STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA Sylabus pro předmět STATISTIKA Pomůcky... 7

Rozměr: px
Začít zobrazení ze stránky:

Download "STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7"

Transkript

1 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA Sylabus pro předmět STATISTIKA Pomůcky

2 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru Podnikové informační systémy vyučoval dosud ve dvou částech. V zimním semestru se vyučoval kurz STA1 a v letním semestru kurz STA2. V kurzu STA1 se vyučovaly oblasti Popisná statistika, Pravděpodobnost, Matematická statistika bodové a intervalové odhady. Kurz STA2 plynule navazoval na kurz STA1 a výuka se zaměřovala na testování hypotéz, analýzu závislostí, časové řady a indexní analýzu. Jelikož na každý kurz připadalo 14 výukových týdnů, látka byla probírána do hloubky, studenti se naučili počítat různé variety příkladů a i se důkladně seznámili s používáním statistických vzorců, tabulek, statistických funkcí a nástrojů analýzy dat. Inovace předmětu Statistika spočívá v tom, že dojde ke spojení kurzů STA1 a STA2 a současně se tak zredukuje zejména obsah procvičované látky. Základní oblasti statistiky zůstanou zachovány Popisná statistika, Pravděpodobnost, Matematická statistika, Analýza závislostí, Časové řady a Indexní analýza, dojde pouze k zúžení rozsahu praktické výuky na základní minimum. Na cvičeních se studenti seznámí se základními typy příkladů v jednotlivých oblastech statistiky a současně se naučí práci se statistickými vzorci a tabulkami. Výuka bude probíhat v programu MS Excel, ve kterém se studenti naučí používat základní statistické vzorce a základní nástroje analýzy dat, zejména kontingenční tabulku a regresní a korelační analýza. Vytvořením nového redukovaného kurzu došlo i ke změně sylabu, který je uveden v kapitole 2. Kapitola 3 obsahuje seznam výukových pomůcek, které byly navrženy speciálně pro tento předmět statistické vzorce, statistické tabulky a soubor prezentací na cvičení. 2

3 2. Sylabus pro předmět STATISTIKA Forma a rozsah výuky: Prezenční výuka Přednáška (90 min. týdně) Cvičení (90 min. týdně) 7 kreditů ECTS (1 ECTS kredit = 26 hodin studijní zátěže) Typ a ročník studia: Povinný kurz pro bakalářský obor Podnikové informační systémy; 3. resp. 4 semestr studia Pro zápis předmětu nejsou stanovena žádná omezení, není požadována žádná výchozí praxe. Cíl předmětu: Objasnit studentům význam a pojetí moderní statistiky, základní statistické pojmy a přiblížit studentům možnosti prezentace statistických dat a způsoby jejich analýzy. Studenti se seznámí se základními oblastmi statistiky popisná statistika, pravděpodobnost, matematická statistika, regresní a korelační analýza, analýza časových řad a indexní analýza. Studenti se naučí aplikovat základní statistické postupy a správně interpretovat výsledky. Výsledky učení: Po úspěšném absolvování kurzu budou studenti schopni porozumět statistickým datům, aplikovat základní statistické postupy a správně interpretovat výsledky. Současně se naučí pracovat se základními statistickými funkcemi a nástroji analýzy dat v programu MS Excel a interpretovat příslušné statistické výstupy. Probíraná látka: 1. Popisná statistika typy proměnných, elementární zpracování statistických údajů, míry polohy, míry variability 2. Pravděpodobnost náhodný jev a definice pravděpodobnosti, náhodná veličina a její rozdělení, charakteristiky náhodných veličin 3. Matematická statistika druhy statistických zjišťování, bodové a intervalové odhady, testování hypotéz 4. Analýza závislosti test nezávislosti v kontingenčních tabulkách, analýza rozptylu, regresní a korelační analýza 5. Analýza časových řad druhy časových řad, elementární charakteristiky, modelování časových řad 6. Indexní analýza typy a vlastnosti ukazatelů; individuální, složené a souhrnné indexy 3

