Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
|
|
- Zuzana Kristýna Šimková
- před 9 lety
- Počet zobrazení:
Transkript
1 Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
2 K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech dat (explorační statistika). S pomocí teorie pravděpodobnosti ověřuje platnost hypotéz.
3 Statistický software Uživatelsky příjemný (Statistica 8, MiniTab) Profesionální (SPSS, SAS)
4 Typy dat Kategorizované proměnné (do jaké kategorie respondent nebo případ patří) a) nominální (nemá smysl pořadí kategorií) b) ordinální (uspořádání, které vychází z logiky kategorií, lze seřadit vzestupně nebo sestupně) Číselné proměnné (informace, kde se primárně ptáme na nějaké číslo) a) intervalová b) poměrová (vyjádřena číselně sama o sobě)
5 Typy dat Nominální i. muž, žena ii. vesnice, město iii. absolvoval, neabsolvoval Ordinální i. 1, 2, 3, 4, 5 ii. silně souhlasím, souhlasím, nesouhlasím, silně nesouhlasím Intervalová i. 10, 12, 15, 17, 20 bodů v testu Poměrová i. 12, 18, 22, 38, 54 let ii. 55, 6 kg
6 Proměnné V případě, že má výzkumný problém dvě proměnné, určujeme závisle a nezávisle proměnnou. Nezávisle proměnná (proměnná, která je příčinou změny) Závisle proměnná (proměnná, jejíž hodnoty se změnily vlivem nezávisle proměnné) Jaký vliv má interaktivnost výuky na míru osvojených znalostí?
7 Data nám slouží k přesnému výběru statistické metody Jestliže jsou obě proměnné nominální nebo ordinální, použijeme kontingenční tabulku (chí-kvadrát), např. rozdíly v postoji ke škole (pozitivní, negativní) mezi chlapci a dívkami Jestliže je jedna proměnná nominální a druhá metrická (poměrová, intervalová), použijeme t-test, např. rozdíly v EQ u studentů prvních a posledních ročníků gymnázií Jestliže je jedna proměnná metrická a druhá nominální s více kategoriemi (nebo ordinální), použijeme analýzu rozptylu, např. rozdíly v testu tvořivosti v různých věkových kategoriích Jestliže jsou obě proměnné metrické nebo ordinální a zjišťujeme závislost, použijeme test korelace
8 Popisná statistika Jaká je úspěšnost žáků 5. třídy ZŠ Vsetín Ohrada v matematice? Školní úspěšnost operačně definujeme jako známku z testu matematických znalostí. Vzorek bude tvořit 22 žáků 5. třídy 1, 1, 2, 4, 3, 3, 3, 2, 4, 1, 3, 2, 1, 5, 1, 1, 2, 4, 3, 2, 3, 3 (viz pracovní sešit.xls) Co můžeme o těchto datech říci?
9 Popis střední hodnoty Popis né statis tiky (pracovni_data2) Proměnná N platných Průměr Minimum Maximum Sm.odch. Známka z testu MA 22 2, , , ,184313
10 Tabulka četností Známka Četnost n i Relativní četnost f i Kumulativní četnost 1 6 0, , , , , ,000
11 Histogram četností Histogram z Známka z testu MA pracovni_data 4v*22c Známka z testu MA = 22*1*normal(x; 2,4545; 1,1843) 7; 32% 6; 27% Počet pozorování ; 23% 3; 14% 2 1 1; 5% Známka z testu MA
12 Výsečový graf Výsečový graf z Známka z testu MA pracovni_data 4v*22c 5; 1; 5% 4; 3; 14% 1; 6; 27% 3; 7; 32% 2; 5; 23% Známka z testu MA
13 Spojnicový graf 5,5 Spojnicový graf z Známka z testu MA pracovni_data 4v*22c 5,0 4,5 4,0 Známka z testu MA 3,5 3,0 2,5 2,0 1,5 1,0 0,
14 Krabicový graf 5,5 Krabicový graf z Známka z testu MA pracovni_data2 8v*22c 5,0 4,5 4,0 3,5 3,0 2,5 2,0 1,5 1,0 0,5 Známka z testu MA Medián = 2,5 25%-75% = (1, 3) Rozsah neodleh. = (1, 5) Odlehlé Extrémy
15 Charakteristiky centrální tendence Čísla, která nejlépe zastupují celý soubor dat I. Aritmetický průměr (data metrická) II. Modus (data nominální) III. Medián (data ordinální)
16 Výpočet střední hodnoty Průměr intervalový popis střední hodnoty Medián prostřední hodnota z řady hodnot seřazených podle velikosti (nad mediánem leží 50% dat a pod mediánem 50% dat) Modus ta hodnota, která se v daném souboru dat vyskytuje nejčastěji 1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,5
17 Příklad Výsledky IQ testu 96, 96, 97, 99, 100, 101, 102, 104, 195. Modus (nejfrekventovanější skóre) 96 Medián (prostřední skóre) 100 Průměr (aritmetický průměr) 110,6 V tomto případě centrální hodnotu nejlépe vystihuje medián.
