Mnohorozměrná statistická data
|
|
- Jiří Růžička
- před 6 lety
- Počet zobrazení:
Transkript
1 Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel
2 Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém zkoumání sledované, se nazývají statistické jednotky. Každá statistická jednotka musí být jednoznačně vymezena, aby nemohlo dojít k dvojímu nebo jinak zkreslenému výkladu zjištěných údajů. Statistické jednotky se vymezují z hlediska věcného, prostorového, časového. Množina statistických jednotek stejného typu a shodného vymezení tvoří statistický soubor. V rámci statistického šetření budeme rozlišovat dva typy souborů: základní soubor (populace) množina všech shodně vymezených statistických jednotek, výběrový soubor (výběr, vzorek) podmnožina základního souboru, tj. vybraná část populace.
3 Statistický znak, statistický soubor Vlastnosti, které u statistických jednotek budeme v rámci statistického šetření sledovat, nazýváme statistické znaky neboli statistické proměnné. Různé hodnoty, kterých může statistický znak nabývat, nazýváme obměny neboli varianty. Podle způsobu vyjadřování hodnot dělíme statistické znaky na kvantitativní číselné a kvalitativní slovní. Podle typu vztahů mezi hodnotami a obměnami budeme rozlišovat statistické znaky metrické, ordinální, nominální.
4 Jednorozměrné bodové rozdělení Jednorozměrné intervalové rozdělení Absolutní a relativní četnost jednorozměrné bodové rozdělení četností Mějme uspořádaný datový soubor o rozsahu n prvků. Absolutní četnost n j představuje počet výskytů varianty x j v souboru. Pro absolutní četnosti platí k j=1 nj = n, kde k je počet variant. Relativní četnost p j je dána vztahem p j = nj n a představuje podíl výskytů varianty x j v souboru. Pro relativní četnosti platí k j=1 pj = 1. Absolutní kumulativní četnost N j je dána vztahem N j = n n j a udává součet četností všech pozorování, která nepřekračují hodnotu x j. Relativní kumulativní četnost F j je určena vztahem F j = Nj n = p1 + + pj a udává podíl četností všech pozorování, která nepřekračují hodnotu x j.
5 Jednorozměrné bodové rozdělení Jednorozměrné intervalové rozdělení Absolutní a relativní četnost jednorozměrné bodové rozdělení četností V rámci antropometrického průzkumu bylo podle metodiky lékařské komory provedeno měření tělesné výšky u 15měsíčních dětí. U 50 vybraných chlapců byly naměřeny tyto hodnoty (v cm): Hodnota Absolutní Relativní Abs. kum. Rel. kum. znaku x j četnost n j četnost p j četnost N j četnost F j ,06 3 0, ,10 8 0, , , , , , , , , , , ,00
6 Jednorozměrné bodové rozdělení Jednorozměrné intervalové rozdělení Absolutní a relativní četnost jednorozměrné bodové rozdělení četností Obrázek: Polygon četností a součtová křivka výšky 15měsíčních dětí
7 Jednorozměrné bodové rozdělení Jednorozměrné intervalové rozdělení Absolutní a relativní četnost jednorozměrné bodové rozdělení četností Rozdělení četností je také možné znázornit pomocí empirické distribuční funkce, kterou můžeme definovat vztahem N(xi x) F n(x) =, n kde výraz v čitateli značí počet prvků výběru, jejichž hodnota je menší nebo rovna x. Je to neklesající funkce s hodnotami mezi 0 a 1...
8 Jednorozměrné bodové rozdělení Jednorozměrné intervalové rozdělení Absolutní a relativní četnost jednorozměrné intervalové rozdělení četností Pokud datový soubor, který máme zpracovat, má větší rozsah (zpravidla n > 30) a data reprezentují spojitý znak nebo diskrétní znak s velkým počtem variant (obměn), je vhodné nejprve data uspořádat podle velikosti a zjistit nejmenší a největší hodnotu x min a x max sledovaného znaku. Odtud lze určit variační rozpětí R = x max x min udávající šířku intervalu, ve kterém se data nacházejí. Pro určení optimálního počtu (k) intervalů existuje několik pravidel, např.: Sturgesovo pravidlo k 1 + 3,32 log n, Yuleovo pravidlo k 2,5 4 n, jiná pravidla k n, příp. k 5 log n. Odtud zvolíme podle uvážení vhodné k a orientačně stanovíme šířku intervalů ze vztahu h = R. Dále stanovíme počátek prvního intervalu (ozn. a) a šířku k intervalů zvolíme tak, aby nejmenší a největší hodnota padly do prvního a posledního intervalu. Číselnou usu tedy rozdělíme na intervaly (, u 1, (u 1, u 2,... (u r, u r+1, (u r+1, ) a budeme zjišťovat četnosti v těchto intervalech.
9 Jednorozměrné bodové rozdělení Jednorozměrné intervalové rozdělení Absolutní a relativní četnost jednorozměrné bodové rozdělení četností Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex se měřilo množství prachových částic. Ze 60 vzorků vzduchu jsme dostali následující výsledky (v µg/m 3 ): 1,23 1,10 1,54 1,34 1,06 1,09 1,41 1,48 1,52 1,37 1,37 1,63 1,51 1,53 1,31 1,23 1,31 1,27 1,17 1,27 1,34 1,27 1,09 1,01 1,41 1,22 1,27 1,37 1,14 1,22 1,43 1,40 1,41 1,51 1,51 1,47 1,14 1,34 1,16 1,51 1,58 1,33 1,31 1,04 1,58 1,12 1,19 1,17 1,47 1,24 1,45 1,29 1,17 1,63 1,39 1,02 1,38 1,39 1,43 1,28
10 Jednorozměrné bodové rozdělení Jednorozměrné intervalové rozdělení Absolutní a relativní četnost jednorozměrné intervalového rozdělení četností Interval Střed Absolutní Relativní Abs. kum. Rel. kum. intervalu xj četnost n j četnost p j četnost N j četnost F j (1,00; 1,10 1,05 7 0, ,117 (1,10; 1,20 1,15 8 0, ,250 (1,20; 1,30 1, , ,433 (1,30; 1,40 1, , ,667 (1,40; 1,50 1,45 9 0, ,817 (1,50; 1,60 1,55 9 0, ,967 (1,60; 1,70 1,65 2 0, , Tabulka: Tabulka intervalového rozdělení četností množství prachových částic
11 Jednorozměrné bodové rozdělení Jednorozměrné intervalové rozdělení Absolutní a relativní četnost jednorozměrné intervalového rozdělení četností Obrázek: Histogram a součtový histogram koncentrace prachu
12 Mějme dvourozměrný datový soubor znak Y má s variant. x 1 y 1.., kde znak X má r variant a Simultánní absolutní četnost n jk představuje počet výskytů dvojice (x j, y k ) v souboru, tedy n jk = N(X = x j Y = y k ). Simultánní relativní četnost dvojice (x j, y k ) je dána vztahem x n y n p jk = n jk n. Marginální absolutní četnost varianty x j je definována jako n j. = N(X = x j) = n j1 + + n js. Marginální relativní četnost varianty x j je definována jako p j. = nj. n = pj1 + + pjs.
13 Marginální absolutní četnost varianty y j je definována jako n.k = N(X = y k ) = n 1k + + n rk. Marginální relativní četnost varianty y k je definována jako p.k = n.k n = p 1k + + p rk. Sloupcově podmíněná relativní četnost varianty x j za předpokladu y k je dána vztahem p j(k) = n jk n.k. Sloupcově podmíněná relativní četnost varianty y k za předpokladu x j je dána vztahem p (j)k = n jk n j..
14 Příklad: U 42 zákrsku jabloní bylo zaznamenáno stáří stromu v letech (znak X ) a roční sklizeň (znak Y ). x j y i
15 stáří/sklizeň n j n.k Tabulka: Tabulka bodového rozdělení četností
16 Obrázek: Grafické znázornění dvourozměrného bodového rozdělení četností
17 Dvourozměrné intervalové rozdělení četností Mějme dvourozměrný datový soubor x 1 y 1.., kde hodnoty znaku X roztřídíme do r třídících intervalů (u j, u j+1, j = 1,..., r a hodnoty znaku Y roztřídíme do s intervalů (v k, v k+1, k = 1,..., s. Jednotlivé četnosti jsou potom vztaženy na četnosti hodnot v daných intervalech. x n y n
18 Dvourozměrné intervalové rozdělení četností Bylo provedeno 34 měření ph a množství hydrogenuhličitanu ve studniční vodě ph HCO 3 ph HCO 3 ph HCO 3 ph HCO 3 7, , , , , , , ,3 76 8, , , ,5 48 7, , , , , , , , , , ,9 53 7, , ,0 81 8,1 56 7,3 87 8, ,5 82 7, , , ,4 35
19 Dvourozměrné intervalové rozdělení četností ph/hco n j. 6,6 7, ,0 7, ,4 7, ,8 8, ,2 8, ,6 9, n.k Tabulka: Tabulka intervalového rozdělení četností
20 Dvourozměrné intervalové rozdělení četností Obrázek: Grafické znázornění dvourozměrného intervalového rozdělení četností
21 Číselné charakteristiky charakteristiky polohy průměry, kvantily, modus charakteristiky variability rozptyl, sm. odchylka, výběrový rozptyl a sm. odchylka, kvantilové rozpětí... charakteristiky koncentrace koeficient šikmosti a špičatosti charakteristiky těsnosti závislostí
22 Charakteristiky polohy průměry: n aritmetický průměr x = 1 x n i i=1 harmonický průměr x H = n n 1 x i=1 i geometrický průměr x G = n x 1 x 2 x n kvantily: x p je hodnota znaku, pro kterou platí, že 100p % jednotek uspořádaného souboru má hodnotu menší nebo rovnu x p a 100(1 p) % jednotek má hodnotu větší nebo rovnu x p. modus: ˆx je hodnota znaku s největší četností
23 Charakteristiky variability variační rozpětí: R = x max x min. kvantilová rozpětí: např. R Q = x 0,75 x 0,25 n rozptyl (momentový): sn 2 = 1 (x n i x) 2 i=1 směrodatná odchylka s n = sn 2 n výběrový rozptyl s 2 = 1 (x n 1 i x) 2 i=1 výběrová směrodatná odchylka s = s 2 n průměrná odchylka d x = 1 x n i x i=1
24 Charakteristiky koncentrace koeficient šikmosti: a 3 = 1 n koeficient špičatosti: a 4 = 1 n n (x i x) 3 i=1 s 3 n n (x i x) 4 i=1 sn 4 3
25 Charakteristiky těsnosti závislosti Mějme dvourozměrný datový soubor x 1 y 1.., označme x a y průměry znaků a s x, s y směrodatné odchylky znaků X, Y. Koeficient korelace (Pearsonův) je definován vztahem Lze jej vyjádřit ve tvaru kde je kovariance znaků X a Y. r xy = 1 n s xy = 1 n n i=1 x n x i x s x y n r xy = sxy s xs y, y i y s y. n (x i x)(y i y) i=1
26 Charakteristiky těsnosti závislosti V případě dvourozměrného souboru kvalitativních údajů, které jsou po složkách ordinálního typu, je možno zjistit stupeň závislosti těchto dvou znaků. K měření takovýchto závislostí se používá Spearmanův korelační koeficient. Hodnotám x i, y i přiřadíme pořadová čísla p i, q i (pořadí jednotlivých hodnot při uspořádaní podle velikosti). Spearmanův koeficient (koeficient pořadové korelace) je potom definován vztahem ρ = 1 6 n i=1 (pi qi)2. n(n 2 1)
27 Charakteristiky těsnosti závislosti Mějme dvourozměrný datový soubor. Řekneme, že dvojice (x i, y i) a (x j, y j) jsou ve shodě (concordant), pokud platí, že x i > x j a zároveň y i > y j nebo x i < x j a zároveň y i < y j. Řekneme, že nejsou ve shodě (discordant), pokud x i < x j a zároveň y i > y j nebo x i > x j a zároveň y i < y j. V případě, že x i = x j nebo y i = y j nemluvíme ani o shodě, ani o neshodě. Označme počet dvoji ve shodě n c a počet dvojic, které ve shodě nejsou n d. Kendallův korelační koeficient je definován vztahem τ = nc n d. 1 n(n 1) 2
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
Pojem a úkoly statistiky
Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Třídění statistických dat
2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Renáta Bednárová STATISTIKA PRO EKONOMY
Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy
Popisná statistika. Jaroslav MAREK. Univerzita Palackého
Popisná statistika Jaroslav MAREK Univerzita Palackého Přírodovědecká fakulta Katedra matematické analýzy a aplikací matematiky Tomkova 40, 779 00 Olomouc Hejčín tel. 585634606 marek@inf.upol.cz pondělí
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
Statistické metody. Martin Schindler KAP, tel , budova G. naposledy upraveno: 9.
Statistické metody Matematika pro přírodní vědy přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 9. ledna 2015,
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
Informační technologie a statistika 1
Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku
Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
2. Bodové a intervalové rozložení četností
. Bodové a intervalové rozložení četností (Jak získat informace z datového souboru?) Po prostudování této kapitoly budete umět: konstruovat diagramy znázorňující rozložení četností vytvářet tabulky četností
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí
Matematika III. 29. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 29. října 2018 Statistika Statistika Statistika je jako bikini. Co odhaluje, je zajímavé, co skrývá, je podstatné. Aaron Levenstein Statistika Statistika
Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2
Statistika jako obor Statistika Statistika je vědní obor zabývající se zkoumáním jevů hromadného charakteru. Tím se myslí to, že zkoumaný jev musí příslušet určité části velkého množství objektů (lidí,
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
Základní statistické pojmy
POPISNÁ STATISTIKA Základní statistické pojmy Jev hromadný Hromadná pozorování výsledek hromadný jev soustředění se na určitou vlastnost(i) ukáže po více pokusech Zjistit souvislosti v prostoru a čase
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Př. : Stanovte jednotlivé četnosti a číselné charakteristiky zadaného statistického souboru a nakreslete krabicový graf:, 8, 7, 43, 9, 47, 4, 34, 34, 4, 35. Statistický soubor seřadíme vzestupně podle
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
PSY117/454 Statistická analýza dat v psychologii Přednáška 5 ZOBRAZENÍ DVOUROZMĚRNÝCH DAT KORELAČNÍ KOEFICIENT. Všichni žijeme v matrixu.
PSY117/454 Statistická analýza dat v psychologii Přednáška 5 ZOBRAZENÍ DVOUROZMĚRNÝCH DAT KORELAČNÍ KOEFICIENT Všichni žijeme v matrixu. V minulých dílech jsme viděli/y: Frekvence = četnosti Procenta =
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Náhodná veličina slouží k popisu výsledku pokusu. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáme. Přesto bychom chtěli tento pokus
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.
6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení první aneb Sumační symbolika, úvod do popisné statistiky Statistika I (KMI/PSTAT) 1 / 15 Obsah hodiny Po dnešní hodině byste měli být schopni: správně používat sumační
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Základy biostatistiky
Základy biostatistiky Veřejné zdravotnictví 3.LF UK Viktor Hynčica Úvod se statistikou se setkáváme denně ankety proč se statistika začala používat ve zdravotnictví skupinový přístup k léčení celé populace
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 8 Statistický soubor s jedním argumentem Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola
PSY117/454 Statistická analýza dat v psychologii. Zobrazení dvojrozměrných dat Bodový graf - Scatterplot Korelační koeficient
PSY117/454 Statistická analýza dat v psychologii Zobrazení dvojrozměrných dat Bodový graf - Scatterplot Korelační koeficient Analýza vztahů mezi dvěma proměnnými Souvisí nějak? Výška a váha Známky u jednotlivých
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Statistika. Zpracování informací ze statistického šetření. Roman Biskup
Statistika Zpracování informací ze statistického šetření Třídění statistického souboru Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 20. února 2012
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy
Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných
Statistika pro gymnázia
Statistika pro gymnázia Pracovní verze učebního textu ZÁKLADNÍ POJMY Statistika zkoumá jevy (společenské, přírodní, technické) ve velkých statistických souborech. Prvky statistických souborů se nazývají
Základní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.
1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,
Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup
Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009
Škály podle informace v datech:
Škály podle informace v datech: Různé typy dat znamenají různou informaci, resp. různé množství informace Data nominální Rovná se? x 1 = x 2 Data ordinální Větší, menší? x 1 < x 2 Data intervalová O kolik?
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
Základy popisné statistiky
Základy popisné statistiky V této kapitole se seznámíme se základy popisné statistiky, představíme si základní pojmy a budeme si je ilustrovat na praktických příkladech. Kapitola je psána formou volného
Kontingenční tabulky v Excelu. Představení programu Statistica
ASTAc/01 Biostatistika 2. cvičení Kontingenční tabulky v Excelu Základní popisné statistiky Představení programu Statistica Import a základní popis dat ve Statistice, M. Cvanová I. Kontingenční tabulky
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Základy popisné statistiky
Kapitola Základy popisné statistiky Všude kolem nás se setkáváme se shromažd ováním velkého počtu údajů o nejrůznějších objektech Mohou to být národohospodářské údaje o vývoji ekonomiky dané země sbírané
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
Příloha podrobný výklad vybraných pojmů
Příloha podrobný výklad vybraných pojmů 1.1 Parametry (popisné charakteristiky) základního souboru 1.1.1 Míry polohy (střední hodnoty) Aritmetický průměr představuje pravděpodobně nejznámější střední hodnotou,
Cvičení ze statistiky - 3. Filip Děchtěrenko
Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
Pravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní
Předmět studia: Ekonomická statistika a analytické metody I, II
Předmět studia: Ekonomická statistika a analytické metody I, II Typ a zařazení předmětu: povinný předmět bakalářského studia, 1. ročník Rozsah předmětu: 2 semestry, celkem 24/0 hodin v kombinované formě
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP
IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost
Jevy a náhodná veličina
Jevy a náhodná veličina Výsledky některých jevů jsou vyjádřeny číselně -na hrací kostce padne číslo 1, 4, 6.., jiným jevům můžeme čísla přiřadit (stupeň školního vzdělání: ZŠ, SŠ, VŠ) Data jsme rozdělili
7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA
7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA Oblasti využití statistiky v medicíně Zvládání variability Variabilita: biologická, podmínek, měřících přístrojů - hodnocení variability, variabilita náhodná x nenáhodná
Analýza rozptylu. Ekonometrie. Jiří Neubauer. Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel
Analýza rozptylu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO Brno) Analýza rozptylu 1 / 30 Analýza
TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT
EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka