Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Rozměr: px
Začít zobrazení ze stránky:

Download "Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku"

Transkript

1 Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi;-) roman.biskup(at) .cz 20. února 2012 Úvod do problému Míry polohy(úrovně) Míry centrální tendence Ostatní míry polohy Míry variability Rozptyl Směrodatná odchylka a variační koeficient Rozptyl pro ordinální data Rozpětí Míry šikmosti a špičatosti Míry šikmosti Míry špičatosti Grafická vizualizace Krabicový graf Statistika bybirom Statistika Deskriptivnícharakteristiky 1/28 Statistika bybirom Statistika Deskriptivnícharakteristiky 2/28 Úvod do problému Popisné(deskriptivní) charakteristiky/statistiky jsoučíselnécharakteristiky,které koncentrovanou formou(jedinýmčíslem) vyjadřují určitou vlastnost statistického znaku, obvykle slouží pro popis kvantitativního(kardinálního) statistického znaku, ale některéjemožnopoužítipro jednodušší statistickéznaky(např.:modus) někdy je problém s jejich interpretací i u diskrétního kardinálního znaku( x je 1,87 dítěte,) v některých případech mají jiný tvar(předpis) pro populaci a výběr(viz rozptyl) odlehlé hodnoty(pozorování) pozorováníjehožhodnotaznakuvybočuje(reálná/nereálná) bývajívlivnýmihodnotami vlivné hodnoty(pozorování) ovlivňujívýsledekstatistickéanalýzy(výpočetcharakteristik,odhadů parametrů,...) Značení Úvod do problému n, rozsah souboru počet pozorování, x (i) pořadovéstatistiky, seřazeníhodnotpodlevelikosti, x(1) x (2) x (3)... x (n 1) x (n), n i absolutníčetnost, proi =1,...,k; k n i =, odděluje pojmenování respektive vzorce pro netříděná a tříděná data; navíc vše pro tříděná data je barevně odlišeno, w i pokudsevetříděnýchdatechformálněnahradín i symbolemw i ak symbolemn,pakseobvyklemluvíovaháchw i jednotlivýchhodnotx i pro i =1,...,naplatíčímvyššíhodnotaw i,tímvětšívlivhodnotyx i pro výslednývýsledek,pochopitelně= n w i protováženécharakteristiky, x i hodnotastatistickéhoznaku(i =1,...,n) hodnotastatistickéhoznaku při prostém třídění respektive středu intervalu pro třídění intervalové (i =1,...,k), Statistika bybirom Statistika Deskriptivnícharakteristiky 3/28 Statistika bybirom Statistika Deskriptivnícharakteristiky 4/28

2 Míry polohy Míry polohy(úrovně) Mají být typickou hodnotou statistického znaku z daného statistického souboru, jsou jednoznačně definované a relativně jednoduše zjistitelné, slouží k porovnání úrovně různých statistických souborů, nebo vývoje statistického souboru v čase, mají co nejméně podléhat nahodilostem výběru respektive odlehlým hodnotám(pozorováním) požadavek robustnosti. Průměry I x aritmetický průměr vážený aritmetický průměr x = 1 n x i x = 1 1 x i n i ( x = n w i ) x i w i nerobustnímíraovlivněnáodlehlýmihodnotami, průměrmůžepředstavovatrovnoměrnostnebonormu,kterávůbecneexistuje a nemá odraz ve skutečnosti, jistěplatí: n x = n x i, (x i x) =0, (x i x) 2 n (x i a) 2,prolibovolnéa. α-useknutýprůměr průměr vypočtený klasickým způsobem bez α/2% největších a nejmenších hodnot(robustnějšínež obyčejný průměr) méněnerobustní Statistika bybirom Statistika Deskriptivnícharakteristiky 5/28 Statistika bybirom Statistika Deskriptivnícharakteristiky 6/28 Průměry II x G geometrickýprůměr váženýgeometrickýprůměr kdex i 0, x G = n x 1 x 2...x n x G = x n1 1 xn2 2...xn k k, i =1,...,n i =1,...,k nerobustnímíraovlivněnáodlehlýmihodnotami, vevýpočtechčasovýchřadaněkterýchindexů(inflace,apod.). x H harmonickýprůměr váženýharmonickýprůměr kdex i 0, x H = n x H = 1 x i i =1,...,n i =1,...,k nerobustnímíraovlivněnáodlehlýmihodnotami, včasovýchvýpočtech(frekvence,...), n i x i ModusamediánI ˆx modus nejčetnějšíhodnotaznaku(unimodální,bimodální,vícenásobnýmodus) modálníinterval intervalsnejvětšíčetností(relativníčiabsolutní) odhadmódunazákladěintervalovéhotřídění ˆx x 0 + h n 1 n 1, 22n 0 n 1 n 1 kdex 0 jestředmodálníhointervalu,n 0 ječetnostmodálníhointervalu, n 1 ječetnostintervalu,kterýpředcházímodálnímuintervalu,n 1 ječetnost intervalu, který následuje za modálním intervalem a h je délka modálního intervalu x 0,5 medián ( x) hodnotaznaku,ježdělísoubornadvěpoloviny,natypozorovánísnižšími hodnotami znaku a ty yššími hodnotami znaku x 0,5 = x (n/2) +x (n/2+1) pronsudé 2 = x ((n+1)/2) pronliché mediánovýinterval intervalobsahujícímedián,tj.prvníinterval,prokterý platí:k pi 0,5 odhadmediánunazákladěintervalovéhotřídění Statistika bybirom Statistika Deskriptivnícharakteristiky 7/28 Statistika bybirom Statistika Deskriptivnícharakteristiky 8/28

3 ModusamediánII j 1 n+1 ni 2 x x 0 + h, nj kdex 0 jestředmediánovéhointervalu, j 1 ni jekumulativníčetnost intervalu,kterýpředcházímediánovémuintervalu,n j ječetnostintervalu mediánového intervalu a h je délka mediánového intervalu Ostatní míry polohy I x min minimum x max maximum xmin =minx =x (1) = x 0 xmax =maxx =x (n) = x 1 x 0,25 dolníkvartil Míry polohy(úrovně) Ostatní míry polohy hodnotaznaku,ježdělísoubor(pozorování)nadvěčástí čtvrtinuatři čtvrtiny; na čtvrtinu pozorování s nižšími hodnotami znaku a tři čtvrtiny pozorování yššími hodnotami znaku x 0,75 horníkvartil hodnotaznaku,ježdělísoubornadvěčástí třičtvrtinyačtvrtinu;na čtvrtinu pozorování s nižšími hodnotami znaku a čtvrtinu pozorování yššími hodnotami znaku x p p 100%(výběrový)kvantil p 0;1 hodnotaznaku,ježdělísoubornadvěčástí p-tinua(1 p)-tinu;p-tinu pozorování s nižšími hodnotami znaku a (1 p)-tinu yššími hodnotami znaku xp = (1 P) x (S) +P x (H), Statistika bybirom Statistika Deskriptivnícharakteristiky 9/28 Statistika bybirom Statistika Deskriptivnícharakteristiky 10/28 Ostatní míry polohy II Míry polohy(úrovně) Ostatní míry polohy kdes= p(n 1)+1,H= p(n 1)+1 ap=p(n 1) S +1 decil p =0;0,1;0,2;...;0,9;1 percentil p =0;0,01;0,02;...;0,99;1 Míry variability Míry variability Vypovídají o variabilitě/proměnlivosti hodnot statistického znaku z daného statistického souboru, jsou jednoznačně definované a relativně jednoduše zjistitelné, slouží k porovnání variability různých statistických souborů, nebo vývoje statistického souboru v čase, mají co nejméně podléhat nahodilostem výběru respektive odlehlým hodnotám požadavek robustnosti některé vycházejí v odlišných jednotkách než posuzovaný statistický znak (rozptyly), nebo jsou relativní mírou variability(variační koeficient). Statistika bybirom Statistika Deskriptivnícharakteristiky 11/28 Statistika bybirom Statistika Deskriptivnícharakteristiky 12/28

4 Rozptyl I Míry variability Rozptyl s 2 p (populační)rozptyl vážený(populační)rozptyl s 2 p = 1 n (x i x) 2 sp 2 = 1 s 2 v výběrovýrozptyl váženývýběrovýrozptyl s 2 v = 1 n 1 (x i x) 2 (x i x) 2 s 2 v = 1 1 (x i x) 2 Rozptyl II Míry variability Rozptyl transformace(besselovaoprava) s 2 p = n 1 n s2 v s 2 p = 1 s2 v obecnámíravariabilitymezivšemihodnotami(nejenvůčiprůměru) s 2 p = 1 2n 2 (x i x j) 2 j=1 nerobustnímíryovlivněnéodlehlýmihodnotami, rozptylvycházívjednotkáchnadruhou!, s 2 p =x 2 x 2 výpočetnívzorecpopulačníhorozptylu s 2 p <s 2 v daň zavýběrovéšetření+požadaveknestrannostiodhadu, provelkánrespektiveneníznatelnýnumerickýrozdílmezipopulačníma výběrovým rozptylem, Statistika bybirom Statistika Deskriptivnícharakteristiky 13/28 Statistika bybirom Statistika Deskriptivnícharakteristiky 14/28 Směrodatná odchylka (populační)směrodatnáodchylka výběrovásměrodatnáodchylka Míry variability Směrodatná odchylka a variační koeficient = s 2 p = s 2 v nerobustnímíryovlivněnéodlehlýmihodnotami, směrodatnéodchylkyvycházívjednotkáchanalyzovanéhostatistickéhoznaku, sp < daň zavýběrovéšetření+požadaveknestrannostiodhadu, provelkánrespektiveneníznatelnýnumerickýrozdílmezipopulačnía výběrovou směrodatnou odchylkou, Variační koeficient V X variačníkoeficient(populačníavýběrový) V X = x Míry variability Směrodatná odchylka a variační koeficient (V X 100%), V X = x (V X 100%) nerobustnímíryovlivněnéodlehlýmihodnotami, Vxjebezrozměrnácharakteristikarespektiveprocentuálněvyjádřená; Interpretaceprocentuálníhovyjádření: Vxudávázkolikaprocentsepodílí směrodatnáodchylkanaaritmetickémprůměru, Variačníkoeficientyjsourelativnímíryvariability( indexy ),cožumožňuje porovnávat variabilitu statistických znaků: s odlišnými jednotkami, mající sice stejné jednotky, ale odlišnou míru polohy. transformace n 1 sp = sv sp = n 1 sv Statistika bybirom Statistika Deskriptivnícharakteristiky 15/28 Statistika bybirom Statistika Deskriptivnícharakteristiky 16/28

5 Rozptyl pro ordinální data dorvar Rozptyl pro ordinální data Míry variability Rozptyl pro ordinální data dorvar = 4 k 1 k pi (1 k pi ), kdekjepočetuspořádatelnýchkategoriíak pi,proi =1,...,kjsou kumulativní relativní četnosti. Dorvar je variantou rozptylu(míry variability) pro ordinální data. i 1 Rozpětí R variační rozpětí IQR (inter)kvartilové rozpětí Míry variability Rozpětí R =x max x min IQR = x 0,75 x 0,25 Statistika bybirom Statistika Deskriptivnícharakteristiky 17/28 Statistika bybirom Statistika Deskriptivnícharakteristiky 18/28 Koeficient šikmosti I Míry šikmosti a špičatosti Míry šikmosti m t,3 koeficient(populační)šikmosti váženýkoeficient(populační)šikmosti m t,3 = 1 n ( xi x třetícentrálnímoment ) 3 m t,3 = 1 ( ) 3 xi x m t,3 koeficientvýběrovéšikmosti váženýkoeficientvýběrovéšikmosti (dle MS Excel 2000) Koeficient šikmosti II Míry šikmosti a špičatosti Míry šikmosti m t,3 >0,pakmluvímeokladnémzešikmení vyššíkoncentracipodprůměrných hodnot v porovnání s koncentrací hodnot nadprůměrných, m t,3 =0,pakmluvímesymetrickémzešikmení stejnékoncentracipodprůměrnýcha nadprůměrných hodnot, m t,3 <0,pakmluvímeozápornémzešikmení vyššíkoncentracinadprůměrných hodnot v porovnání s koncentrací hodnot podprůměrných. m t,3 = m t,3 = n (n 1)(n 2) ( 1)( 2) ( ) 3 xi x ( ) 3 xi x Je-li Statistika bybirom Statistika Deskriptivnícharakteristiky 19/28 Statistika bybirom Statistika Deskriptivnícharakteristiky 20/28

6 Pearsonova míra šikmosti τ Pearsonova míra šikmosti Míry šikmosti a špičatosti Míry šikmosti τ = x ˆx s x mírašikmostizaloženána xa ˆx(přibližnámíra) Je-li τ > 0, pak mluvíme o kladném zešikmení koncentrace některých podprůměrných hodnot je vyšší v porovnání s koncentrací hodnot nadprůměrných, τ =0,pakmluvímesymetrickémzešikmení průměrné hodnotyjsounejčastější, τ < 0, pak mluvíme o záporném zešikmení koncentrace některých nadprůměrných hodnot je vyšší v porovnání s koncentrací hodnot podprůměrných. Míra špičatosti I Míry šikmosti a špičatosti Míry špičatosti m t,4 koeficient(populační)špičatosti váženýkoeficient(populační)špičatosti m t,4 = 1 n ( xi x čtvrtýcentrálnímoment ) 4 m t,4 = 1 kurt modifikovaný koeficient(populační) špičatosti kurt =m t,4 3 ( ) 4 xi x prolepšísrovnáváníseodčtvrtéhocentrálníhomomentuodečítá3,cožje hodnotakoeficientušpičatostinormálníhorozdělení; větší respektive menší špičatostpakurčujemevesrovnánísešpičatostínormálníhorozdělení Statistika bybirom Statistika Deskriptivnícharakteristiky 21/28 Statistika bybirom Statistika Deskriptivnícharakteristiky 22/28 Míra špičatosti II Míry šikmosti a špičatosti Míry špičatosti m t,4 koeficientvýběrovéšpičatosti váženýkoeficientvýběrovéšpičatosti (dle MS Excel 2000) (n+1)n ( ) 4 xi x m t,4 = (n 1)(n 2)(n 3) m t,4 = ( +1) ( 1)( 2)( 3) ( ) 4 xi x kurt modifikovaný koeficient výběrové špičatosti vážený modifikovaný koeficient výběrové špičatosti(dle MS Excel 2000) Krabicový graf Box-plot vizualizace popisných statistik vybrané míry polohy a vybraných variabilit plným názvem Box-and-whisker(s) plot krabicový graf ousy celýgrafjesloženzboxu(krabice), vousů,příčnéčárkyrespektivečtverečku jakéhodnotyvolitpronastaveníkrabicovéhografuzáležípovazedatazáměru analýzy principiálnělzepronastavenívolitparametry xas,topro ilustraci statistickéindukce,nebo x 0,50aIQR,toproanalýzuodlehlýchpozorování kurt =m t,4 3(n 1)2 (n 2)(n 3) kurt =m t,4 3( 1)2 ( 2)( 3) stejnéjakprokoeficient(populační)špičatosti Je-li kurt >0,pakmluvímeokladnéšpičatosti koncentraceprůměrnýchhodnotjevyšší, než bývá u normálního rozdělení, kurt = 0, pak mluvíme o normální špičatosti koncentrace průměrných hodnot je Statistika bybirom právě taková jako u normálníhostatistika rozdělení, Deskriptivnícharakteristiky 23/28 kurt 0, pak mluvíme o záporné špičatosti koncentrace odlehlých hodnot je vyšší, Statistika bybirom Statistika Deskriptivnícharakteristiky 24/28

7 Box-plot Cena zaplacená za celkový spotřebitelský úvěr Vytvořeno 0 v programu STATISTICA komplet 6.1 Cz x 0,50 =6741 x 0,25 x 0,75 tj Rozsahneodlehlýchhodnot = (1584;15093) Odlehléhodnoty Extrémníhodnoty Box-plot Cena zaplacená za celkový spotřebitelský úvěr dle provozoven I Vytvořeno Strakonice v programuprachatice STATISTICAKlatovy komplet 6.1 Cz x 0,50 x 0,25 x 0,75 Rozsahneodlehlýchhodnot Odlehléhodnoty Extrémníhodnoty Statistika bybirom Statistika Deskriptivnícharakteristiky 25/28 Statistika bybirom Statistika Deskriptivnícharakteristiky 26/28 Box-plot Cena zaplacená za celkový spotřebitelský úvěr dle provozoven II 8200 Box-plot Cena zaplacená za celkový spotřebitelský úvěr dle provozoven III x x ± x ±1, x x ± sv n x ±1,96 sv n Vytvořeno Strakonice v programuprachatice STATISTICAKlatovy komplet 6.1 Cz 0 Vytvořeno Strakonice v programuprachatice STATISTICAKlatovy komplet 6.1 Cz Statistika bybirom Statistika Deskriptivnícharakteristiky 27/28 Statistika bybirom Statistika Deskriptivnícharakteristiky 28/28

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT

TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni

Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Kvantifikace dat Pro potřeby statistického zpracování byly odpovědi převedeny na kardinální intervalovou

Více

Úvod do kurzu. Moodle kurz. (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost

Úvod do kurzu. Moodle kurz. (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost Úvod do kurzu Moodle kurz (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost Výpočty online: www.statisticsonweb.tf.czu.cz Začátek výuky posunut

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy

Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných

Více

STATISTICKÉ CHARAKTERISTIKY

STATISTICKÉ CHARAKTERISTIKY STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Základní statistické charakteristiky

Základní statistické charakteristiky Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

Statistika. Zpracování informací ze statistického šetření. Roman Biskup

Statistika. Zpracování informací ze statistického šetření. Roman Biskup Statistika Zpracování informací ze statistického šetření Třídění statistického souboru Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 20. února 2012

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul V: Nekategorizovaná data Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis

Více

Základy pravděpodobnosti a statistiky. Popisná statistika

Základy pravděpodobnosti a statistiky. Popisná statistika Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar

Více

3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1

3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1 3. charakteristiky charakteristiky 1 charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme charakteristiky 2 charakteristiky Dva hlavní

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Popisná statistika. Statistika pro sociology

Popisná statistika. Statistika pro sociology Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky

Více

LEKCE 02a UNIVARIAČNÍ ANALÝZA KATEGORIZOVANÝCH DAT

LEKCE 02a UNIVARIAČNÍ ANALÝZA KATEGORIZOVANÝCH DAT LEKCE 02a UNIVARIAČNÍ ANALÝZA KATEGORIZOVANÝCH DAT 1 Základní statistickou úlohou je popis stavu základního souboru Východiskem je většinou výběrový soubor (odvozujeme popis základního souboru z popisu

Více

Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM 2016 Jak získat data? Primární zdroje dat Vlastní měření (fyzika, biologie,

Více

Statistika I (KMI/PSTAT)

Statistika I (KMI/PSTAT) Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální

Více

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2 Statistika jako obor Statistika Statistika je vědní obor zabývající se zkoumáním jevů hromadného charakteru. Tím se myslí to, že zkoumaný jev musí příslušet určité části velkého množství objektů (lidí,

Více

Obsah. Statistika Zpracování informací ze statistického šetření Třídění statistického souboru. Třídění dle statistického znaku.

Obsah. Statistika Zpracování informací ze statistického šetření Třídění statistického souboru. Třídění dle statistického znaku. Obsah Statistika Zpracování informací ze statistického šetření Třídění statistického souboru Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi;-) romanbiskup(at)emailcz 20 února

Více

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream

Více

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Př. : Stanovte jednotlivé četnosti a číselné charakteristiky zadaného statistického souboru a nakreslete krabicový graf:, 8, 7, 43, 9, 47, 4, 34, 34, 4, 35. Statistický soubor seřadíme vzestupně podle

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan 1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce

Více

Deskriptivní statistika (kategorizované proměnné)

Deskriptivní statistika (kategorizované proměnné) Deskriptivní statistika (kategorizované proměnné) Nejprve malé opakování: - Deskriptivní statistika se zabývá popisem dat, jejich sumarizaci a prezentací. - Kategorizované proměnné jsou všechny proměnné,

Více

Informační technologie a statistika 1

Informační technologie a statistika 1 Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek

Více

EXPLORATORNÍ ANALÝZA DAT. 7. cvičení

EXPLORATORNÍ ANALÝZA DAT. 7. cvičení EXPLORATORNÍ ANALÝZA DAT 7. cvičení Teorie pravděpodobnosti x Statistika Teorie pravděpodobnosti popisuje zákonitosti týkající se náhodných jevů, používá se k modelování náhodností a neurčitostí, které

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Základní pojmy a cíle statistiky Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Statistika Pojmy a cíle

Více

UKAZATELÉ VARIABILITY

UKAZATELÉ VARIABILITY UKAZATELÉ VARIABILITY VÝZNAM Porovnejte známky dvou studentek ze stejného předmětu: Studentka A: Studentka B: Oba soubory mají stejný rozsah hodnoty, ale liší se známky studentky A jsou vyrovnanější, jsou

Více

Základy biostatistiky

Základy biostatistiky Základy biostatistiky Veřejné zdravotnictví 3.LF UK Viktor Hynčica Úvod se statistikou se setkáváme denně ankety proč se statistika začala používat ve zdravotnictví skupinový přístup k léčení celé populace

Více

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka 2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:

Více

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? teoretická disciplína, která se zabývá metodami sběru a analýzy dat Jak získat data?

Více

Základní statistické pojmy

Základní statistické pojmy POPISNÁ STATISTIKA Základní statistické pojmy Jev hromadný Hromadná pozorování výsledek hromadný jev soustředění se na určitou vlastnost(i) ukáže po více pokusech Zjistit souvislosti v prostoru a čase

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Nejčastější chyby v explorační analýze

Nejčastější chyby v explorační analýze Nejčastější chyby v explorační analýze Obecně doporučuju přečíst přednášku 5: Výběrová šetření, Exploratorní analýza http://homel.vsb.cz/~lit40/sta1/materialy/io.pptx Použití nesprávných charakteristik

Více

Základní analýza dat. Úvod

Základní analýza dat. Úvod Základní analýza dat literatura: Hendl, J. 2006: Přehled statistických metod zpracování dat. Analýza a metaanalýza dat. Praha: Portál. Macháček, J. 2001: Studie k velkomoravské keramice. Metody, analýzy

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Statistika. Program R. popisná (deskriptivní) statistika popis konkrétních dat. induktivní (konfirmatorní) statistika. popisná statistika

Statistika. Program R. popisná (deskriptivní) statistika popis konkrétních dat. induktivní (konfirmatorní) statistika. popisná statistika Statistika Cvičení z matematické statistiky na PřF Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy léto 2012 Základní dělení popisná (deskriptivní)

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

VŠB Technická univerzita Ostrava BIOSTATISTIKA

VŠB Technická univerzita Ostrava BIOSTATISTIKA VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Domácí úkoly Zadání 5 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1:

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

Statistika v současnosti

Statistika v současnosti 1. STATISTIKA z latin. Status (stav nebo stát) 1562 Benátky 17. stol. Německo Anglie 16.-17. st. tzv. politická aritmetika Ideální typ člověka - Adolphe QUETÉLET 18. a 19. st. pozorování a popis zákonitostí

Více

Obecné, centrální a normované momenty

Obecné, centrální a normované momenty Obecné, centrální a normované momenty Obsah kapitoly 4. Elementární statistické zpracování - parametrizace vhodnými empirickými parametry Studijní cíle Naučit se počítat centrální a normované momenty pomocí

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v

Více

23. Matematická statistika

23. Matematická statistika Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti

Více

Příloha podrobný výklad vybraných pojmů

Příloha podrobný výklad vybraných pojmů Příloha podrobný výklad vybraných pojmů 1.1 Parametry (popisné charakteristiky) základního souboru 1.1.1 Míry polohy (střední hodnoty) Aritmetický průměr představuje pravděpodobně nejznámější střední hodnotou,

Více

Téma 2. Řešené příklady

Téma 2. Řešené příklady Téma. Řešené příklady 1. V tabulce č. 1. jsou uvedeny údaje o spotřebě polotučného sušeného a polotučného tekutého mléka v jednotlivých létech. Tab. 1. (mil. l) \ rok 1998 1999 000 001 00 003 004 005 Polotučné

Více

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách ROZKLAD ROZPTYLU ROZKLAD ROZPTYLU Rozptyl se dá rozložit na vnitroskupinový a meziskupinový rozptyl. Celkový rozptyl je potom součet meziskupinového a vnitroskupinového Užívá se k výpočtu rozptylu, jestliže

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

Renáta Bednárová STATISTIKA PRO EKONOMY

Renáta Bednárová STATISTIKA PRO EKONOMY Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.

Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou

Více

Předmět studia: Ekonomická statistika a analytické metody I, II

Předmět studia: Ekonomická statistika a analytické metody I, II Předmět studia: Ekonomická statistika a analytické metody I, II Typ a zařazení předmětu: povinný předmět bakalářského studia, 1. ročník Rozsah předmětu: 2 semestry, celkem 24/0 hodin v kombinované formě

Více

1.1 Dva základní typy statistiky Popisná statistika (descriptive statistics) Inferenční statistika (inferential statistics)

1.1 Dva základní typy statistiky Popisná statistika (descriptive statistics) Inferenční statistika (inferential statistics) 1. PODSTATA STATISTIKY Původní význam - pouhé sbírání čísel (název z latinského status = stát, použití k označení vědy zabývající se sběrem informací o státu - o počtu obyvatel, ekonomice,...) Dnešní pojetí

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2 Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA Semestrální práce Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Vypracoval: Bonaconzová, Bryknarová, Milkovičová, Škrdlová

Více

STATISTIKA S EXCELEM. Martina Litschmannová MODAM,

STATISTIKA S EXCELEM. Martina Litschmannová MODAM, STATISTIKA S EXCELEM Martina Litschmannová MODAM, 8. 4. 216 Obsah Motivace aneb Máme data a co dál? Základní terminologie Analýza kvalitativního znaku rozdělení četnosti, vizualizace Analýza kvantitativního

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika?

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika? Organizační pokyny k přednášce Matematická statistika 2012 2013 Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hudecova@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/

Více

Vzorová prezentace do předmětu Statistika

Vzorová prezentace do předmětu Statistika Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE

STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí

Více

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce Seminarni prace Popisná statistika, data nesmí být časovou řadou Zkoumat můžeme třeba mzdy, obraty atd. (takže možná QA?) Formát pdf, poslat nejpozději den před zkouškou. Podrobnější informace jsou na

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

ZÁKLADNÍ POJMY a analýza výběru

ZÁKLADNÍ POJMY a analýza výběru ZÁKLADNÍ POJMY a analýza výběru PARAMETR je statistická charakteristika základního souboru (značíse řeckými písmeny, např. střední hodnota μ ). STATISTIKA je statistická charakteristika výběrového souboru

Více

1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu

1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu cvičící 1. cvičení 4ST201 Informace o kurzu Popisná statistika Úvod do SASu Obsah: Vysoká škola ekonomická 1 Vyučující: Základní informace:» Konzultační hodiny: pátek 9:00 11:00» Místnost: JM317» Email:

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více