4 Probíraná témata: Kurz je rozdělen na 6 částí. První část kurzu je zaměřena na problematiku popisné statistiky. Student se zde mimo jiné naučí pracovat se základními statistickými funkcemi programu MS Excel. Druhá část se soustředí na pravděpodobnost, zejména náhodnou veličinu a její charakteristiky a rozdělení. Student zde bude aktivně využívat nejen statistické vzorce a funkce v programu MS Excel, ale naučí se pracovat i se statistickými tabulkami. Problematika matematické statistiky bude rozvíjena ve třetí části. Student se seznámí se smyslem matematické statistiky, typy výběrových šetření a naučí se zpracovávat data z výběrových zjišťování. Čtvrtá část kurzu se soustředí na analýzu závislosti mezi různými druhy statistických proměnných. Student zde bude aktivně využívat panel nástrojů Analýzy dat programu MS Excel a naučí se orientovat ve statistických výstupech a jejich interpretaci v praxi. Problematika časových řad bude probírána v páté části kurzu. Student se seznámí s druhy časových řad, jejich jednotlivými složkami, očišťováním a modelováním. Závěrečná šestá část kurzu je zaměřena na indexní analýzu, která má svůj význam především v oblasti statistického srovnávání. I. Popisná statistika I.I Základní statistické pojmy a typy proměnných I.II Zpracování statistických údajů statistické grafy, tabulka rozdělení četností I.III Míry polohy aritmetický průměr, harmonický průměr, kvadratický průměr, geometrický průměr; modus; medián; kvantily I.IV Míry variability variační rozpětí, rozptyl, směrodatná odchylka, variační koeficient; rozklad rozptylu II. Pravděpodobnost II.I Náhodný jev, definice pravděpodobnosti II.II Náhodná veličina základní formy popisu zákona rozdělení, spojitá a diskrétní náhodná veličina, charakteristiky náhodné veličiny II.III Diskrétní rozdělení náhodné veličiny Alternativní rozdělení, Binomické rozdělení, Poissonovo rozdělení, Hypergeometrické rozdělení II.IV Spojitá rozdělení náhodné veličiny Normální rozdělení, Normované normální rozdělení III. Matematická statistika III.I Statistické zjišťování a jeho druhy 4

5 III.II Bodové a intervalové odhady střední hodnota, rozptyl, relativní četnost, určení minimálně nutného rozsahu výběru III.III Testování statistických hypotéz parametrické testy: střední hodnota, rozptyl, relativní četnost III.IV Testování statistických hypotéz neparametrické testy: chí-kvadrát test dobré shody, Kolmogorov-Smirnovův test IV. Analýza závislosti IV.I Chí-kvadrát test nezávislosti v kontingenční tabulce IV.II Analýza rozptylu IV.III Regresní a korelační analýza přímková regrese V. Analýza časových řad V.I Druhy časových řad, elementární charakteristiky časových řad průměry hodnot, diference, tempa a průměrná tempa růstu V.II Dekompozice časové řady V.III Popis trendové složky odhad lineárního trendu V.IV Vyrovnávání časové řady klouzavé průměry VI. Indexní analýza VI.I Typy a vlastnosti ukazatelů VI.II Indexy a absolutní rozdíly jako nástroj srovnání jednoduché individuální indexy, složené individuální indexy, souhrnné indexy VI.III Indexy a absolutní rozdíly jako nástroj analýzy metoda postupných změn Požadavky na úspěšné absolvování předmětu: Aktivní účast na přednáškách/cvičeních. V průběhu semestru dva průběžné testy. Předmět zakončen zkouškou ve formě písemného testu. Způsoby a kritéria hodnocení: Druh Prezenční studium Aktivní účast na přednáškách/cvičeních 10 % Absolvování průběžných testů 40 % Absolvování zkouškového testu 50 % 5

6 Celkem 100 % Studenti v průběhu semestru absolvují dva průběžné testy. Z každého průběžného testu bude možné získat max. 20 bodů, v součtu tedy 40 bodů. Celková váha absolvovaných průběžných testů k celkovému hodnocení je 40 %. Za aktivní účast na přednáškách/cvičeních může student dosáhnout 10 bodů. Podmínkou připuštění k závěrečné zkoušce je získání minimálně 50 % bodů z průběžných testů a aktivní účasti na přednáškách/cvičeních (tj. celkem 25 bodů). Při nesplnění této podmínky není student připuštěn ke zkoušce a je hodnocen známkou Nevyhověl. Závěrečná zkouška je formou písemného testu. Student z tohoto zkouškového testu může získat max. 50 bodů, tj. 50 % k celkovému hodnocení předmětu. Klasifikace: Rozsah bodů Hodnocení % Výborně % Velmi dobře % Dobře 59 % a méně Nevyhověl Vyučující: prof. Ing. Richard Hindls, CSc., dr. h. c. (přednášející) Ing. Věra Jeřábková, Ph.D. (cvičící) Ing. Adam Čabla (cvičící) Studijní zátěž (počet hodin): Účast na přednáškách Účast na cvičeních Příprava na přednášky Příprava na cvičení Příprava na průběžné testy Příprava na závěrečný test Studijní zátěž celkem 28 h 28 h 14 h 14 h 30 h 68 h 182 h Literatura: Druh lit. ISBN Název knihy Autoři Rok vydání 6

7 Z Statistika pro ekonomy Hindls, R Z Statistika v příkladech Marek, L D Příklady k předmětu Statistika A Arltová, M D Elementární statistická analýza Cyhelský, L., Kahounová, J., Hindls, R. D Metody statistické analýzy pro ekonomy Hindls, R., Hronová, S., Novák, I D Počet pravděpodobnosti v příkladech Hebák, P., Kahounová, J D D D Předpokládané vydání podzim 2014 Praktikum k výuce matematické statistiky. II. Testování hypotéz Metody statistického srovnávání IASTAT interaktivní učebnice statistiky Hebák, P., Bílková, D., Svobodová, A Petkovová L., Jeřábková, V., Schwarzová, P. 3. Pomůcky Statistické vzorce pro předmět Statistika - obor Podnikové informační systémy Statistické tabulky pro předmět Statistika obor Podnikové informační systémy Prezentace na cvičení pro předmět Statistika 1. až 14. cvičení 7

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D.

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. STATISTIKA LS 2013 Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. Cvičící: Ing. Ondřej Grunt RNDr. Pavel Jahoda, Ph.D. Ing. Kateřina Janurová Mgr. Tereza

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Karta předmětu prezenční studium

Karta předmětu prezenční studium Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0250 Garantující institut: Garant předmětu: Ekonomická statistika Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková, Ph.D.

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Statistika úvodní přednáška Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Cíle základního kurzu: seznámit posluchače se základy počtu pravděpodobnosti, seznámit posluchače s aspekty

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu

1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu cvičící 1. cvičení 4ST201 Informace o kurzu Popisná statistika Úvod do SASu Obsah: Vysoká škola ekonomická 1 Vyučující: Základní informace:» Konzultační hodiny: pátek 9:00 11:00» Místnost: JM317» Email:

Více

PRAVDĚPODOBNOST A STATISTIKA 1 Metodický list č 1.

PRAVDĚPODOBNOST A STATISTIKA 1 Metodický list č 1. Metodický list č 1. Název tématického celku: Elementární statistické zpracování 1 - Kolekce a interpretace statistických dat, základní pojmy deskriptivní statistiky. Cíl: Základním cílem tohoto tematického

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

STATISTIKA I Metodický list č. 1 Název tématického celku:

STATISTIKA I Metodický list č. 1 Název tématického celku: STATISTIKA I Metodický list č. 1 Analýza závislostí Základním cílem tohoto tématického celku je seznámit se s pokročilejšími metodami zpracování statistických údajů.. 1. kontingenční tabulky 2. regresní

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Metodický list pro 3. soustředění kombinovaného Bc. studia předmětu B_St_2 STATISTIKA 2

Metodický list pro 3. soustředění kombinovaného Bc. studia předmětu B_St_2 STATISTIKA 2 Metodický list pro. soustředění kombinovaného Bc. studia předmětu B_St_ STATISTIKA Název tematického celku: Testy parametrů některých, testy shody parametrů v několika souborech Cíl tematického celku:

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

STATISTICKÉ PROGRAMY

STATISTICKÉ PROGRAMY Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné STATISTICKÉ PROGRAMY VYUŽITÍ EXCELU A SPSS PRO VĚDECKO-VÝZKUMNOU ČINNOST Elena Mielcová, Radmila Stoklasová a Jaroslav Ramík Karviná

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan 1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

Předmět studia: Ekonomická statistika a analytické metody I, II

Předmět studia: Ekonomická statistika a analytické metody I, II Předmět studia: Ekonomická statistika a analytické metody I, II Typ a zařazení předmětu: povinný předmět bakalářského studia, 1. ročník Rozsah předmětu: 2 semestry, celkem 24/0 hodin v kombinované formě

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Tématické okruhy pro státní závěrečné zkoušky. magisterské studium

Tématické okruhy pro státní závěrečné zkoušky. magisterské studium Tématické okruhy pro státní závěrečné zkoušky magisterské studium studijní obor "Řízení jakosti" školní rok 2009/2010 Management jakosti A 1. Koncepce managementu jakosti, charakteristiky a účel, normy

Více

TEMATICKÝ PLÁN VÝUKY

TEMATICKÝ PLÁN VÝUKY TEMATICKÝ PLÁN VÝUKY Studijní obor: 23-41 - M/1 Strojírenství Zaměření: Předmět: Matematika Ročník: 4. Počet hodin týdně: 4 Počet hodin celkem: Tento plán vychází z rámcového vzdělávacího programu pro

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT

TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

Manažerské rozhodování

Manažerské rozhodování 3MA413 Manažerské rozhodování Česky Anglicky Německy Forma výuky Úroveň studia Manažerské rozhodování Managerial Decision Making Managemententscheidungen 2 hod. přednášek 2 hod. cvičení magisterská navazující

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Zhodnocení dopadů inovace na studijní výsledky

Zhodnocení dopadů inovace na studijní výsledky Zhodnocení dopadů inovace na studijní výsledky Zpracoval: doc. Ing. Josef Weigel, CSc. hlavní řešitel projektu Hodnocené studijní programy: - Bakalářský studijní program Geodézie a kartografie v prezenční

Více

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................

Více

Manažerská ekonomika KM IT

Manažerská ekonomika KM IT KVANTITATIVNÍ METODY INFORMAČNÍ TECHNOLOGIE (zkouška č. 3) Cíl předmětu Získat základní znalosti v oblasti práce s ekonomickými ukazateli a daty, osvojit si znalosti finanční a pojistné matematiky, zvládnout

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

Základní statistické charakteristiky

Základní statistické charakteristiky Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Rozdělení náhodné veličiny

Rozdělení náhodné veličiny Rozdělení náhodné veličiny Náhodná proměnná může mít - diskrétní rozdělení (nabývá jen určitých číselných hodnot) - spojité rozdělení (nabývá libovolných hodnot z určitého intervalu) Fyzikální veličiny

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Cvičení 12: Binární logistická regrese

Cvičení 12: Binární logistická regrese Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

Případové studie v mezinárodním podnikání (anglicky)

Případové studie v mezinárodním podnikání (anglicky) 3MA663 Případové studie v mezinárodním podnikání (anglicky) Česky Anglicky Německy Forma výuky Úroveň studia Případové studie v mezinárodním podnikání (anglicky) International Business Case Studies Geschäftsfällestudios

Více

Podnikatelské praktikum

Podnikatelské praktikum 3MA543 Podnikatelské praktikum Česky Anglicky Německy Forma výuky Úroveň studia Podnikatelské praktikum Enterprise in praxis Unternehmerisches Praktikum 2 hod. přednášek 2 hod. cvičení magisterská navazující

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Obecné, centrální a normované momenty

Obecné, centrální a normované momenty Obecné, centrální a normované momenty Obsah kapitoly 4. Elementární statistické zpracování - parametrizace vhodnými empirickými parametry Studijní cíle Naučit se počítat centrální a normované momenty pomocí

Více

23. Matematická statistika

23. Matematická statistika Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti

Více

Podnikání v malé a střední firmě

Podnikání v malé a střední firmě 3MA113 Podnikání v malé a střední firmě Česky Anglicky Německy Forma výuky Úroven studia Podnikání v malé a střední firmě Enterprising with Small and Medium Company Unternehmen in der kleinen und mittleren

Více

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B. Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná

Více

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO RNDr. Jana Hrubá Katedra matematických metod v ekonomice (K151) Institut inovace vzdělávání (K167) Ekonomická fakulta

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Základy pracovního práva II

Základy pracovního práva II Vysoká škola Karlovy Vary, obecně prospěšná společnost SYLABUS PŘEDMĚTU Anglicky Identifikace Typ předmětu Základy pracovního práva II Labour law II PRP II povinný ECTS kredity 4 Forma studia kombinovaná

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Učitelství 2. stupně ZŠ tématické plány předmětů matematika

Učitelství 2. stupně ZŠ tématické plány předmětů matematika Učitelství 2. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematická analýza I (KMD/MANA1)...2 Úvod do teorie množin (KMD/TMNZI)...4 Algebra 2 (KMD/ALGE2)...6 Konstruktivní geometrie

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy

Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita

Více

Manažerská informatika databázové aplikace

Manažerská informatika databázové aplikace 3MA383 Manažerská informatika databázové aplikace Česky Anglicky Německy Forma výuky Úroveň studia Manažerská informatika databázové aplikace Management Information Technology atabases Application Managementinformatik

Více

3MA524 Metody a techniky v managementu kvality 2

3MA524 Metody a techniky v managementu kvality 2 3MA524 Metody a techniky v managementu kvality 2 Česky Metody a techniky v managementu kvality 2. Anglicky Methods and Techniques in Management Quality 2 Německy Methode und Techniken in Qualitätsmanagement

Více

STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE

STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí

Více

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar

Více

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky

Více

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu 1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.

Více

Statistika - charakteristiky variability

Statistika - charakteristiky variability Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické

Více

Návrh a vyhodnocení experimentu

Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav

Více

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY učební text Jan Famfulík Jana Míková Radek Krzyžanek Ostrava 2007 Recenze: Prof. Ing. Milan Lánský, DrSc. Název: Teorie údržby Autor: Ing.

Více

Analýza a prezentace dat. Název Data analysis and presentation Způsob ukončení * přednášek týdně 2 hod.

Analýza a prezentace dat. Název Data analysis and presentation Způsob ukončení * přednášek týdně 2 hod. Identifikační karta modulu Kód modulu modulu povinný Jazyk výuky čeština v jazyce výuky Analýza a prezentace dat česky Analýza a prezentace dat anglicky Data analysis and presentation Způsob ukončení *

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Obsah. Předmluva 9 Poděkování 10. Statistické pojmy

Obsah. Předmluva 9 Poděkování 10. Statistické pojmy Obsah Předmluva 9 Poděkování 10 PRVNÍ ČÁST Statistické pojmy Kapitola 1 Základy matematiky 13 Množiny 13 Souvislosti a statistické funkce 16 Čísla 20 Rovnice o jedné neznámé 23 Jednoduché grafy 26 Modelování,

Více

PRŮVODCE STUDIEM PRO PREZENČNÍ FORMU STUDIA MODULU CESTOVNÍ RUCH A VOLNOČASOVÉ OČASOVÉ AKTIVITY DÍLČÍ ČÁST PODNIKÁNÍ V CESTOVNÍM RUCHU.

PRŮVODCE STUDIEM PRO PREZENČNÍ FORMU STUDIA MODULU CESTOVNÍ RUCH A VOLNOČASOVÉ OČASOVÉ AKTIVITY DÍLČÍ ČÁST PODNIKÁNÍ V CESTOVNÍM RUCHU. PRŮVODCE STUDIEM PRO PREZENČNÍ FORMU STUDIA MODULU CESTOVNÍ RUCH A VOLNOČASOVÉ OČASOVÉ AKTIVITY DÍLČÍ ČÁST PODNIKÁNÍ V CESTOVNÍM RUCHU Lenka Švajdová Ostrava 2011 Název: Cestovní ruch a volnočasové aktivity

Více

Regresní analýza. Eva Jarošová

Regresní analýza. Eva Jarošová Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost

Více

Renáta Bednárová STATISTIKA PRO EKONOMY

Renáta Bednárová STATISTIKA PRO EKONOMY Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy

Více

Korelace. Komentované řešení pomocí MS Excel

Korelace. Komentované řešení pomocí MS Excel Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Úvod do kurzu. Moodle kurz. (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost

Úvod do kurzu. Moodle kurz. (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost Úvod do kurzu Moodle kurz (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost Výpočty online: www.statisticsonweb.tf.czu.cz Začátek výuky posunut

Více