metabolismu. Oxidace a syntéza ATP jsou spojeny transmembránovým tokem protonů Dýchací

Více

Aerobní odbourávání cukrů+elektronový transportní řetězec

Aerobní odbourávání cukrů+elektronový transportní řetězec Aerobní odbourávání cukrů+elektronový transportní řetězec Dochází k němu v procesu jménem aerobní respirace. Skládá se z kroků: K1) Glykolýza K2) oxidativní dekarboxylace pyruvátu K3) Krebsův cyklus K4)

Více

POZNÁMKY K METABOLISMU SACHARIDŮ

POZNÁMKY K METABOLISMU SACHARIDŮ POZNÁMKY K METABOLISMU SACHARIDŮ Prof.MUDr. Stanislav Štípek, DrSc. Ústav lékařské biochemie 1.LF UK v Praze Přehled hlavních metabolických cest KATABOLISMUS Glykolysa Glykogenolysa Pentosový cyklus Oxidace

Více

Základy biochemie KBC/BCH. Fotosyntéza. Inovace studia biochemie prostřednictvím e-learningu CZ / /0407

Základy biochemie KBC/BCH. Fotosyntéza. Inovace studia biochemie prostřednictvím e-learningu CZ / /0407 Základy biochemie KB/B Fotosyntéza Inovace studia biochemie prostřednictvím e-learningu Z.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je?

Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je? Sacharidy a jejich metabolismus Co to je? Cukry (Sacharidy) Organické látky, které obsahují karbonylovou skupinu (C=O) a hydroxylové skupiny (-O) vázané na uhlících Aldosy: karbonylová skupina na konci

Více

fce jater: (chem. továrna, jako 1. dostává všechny látky vstřebané GIT) METABOLICKÁ (jsou metabolicky nejaktivnější tkání v těle)

fce jater: (chem. továrna, jako 1. dostává všechny látky vstřebané GIT) METABOLICKÁ (jsou metabolicky nejaktivnější tkání v těle) JÁTRA ústřední orgán intermed. metabolismu, vysoká schopnost regenerace krevní oběh játry: (protéká 20% veškeré krve, 10-30% okysl.tep.krve, která zajišťuje výživu buněk, zbytek-portální krev) 1. funkční

Více

Odbourávání a syntéza glukózy

Odbourávání a syntéza glukózy Odbourávání a syntéza glukózy Josef Fontana EB - 54 Obsah přednášky Glukóza význam glukózy pro buňku, glykémie role glukózy v metabolismu transport glukózy přes buněčné membrány enzymy fosforylující a

Více

Název: Fotosyntéza, buněčné dýchání

Název: Fotosyntéza, buněčné dýchání Název: Fotosyntéza, buněčné dýchání Výukové materiály Autor: Mgr. Blanka Machová Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: Biologie, chemie Ročník: 2. Tematický

Více

glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc*

glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc* Prezentace navazuje na základní znalosti Biochemie, stavby a transportu přes y Doplňující prezentace: Proteiny, Sacharidy, Stavba, Membránový transport, Symboly označující animaci resp. video (dynamická

Více

Přednáška 6: Respirace u rostlin

Přednáška 6: Respirace u rostlin Přednáška 6: Respirace u rostlin co vás v s dnes čeká: Co rostliny získávají respirací Procesy respirace: glykolýza Krebsův cyklus dýchací řetězec oxidativní fosforylace faktory ovlivňující rychlost respirace

Více

Pentosový cyklus. osudy glykogenu. Eva Benešová

Pentosový cyklus. osudy glykogenu. Eva Benešová Pentosový cyklus a osudy glykogenu Eva Benešová Pentosový cyklus pentosafosfátová cesta, fosfoglukonátová cesta nebo hexosamonofosfátový zkrat Funkce: 1) výroba NADPH 2) výroba ribosa 5-fosfátu 3) zpracování

Více

Obsah. Chloroplasty. Světlo absorbující pigmenty. Světelná reakce. Calvinův - Bensonův cyklus (RUBISCO) Fotorespirace. Rostliny C 4 a CAM

Obsah. Chloroplasty. Světlo absorbující pigmenty. Světelná reakce. Calvinův - Bensonův cyklus (RUBISCO) Fotorespirace. Rostliny C 4 a CAM FOTOSYNTÉZA Obsah hloroplasty Světlo absorbující pigmenty Světelná reakce alvinův - Bensonův cyklus (RUBISO) Fotorespirace Rostliny 4 a AM Typ výživy a metabolismus Zdroj energie Zdroj uhlíku Zdroj vodíku

Více

Základy biochemie KBC / BCH. Fotosyntéza. Inovace studia biochemie prostřednictvím e-learningu CZ / /0407

Základy biochemie KBC / BCH. Fotosyntéza. Inovace studia biochemie prostřednictvím e-learningu CZ / /0407 Základy biochemie KB / B Fotosyntéza Inovace studia biochemie prostřednictvím e-learningu Z.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

Více

Didaktické testy z biochemie 2

Didaktické testy z biochemie 2 Didaktické testy z biochemie 2 Metabolismus Milada Roštejnská Helena Klímová br. 1. Schéma metabolismu Zažívací trubice Sacharidy Bílkoviny Lipidy Ukládány jako glykogen v játrech Ukládány Ukládány jako

Více

FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková

FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74 Katedra experimentální biologie rostlin, Z. Lhotáková proteinové komplexy thylakoidní membrány - jsou kódovány jak plastidovými tak jadernými geny 1905

Více

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík, DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické

Více

Otázka: Základní děje na buněčné úrovni. Předmět: Biologie. Přidal(a): Growler. - příjem látek buňkou

Otázka: Základní děje na buněčné úrovni. Předmět: Biologie. Přidal(a): Growler. - příjem látek buňkou Otázka: Základní děje na buněčné úrovni Předmět: Biologie Přidal(a): Growler - příjem látek buňkou difúze prostá usnadněná transport endocytóza pinocytóza fagocytóza - výdej látek buňkou difúze exocytóza

Více

CZ.1.07/2.2.00/ Obecný metabolismu. Metabolismus glukosy, glykolýza, glukoneogeneze (3).

CZ.1.07/2.2.00/ Obecný metabolismu. Metabolismus glukosy, glykolýza, glukoneogeneze (3). mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismu. Metabolismus glukosy, glykolýza, glukoneogeneze (3). Prof. RNDr. Pavel Peč, CSc.

Více

Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Intermediární metabolizmus a energetická homeostáza

Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Intermediární metabolizmus a energetická homeostáza 1 Intermediární metabolizmus a energetická homeostáza Biologické oxidace Dýchací řetězec a oxidativní fosforylace Krebsův cyklus Přehled intermediárního metabolizmu studuje změny energie provázející chemické

Více

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Ročník 1.

Více

Metabolismus lipidů. Biosyntéza mastných kyselin a triacylglycerolů. Lenka Fialová kařské biochemie 1. LF UK. Hlavní rysy biosyntézy mastných kyselin

Metabolismus lipidů. Biosyntéza mastných kyselin a triacylglycerolů. Lenka Fialová kařské biochemie 1. LF UK. Hlavní rysy biosyntézy mastných kyselin Metabolismus lipidů Biosyntéza mastných kyselin a triacylglycerolů Lenka Fialová Ústav lékal kařské biochemie 1. LF UK Hlavní rysy biosyntézy mastných kyselin syntéza MK může probíhat ve většině živočišných

Více

Metabolismus. Source:

Metabolismus. Source: Source: http://www.roche.com/ http://www.expasy.org/ Metabolismus Source: http://www.roche.com/sustainability/for_communities_and_environment/philanthropy/science_education/pathways.htm Metabolismus -

Více

Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz)

Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz) Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz) Biochemie Napsal uživatel Marie Havlová dne 8. Únor 2012-0:00. Sylabus předmětu Biochemie, Všeobecné lékařství, 2.

Více

Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová

Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba

Více

Metabolismus mikroorganismů

Metabolismus mikroorganismů Metabolismus mikroorganismů Metabolismus organismů Souvisí s metabolismem polysacharidů, bílkovin, nukleových kyselin a lipidů Cytoplazma, mitochondrie (matrix, membrána) H 3 PO 4 Polysacharidy Pentózový

Více

Metabolismus příručka pro učitele

Metabolismus příručka pro učitele Metabolismus příručka pro učitele Obecné informace Téma Metabolismus je určeno na čtyři až pět vyučovacích hodin. Toto téma je zpracováno jako jeden celek a záleží na vyučujícím, jak jej rozdělí. Celek

Více

Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů.

Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů. Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů. Šárka Gregorová, 2013 Poznámka: protože se tyhle dvě státnicové otázky z velké

Více

Citrátový cyklus a Dýchací řetězec. Milada Roštejnská Helena Klímová

Citrátový cyklus a Dýchací řetězec. Milada Roštejnská Helena Klímová Citrátový cyklus a Dýchací řetězec Milada oštejnská elena Klímová 1 bsah 1 Citrátový cyklus Citrátový cyklus (reakce) Citrátový cyklus (schéma) espirace (dýchání) Vnější a vnitřní respirace Dýchací řetězec

Více

Řízení metabolismu. Bazální metabolismus minimální látková přeměna potřebná pro udržení života při tělesném i duševním klidu

Řízení metabolismu. Bazální metabolismus minimální látková přeměna potřebná pro udržení života při tělesném i duševním klidu PŘEMĚNA LÁTEK A VÝŽIVA ČLOVĚKA METABOLISMUS (vzájemná přeměna látek a energie) tvoří děje: Katabolismus štěpení složitých organických látek na jednoduché, energie se uvolňuje, využíváno při rozkladu přijaté

Více

Dýchací řetězec (DŘ)

Dýchací řetězec (DŘ) Dýchací řetězec (DŘ) Vladimíra Kvasnicová animace na internetu: http://vcell.ndsu.nodak.edu/animations/etc/index.htm http://vcell.ndsu.nodak.edu/animations/atpgradient/index.htm http://www.wiley.com/college/pratt/0471393878/student/animations/oxidative_phosphorylation/index.html

Více

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie

Více

Diabetes mellitus. úplavice cukrová - heterogenní onemocnění působení inzulínu. Metabolismus glukosy. Insulin (5733 kda)

Diabetes mellitus. úplavice cukrová - heterogenní onemocnění působení inzulínu. Metabolismus glukosy. Insulin (5733 kda) Diabetes mellitus úplavice cukrová - heterogenní onemocnění působení inzulínu ~ nedostatečná sekrece ~ chybějící odpověď buněk periferních tkání Metabolismus glukosy ze střeva jako játra 50 % glykogen

Více

Integrace metabolických drah v organismu. Zdeňka Klusáčková

Integrace metabolických drah v organismu. Zdeňka Klusáčková Integrace metabolických drah v organismu Zdeňka Klusáčková Hydrolýza a resorpce základních složek potravy Přehled hlavních metabolických drah Biochemie výživy A) resorpční fáze (přísun živin) glukóza hlavní

Více

Trávení a metabolismus

Trávení a metabolismus Trávení a metabolismus Milada Roštejnská elena Klímová br. 1. Proces vylučování [1] 1 bsah (1. část) Zařazení člověka podle metabolismu Potrava sud potravy v lidském těle Trávení (obecně) Trávení sacharidů

Více