18 Výpočet průměru Známka Četnost n i n. x i
19 Míra variability (charakteristika rozptýlení) Průměr nám nemusí poskytovat komplexní informace o souboru. 1, 1, 1, 5, 5, 5 nebo 3, 3, 3, 3, 3, 3 Rozptyl míra rozptýlení, zda mezi průměry jsou či nejsou významné rozdíly. Směrodatná odchylka druhá odmocnina z rozptylu, jak jsou data rozptýlena od průměru, ukazatel vstupních dat.
20 Rozptyl a směrodatná odchylka Data 8, 12, 12, 12, 13, 16, 17, 18, 18 Zakreslení dat na číselnou osu (zjišťuji průměrnou vzdálenost od průměru). Vychází nula, jak tedy postupovat? Průměrný součet čtverců odchylek od aritmetického průměru. Jaký je matematický postup výpočtu rozptylu (průměrné odchylky od průměru)?
21 Výpočet rozptylu a směrodatné odchylky x x r=3 s 2 =4 x x r=3 s 2 =0
22 Příklad Dva soubory dat se stejným průměrem (data2, testy v páté a šesté třídě. Co nám říká směrodatná odchylka? Jak vypadá distribuce dat? Popis né statis tiky (pracovni_data2) Prom ěnná N platných Prům ěr Minim um Maxim um Sm.odch. TEST , , , , TEST , , , , K čemu je nám znalost směrodatné odchylky v praxi?
23 Příklad Petr je student sedmé třídy a v testu z JČ získal 40 bodů, v test z MA získal 30 bodů. Co můžeme říct o srovnání jeho znalostí z obou předmětů? Předmět Počet bodů Průměr Směrodatná odchylka Jazyk český Matematika JČ o půl směrodatné odchylky nad průměrem MA o 2,5 směrodatné odchylky nad průměrem
24 Otázky Jak jsem uspěl v případě, že jsem napsal test hodně špatně, ale směrodatná odchylka bodů v testu je velká? Jak jsem uspěl v případě, že jsem napsal test hodně špatně a směrodatná odchylka bodů v testu je malá? Jak jsem uspěl v případě, že jsem napsal test hodně dobře a směrodatná odchylka bodů v testu je velká? Jak jsem uspěl v případě, že jsem napsal test hodně dobře a směrodatná odchylka bodů v testu je malá?
25 Otázky Jak jsem uspěl v testech ve srovnání s ostatními spolužáky? Počet bodů Průměr Směrodatná odchylka Matematika Literatura Všeobecné znalosti Vím, jak si vedu ve srovnání s ostatními, můžu to i vyčíslit tzv. percentily nebo z skóre.
26 Směrodatná odchylka 68,27%, 95,4%, 99,73% r = průměr Hodnoty, kterých může studovaná proměnná nabývat rozptyl
27 Interval spolehlivosti Odhadujeme skutečnou hodnotu (průměr) základního souboru na základě výběru (výzkumný vzorek). Odhad se může měnit, my ho neznáme (jelikož jsme jej nezměřili na celé populaci), proto určujeme intervalový odhad. S předem zvolenou pravděpodobností obsahuje skutečnou střední hodnotu v populaci Kč Kč
28 Testování hypotéz Při testování hypotéz (relační a kauzální výzkumné problémy) formulujeme dvě vzájemně si odporující hypotézy H 0 nulová hypotéza, jednoduché tvrzení o neexistenci vztahu H A tzv. alternativní hypotéza, negace nulové hypotézy
29 Postup Stanovení nulové a alternativní hypotézy. Volba matematicko-statistické metody vedoucí k rozhodnutí ve prospěch H 0 nebo H A. Volba spolehlivosti. Kritérium pro rozhodnutí (signifikance).
30 Testová statistika chí-kvadrát test (kontingenční tabulka) t-test koeficient korelace analýza rozptylu
31 Spolehlivost Před samotným testováním volíme spolehlivost, s jakou budeme chtít pracovat. Standardně se stanovuje 95%. Povolujeme riziko max. 5%, že uděláme chybu.
32 Rizika chybných rozhodnutí skutečnost H 0 H A H 0 OK Chyba 1. druhu H A Chyba 2. druhu OK
33 Signifikance Nejpodstatnější hodnota. Pravděpodobnost toho, že zamítneme nulovou hypotézu, ačkoliv ona platí. Předem jsme si stanovili, že chceme pracovat s pravděpodobností 95%. Signifikance nám toto riziko vyčísluje. Hodnota mezi 0 a 1.
34 Signifikance p < 0,05 zamítám H 0 p > 0,05 nezamítám H 0 riziko by bylo větší než 5%
35 Chí-kvadrát Test nezávislosti chí-kvadrát Rozdíly ve známce z matematického testu u dívek a chlapců H 0 : P CH = P D H A : P CH P D p < 0,05, zamítáme nulovou hypotézu Zjistili jsme statisticky významný rozdíl v úspěšnosti u dívek a chlapců.
36 Test nezávislosti chí-kvadrát Kontingenční tabulka (pracovni_data2) Četnost označených buněk > 10 (Marginální součty nejsou označeny) Známka z testu MA pohlaví D pohlaví CH Řádk. součty Vš.skup Souhrnná tab.: Očekávané četnos ti (pracovni_data2) Četnost označených buněk > 10 Pears onův chí-kv. : 15,6964, sv=4, p=, Známka z testu MA pohlaví D pohlaví CH Řádk. součty 1 3, , , , , , , , , , , , , , ,00000 Vš.skup. 13, , ,00000
37 Korelační analýza Zkoumá vzájemný vztah kvantitativních proměnných Soubor TESTY Nejčastěji se používá Pearsonův koeficient korelace r. Nabývá hodnot od -1 do 1. Záporné hodnoty značí nepřímou závislost, kladné přímou, nula značí nezávislost.
38 Korelace Proměnná Známka z testu MA Známka z testu PŘ Korelace (pracovni_data2) Označ. korelace js ou významné na hlad. p <,05000 N=22 (Celé případy vynechány u ChD) Průměry Sm.odch. Známka z testu Známka z testu MA PŘ 2, , , , , , , , Bodový graf: Známka z testu MA vs. Známka z testu PŘ (Celé příp. vynech. u ChD) Známka z testu PŘ =, ,84259 * Známka z testu MA Korelace : r =, Známka z testu PŘ 5,0 4,5 4,0 3,5 3,0 2,5 2,0 1,5 1,0 0,5 0, Známka z testu MA 95% hladina spolehlivosti
39 T- testy Zda ženy dosahují stejného skóre v testu jako muži. H 0 : P M = P Ž (ženy dosahují stejných výsledků jako muži) H A : P M P Ž T- test nezávislé dle skupin p < 0,05, zamítáme nulovou hypotézu
40 T-testy t-testy; grupováno: pohlaví (pracovni_s es it3) Skup. 1: M Skup. 2: Ž Průměr Průměr t sv p Proměnná M Ž test 9, , , , Krabicový graf : test test M pohlaví Ž Průměr Průměr±SmCh Průměr±1,96*SmCh
41 ANOVA Zajímá nás vliv více nominálních proměnných na kvantitativní proměnnou. H 0 mezi skupinami není statisticky významný rozdíl H A mezi skupinami je statisticky významný rozdíl Zda má prospěch vliv na výsledek v testu.
42 Graf Anova 20 Kategoriz. krabicový graf: test test C D E F A B prospěch Průměr Průměr±SmCh Průměr±1,96*SmCh
43 Analýza rozptylu Analýza rozptylu (pracovni_s esi t3) Označ. efekty jsou význ. na hlad. p <,05000 SČ SV PČ SČ SV PČ F p Prom ěnná efekt efekt efekt chyba chyba chyba test 665, , , , , ,000000
44 Předpoklady Základním předpokladem pro volbu testu je normalita H 0 : Data pochází z normálního rozdělení H A : Data nepochází z normálního rozdělení Pokud nesplňuje normalitu, musíme použít neparametrický test Základní statistiky, tabulky četností - normalita - histogram
45 Test normality Proměnná Testy normality N max D K-S Lilliefors otázka , p <,01 p <,01
Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.
Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
Vzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
KORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
Cvičení 12: Binární logistická regrese
Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina)
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina) Cílem tématu je správné posouzení a výběr vhodného testu v závislosti na povaze metrické a kategoriální veličiny. V následující
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
Pearsonův korelační koeficient
I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních
Testování hypotéz a měření asociace mezi proměnnými
Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze
PSY117/454 Statistická analýza dat v psychologii Přednáška 10
PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot
SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY
SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim
Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.
Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 9: Úvod do induktivní statistiky Obsah Induktivní statistika... 2 Kdy můžeme zobecňovat?... 2 Logika statistické indukce... 3 Proč nelze jednoduše
Analýza dat z dotazníkových šetření
Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší
a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily
Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Statistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
Neparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
Tabulka 1. Výběr z datové tabulky
1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Úvod do statistické metodologie
Přenos jakékoli části této prezentace mimo účastníky semináře je zakázán bez písemné dohody se StatSoft CR s.r.o. (Dell Software Group). Úvod do statistické metodologie 1. lékařská fakulta Univerzity Karlovy
4. Zpracování číselných dat
4. Zpracování číselných dat 4.1 Jednoduché hodnocení dat 4.2 Začlenění dat do písemné práce Zásady zpracování vědecké práce pro obory BOZO, PÚPN, LS 2011 4.1 Hodnocení číselných dat Popisná data: střední
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Třídění statistických dat
2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.
Metodologie pro ISK II
Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Aplikovaná statistika v R - cvičení 2
Aplikovaná statistika v R - cvičení 2 Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 5.6.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 5.6.2014 1 / 18 Přehled Rkových
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT
EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Co je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák
Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
Aplikovaná statistika v R
Aplikovaná statistika v R Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 15.5.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 15.5.2014 1 / 15 Co bude náplní našich
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
METODOLOGIE I - METODOLOGIE KVANTITATIVNÍHO VÝZKUMU
METODOLOGIE I - METODOLOGIE KVANTITATIVNÍHO VÝZKUMU vyučující doc. RNDr. Jiří Zháněl, Dr. M I 4 Metodologie I 7. ANALÝZA DAT (KVANTITATIVNÍ VÝZKUM) (MATEMATICKÁ) STATISTIKA DESKRIPTIVNÍ (popisná) ANALYTICKÁ
ADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza)
ZX510 Pokročilé statistické metody geografického výzkumu Téma: Měření síly asociace mezi proměnnými (korelační analýza) Měření síly asociace (korelace) mezi proměnnými Vztah mezi dvěma proměnnými existuje,
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
Test dobré shody v KONTINGENČNÍCH TABULKÁCH
Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA
TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA Semestrální práce Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Vypracoval: Bonaconzová, Bryknarová, Milkovičová, Škrdlová
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
Korelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne