8.1 Elektronový obal atomu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "8.1 Elektronový obal atomu"

Transkript

1 8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2, C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu vodíku v základním stavu nachází ve vzdálenosti 5, m od atomového jádra tvořeného protonem. Určete, jakou elektrickou silou je elektron přitahován k jádru atomu vodíku. Kolikrát je tato síla větší než gravitační síla mezi elektronem a protonem ve stejné vzájemné vzdálenosti? 8.3 Pro představu o atomu se často konstruují modelové učební pomůcky. Uvažte, jaký rozměr by měla konstrukce modelu atomu vodíku, v němž by jádro tvořila kulička o průměru řádově 1 mm. Použijte poznatek, že průměr atomu je řádově m a průměr jádra atomu je řádově m. 8.4 Na základě Bohrovy teorie atomu vodíku určete kinetickou, potenciální a celkovou energii atomu vodíku v základním stavu. Jakou energii je třeba atomu vodíku dodat, aby došlo k jeho ionizaci? 8.5 Energie atomu vodíku v základním stavu je E 1 = 13,6 ev a ve vzbuzených stavech má atom vodíku energii E n = E 1 /n 2, kde n je hlavní kvantové číslo. Nejznámější, tzv. Balmerově spektrální sérii atomu vodíku odpovídá přechod na energetickou hladinu s n = 2. Určete tři největší vlnové délky spektrálních čar H, H, H, které leží ve viditelné části spektra. 8.6 Při přechodu elektronu v atomu vodíku z jedné energetické hladiny na druhou bylo vyzářeno světlo o frekvenci 4, Hz. O jakou hodnotu se snížila energie atomu? 8.7 Foton s energií 15,5 ev byl pohlcen atomem vodíku v základním energetickém stavu (n = 1) a způsobil jeho ionizaci. Určete rychlost elektronu při opuštění atomu. 8.8 Trubicí naplněnou vodíkem procházejí volné elektrony o energii 1,892 ev a v důsledku vzájemného působení elektronů s atomy vodíku plyn vyzařuje světlo. Jakou barvu má spektrální čára tohoto světla? 8.9 Ve spektru atomu vodíku mělo ultrafialové záření nejkratší vlnovou délku 91,2 nm. Jakou největší hodnotu měla energie atomu vodíku? 8.10 Pokusy, které provedli v roce 1914 J. Franck a G. Hertz, bylo prokázáno, že dodáním energie 4,89 ev přejde atom rtuti do vzbuzeného stavu. Tomu odpovídá ultrafialové záření rtuti, které se využívá v technické praxi. Určete vlnovou délku tohoto záření Ultrafialovým zářením, jehož největší vlnová délka je 318 nm, lze ionizovat páry cesia. Určete ionizační energii cesia V nedávné době byla jednotka metr definována jako násobek vlnové délky světla, které vyzařuje plyn krypton 86 Kr. Příslušný foton má energii 3, J. Určete barvu tohoto světla, jeho vlnovou délku a přibližný násobek vlnové délky, kterým byl metr definován Na obr [8-1] jsou vyznačeny energetické hladiny atomu, který má v základním stavu energii E. Jestliže elektron přejde z hladiny odpovídající energii 5E do základního stavu,

2 vyzáří se foton o frekvenci f. Určete frekvence fotonů vyzářených při přechodech 4E E, 5E 4E. Obr Na obr. 8-14a [8-2a] jsou vyznačeny energetické hladiny atomu a pět přechodů elektronů z vyšší energetické hladiny do nižší energetické hladiny. Určete, které čárové spektrum na obr. 8-14b [8-2b] těmto přechodům odpovídá. Obr V elektronovém obalu může být ve slupce s hlavním kvantovým číslem 2 nejvýše 8 elektronů. Objasněte tuto hodnotu rozborem struktury elektronového obalu z hlediska dalších kvantových čísel jednotlivých elektronů. Kterému atomu tato maximální hodnota přísluší? 8.16 Obdobným způsobem jako v předcházející úloze proveďte rozbor pro elektronovou slupku s n = 3 a určete největší počet elektronů v této slupce V elektronové slupce s hlavním kvantovým číslem n = 4 může být nejvýše 32 elektronů. Použijte výsledky z předcházejících úloh a najděte obecně platný vztah pro počet elektronů v elektronové slupce s hlavním kvantovým číslem n.

3 8.1 Elektronový obal atomu R8.1 Q c = 2, C; n e =? Počet elektronů n e = Z a celkový náboj Q c = Ze, kde e = 1, C. Je to prvek hliník Al. R8.2 r = 5, m; F e =?, F e /F g =? m p = 1, kg, m e = 9, kg R8.3 d j ' = 1 mm = 10 3 m, d j = m, d a = m; d a ' =? R8.4 r 1 = 5, m, Q p = Q e = e = 1, C; E k =?, E p =?, E c =?, E i =? Podle Bohrovy teorie si atom vodíku můžeme představit jako soustavu, ve které se kolem protonu po přibližně kružnicové trajektorii pohybuje elektron. Na elektron působí elektrická síla, která je současně silou dostředivou, takže platí: (1) Pro kinetickou energii platí vztah: (2) Z rovnice (1) vypočítáme součin m e v 2 a po dosazení do vztahu (2) dostaneme: Potenciální energie atomu vodíku odpovídá práci, kterou vykoná elektrická síla při přemístění elektronu z velké vzdálenosti (r ) do vzdálenosti r 1 od protonu:

4 Celková energie: Po dosazení vychází pro celkovou energii atomu vodíku v základním stavu Aby nastala ionizace atomu vodíku, je třeba mu dodat energii E i E c 13,6 ev. R8.5 E 1 = 13,6 ev, n = 2; =?, =?, =? R8.6 f = 4, Hz; E =? E = hf = 3, J R8.7 E = 15,5 ev, n = 1; v e =? R8.8 E = 1,892 ev; =? Světlo má červenou barvu. R8.9 = 91,2 nm = 9, m; E =?

5 R8.10 E = 4,89 ev = 7, J; =? R8.11 = 318 nm = 3, m; E =? R8.12 E = 3, J; =?, k =? R8.13 E 1 = 4E, E 2 = E; f 1 =?, f 2 =? R8.14 Přechodům E 4 E 1 a E 3 E 1 odpovídá větší energie fotonu, a tedy i větší frekvence záření. Přechodům E 5 E 2, E 5 E 3 a E 5 E 4 odpovídá menší energie fotonu, a tedy menší frekvence záření. To zobrazuje spektrum D. R8.15 U atomu s hlavním kvantovým číslem n = 2 může vedlejší kvantové číslo nabývat hodnot l = 0, 1. Pro l = 0 může mít magnetické kvantové číslo jen hodnotu m = 0 a pro l = 1 je m = 1, 0, 1. Existují tedy čtyři různé kombinace l a m a pro každou existují dva elektrony s různým magnetickým spinovým číslem. Celkem je tedy 8 možností u prvku, který má ve sféře s hlavním kvantových číslem n = 1 dva elektrony, celkem tedy 10 elektronů, což odpovídá neonu. R8.16 n = 3; l =?, m =? n = 3 l = 0, 1, 2 m = 2, 1, 0, 1, 2 l = 2 m = 1, 0, 1 l = 1

6 m = 0 l = 0 Pro elektronovou slupku n = 3 existuje 9 kombinací kvantových čísel n, l, m a každé kombinaci odpovídají dva elektrony s různým magnetickým spinovým číslem. V elektronové slupce n = 3 může být 18 elektronů. R8.17 n = 4, p = 32; p = f(n) =? n = n = n = n = Vztah pro p je: p = 2n Jádro atomu R8.18 Q He = 2e = 3, C, Q Au = 79e = 126, C, E = 0, ev = 6, J; r =? Ostřelování zlata částicemi si můžeme představit jako soustavu nepohyblivého jádra atomu zlata s elektrickým nábojem Q Au, ke kterému se z velké vzdálenosti přibližuje částice s nábojem Q He. Při tom se vykoná práce kde 1 je potenciál ve velké vzdálenosti od atomu zlata ( 1 = 0) a 2 je potenciál v nejmenší vzdálenosti od jádra. Elektrické pole jádra atomu zlata můžeme považovat za pole bodového náboje, v němž pro potenciál ve vzdálenosti r od jádra platí Znaménko vyjadřuje, že práci konají vnější síly na úkor kinetické energie E částice, takže W = Q He 2 = E. Po dosazení a úpravě dostaneme pro nejmenší vzdálenost, do níž se částice přiblíží k jádru atomu zlata: R8.19 Skutečnému průběhu Rutherfordova experimentu odpovídá experiment 2.

7 R8.20 Zakřivení trajektorie s kladným nábojem určíme Flemingovým pravidlem levé ruky, částice se záporným nábojem se odchýlí na opačnou stranu. Vlevo se vychýlila částice s kladným nábojem a vpravo částice se záporným nábojem. R8.21 Částice při průchodu vrstvou olova ztrácí část energie a ve druhé části komory se pohybuje menší rychlostí. Tomu odpovídá větší zakřivení trajektorie částice. Částice se pohybovala zdola nahoru. R8.22 Směr vektoru magnetické indukce určíme pomocí Flemingova pravidla levé ruky, které použijeme u trajektorie pozitronu. Vektor B magnetické indukce míří před nákresnu. Poloměr r trajektorie částice, která má hmotnost m a náboj Q, závisí na rychlosti v částice: Poněvadž při pohybu v mlžné komoře částice postupně ztrácí svoji kinetickou energii, rychlost částice se zmenšuje a tomu odpovídá postupné zmenšování poloměru trajektorie, která má tvar spirály. R8.23 Z =?, N =? Počet protonů v jádře atomu určuje protonové číslo Z, počet neutronů určuje neutronové číslo N, které určíme z nukleonového čísla A = Z + N. a) Z = 2, N = 2 b) Z = 3, N = 4 c) Z = 11, N = 12 d) Z = 26, N = 28 e) Z = 92, N = 143 R8.24 a) 7p + 7n: Z = 7, A = 14 b) 9p + 10n: Z = 9, A = 19 c) 79p + 118n: Z = 79, A = 197

8 d) 82p + 126n: Z = 82, A = 208 e) 92p + 146n: Z = 92, A = 238 R8.25 Všechny nuklidy určitého prvku mají stejné protonové číslo a různé nukleonové číslo. Jsou to izotopy. R8.26,, m a = 35,5; x : y =? Izotopy jsou v plynu zastoupeny v poměru 3 : 1. R8.27 a) částice b) částice R8.28 a) proton b) neutron c) pozitron

9 Obr. R8-28 R8.29 Viz obr. R8-29 [V8-1]. Obr. R8-29 R8.30 m Po = 0,10 mg = 10 7 kg, n = (částice ), m = 0,02m Po ; m He =? R8.31 m = 0,0416m 0, T = r; t =? Jestliže v počátečním okamžiku je počet jader radionuklidu N 0, pak v čase t je počet nepřeměněných jader, (1) kde λ je přeměnová konstanta, která s poločasem přeměny T souvisí vztahem λ = ln 2/T. Zjištěnému poklesu hmotnosti radionuklidu ve dřevě odpovídá také poměr N/N 0. Najdeme přirozený logaritmus tohoto poměru a po úpravě ze vztahu (1) dostaneme: Po dosazení dostaneme pro stáří dřeva přibližnou hodnotu roků. R8.32 T = 20 min = s, t 1 = 1 h = 3T, t 2 = 2 h = 6T; N 1 =?, N 2 =?

10 N 1 je počet nepřeměněných jader, přeměnilo se 7/8 počátečního počtu jader. Přeměnilo se 63/64 počátečního počtu jader. R8.33 a), m He = 6, kg, b), m Li = 11, kg, c), m Be = 14, kg; B =? R8.34 B He = 0, kg, B Li = 0, kg, B Be = 0, kg; j =? R8.35 R8.36 Neutrony nemají elektrický náboj, proto na ně nepůsobí kladně nabité jádro atomu elektrickou odpudivou silou. R8.37

11 R8.38 = R8.39 Při rozpadu jádra boru vznikají částice záření. R8.40 m Li = 11, kg, m p = 1, kg, m He = 6, kg; E k =? R8.41 R8.42 Pro celkovou přeměnu uranu na olovo můžeme napsat rovnici: Pro atomová a nukleonová čísla současně platí: 92 = 82 + x 2 y a 238 = x 4 Řešením těchto rovnic dostaneme x = 8 a y = 6. To znamená, že uran se mění v olovo postupně probíhajícími osmi přeměnami α a 6 přeměnami β. R8.43 B = 1m u = 1, kg; E =? E = m u c 2 = 1, J = 934 MeV R8.44 m He = 4, m u ; j =?

12 Jádro helia je tvořeno dvěma protony a dvěma neutrony. Pro hmotnost těchto částic vyjádřenou v násobcích atomové hmotnostní konstanty m u najdeme v tabulkách: m p = 1,007 27m u, m n = 1,008 66m u Hmotnostní úbytek jádra helia činí: Tomu odpovídá celková vazebná energie jádra helia E j = Bc 2 a energie připadající na jeden nukleon j je j = E j /A, kde A je nukleonové číslo (pro helium A = 4). Vazebná energie se zpravidla určuje v jednotkách ev. Pro výpočet proto využijeme poznatek, že hmotnostnímu úbytku 1m u odpovídá energie m u c MeV. Vazebnou energii připadající na jeden nukleon v jádře helia tedy vypočítáme pomocí vztahu: R8.45 (Z = 4, A = 9), j = 6,45 MeV, A r = 9,012 2; m jbe =? Rozdíl je způsoben hmotností elektronů. R8.46, Y, Z R8.47 T X = 50 min, T Y = 100 min, t = 200 min = 4T X = 2T Y ; N X : N Y =? Pro podíl N X /N Y po úpravě platí:

13 R8.48 Ra Rn +, m Ra = 225,98, m Rn = 221,97, m He = 4,002 6; E =? R8.49 m = 0,01 kg, m K = 0,03m, m K* = 1, m K, T = 1, r; A =? Aktivita je určena vztahem A = λn, kde λ je přeměnová konstanta, pro kterou platí λ = ln 2/T. Počet jader radionuklidu ve vzorku je dán podílem Poněvadž rok má 365, s = 3, s, je přeměnová konstanta draslíku : Dosazením do vztahu pro aktivitu dostaneme A = 1, , Bq = 9,2 Bq. R8.50 A = 1/4 A 0, t = 8 d; T =?, =? R8.51 m = 0,05 g = kg, t = 7 s, n = 1, ; a) A =?, b) =?, T =?

14 R8.52 ju = 7,5 MeV, jxe = 8,2 MeV, jsr = 8,5 MeV, E n = 0,03E; E =?, v n =? a) Rovnici štěpné jaderné reakce napíšeme ve tvaru: Ze zákonů zachování náboje a počtu nukleonů vyplývá: = x = 54 + Z + 0 a odtud najdeme x = 2 a Z = 38. Úplná rovnice štěpné reakce tedy bude mít tvar: b) Celkovou uvolněnou energii určíme z rozdílu vazebných energii jader, která se štěpné reakce zúčastní. Poněvadž uran má 235 nukleonů, je vazebná energie E 1 jeho jádra E 1 = 235 7,5 MeV = 1, MeV. Podobně určíme vazebnou energii jader xenonu a stroncia a vypočítáme jejich součet E 2 : E 2 = (140 8, ,5) MeV = 1, MeV Rozdíl obou energií odpovídá energii E uvolněné při štěpné reakci: E = E 2 E 1 = (1,95 1,76) 10 3 MeV = 185 MeV c) Poněvadž při štěpné reakci vznikly dva neutrony, připadá na každý neutron energie E n = 0,03E/2 = 2,77 ev = 4, J. Rychlost neutronu pak vypočítáme ze vztahu kde m n je hmotnost neutronu (m n = 1, kg). Po dosazení pro rychlost neutronu vychází v n = 2, m s 1.

15 R = k k = 3 Při štěpení uranu vzniknou 3 neutrony. R8.54, t = 1 s, P = 1 W, E = 200 MeV; n =? P j je výkon připadající na přeměnu 1 jádra uranu. R8.55, A rd = 2,014, A rhe = 3,016, A rn = 1,008 7, m D = 4 g; E =?, E c =? Ve vzorku o hmotnosti 4 g je n jader: E (MeV)... 2 jádra D E c (MeV)... n jader D 8.2 Jádro atomu 8.18 Při Rutherfordově pokusu, při němž bylo objeveno jádro atomu, byla tenká fólie zlata ostřelována částicemi (jádra helia ). Určete nejmenší vzdálenost od jádra atomu zlata, do níž mohou částice proniknout. Energie částic je 0,4 MeV Rutherfordův pokus (viz úlohu 8.18) probíhal tak, že při ozařování fólie zlata byly na různá místa v okolí fólie umísťovány detektory částic. Na obr [8-3] jsou naznačeny tři možné polohy detektorů a v tabulce jsou uvedeny čtyři možné výsledky pozorování. Který výsledek odpovídá skutečnému průběhu Rutherfordova experimentu?

16 Obr Experiment Částice registrované detektorem A B C 1 žádné žádné hodně 2 málo více hodně 3 žádné více hodně 4 hodně žádné málo 8.20 Na obr [8-4] jsou znázorněny stopy dvou částic s nábojem v mlžné komoře, která je umístěna v homogenním magnetickém poli. Určete znaménko náboje částic, jestliže vektor magnetické indukce je kolmý k vektorům rychlosti pohybu částic a míří za nákresnu. Obr Na obr [8-5] je stopa částice s kladným nábojem v mlžné komoře umístěné v homogenním magnetickém poli; vektor magnetické indukce míří za nákresnu. Komora je přepažena tenkou vrstvou olova, kterou částice prošla. Pohybovala se částice shora dolů, nebo opačným směrem? Obr Na obr [8-6] je stopa elektronu (vlevo) a pozitronu (vpravo) v mlžné komoře umístěné v homogenním magnetickém poli. Jaký směr má vektor magnetické indukce? Proč má stopa tvar ploché spirály?

17 Obr Určete, jaké nukleony obsahuje jádro a) helia, b) lithia, c) sodíku, d) železa, e) uranu 8.24 Určete názvy chemických prvků, jejichž jádra mají složení: a) 7p + 7n, b) 9p + 10n, c) 79p + 118n, d) 82p + 126n, e) 92p + 146n Vyslovte společnou charakteristiku skupin nuklidů: 8.26 Plynný chlor je směs dvou izotopů a a jeho poměrná atomová hmotnost je 35,5. Určete, v jakém poměru jsou v plynu oba izotopy zastoupeny Jak se změní protonové číslo Z a nukleonové číslo A nuklidu, jestliže se při jaderné reakci z jeho jádra uvolní a) částice α, b) částice β? 8.28 Jak se změní protonové číslo Z, neutronové číslo N a nukleonové číslo A, jestliže jádro vyzáří: a) proton, b) neutron, c) pozitron? 8.29 Postupné přeměny radionuklidů, které probíhají v přeměnových řadách, se znázorňují grafy. Část uranové-radiové řady je na obr [8-7]. Doplňte chybějící údaje.

18 Obr Při radioaktivní přeměně měl preparát polonia v počátečním okamžiku hmotnost 0,10 mg. Geigerův-Müllerův počítač zaregistroval částic α vyzářených poloniem, přičemž se hmotnost preparátu zmenšila o 2 %. Určete hmotnost atomu helia Radionuklid uhlíku ve starém kousku dřeva představuje 0,0416 hmotnosti tohoto radionuklidu v živé dřevině. Určete přibližné stáří dřeva, jestliže poločas přeměny radionuklidu je roků Radionuklid stříbra má poločas přeměny 20 min. Jaká část radionuklidu se přemění za 1 hodinu a za 2 hodiny? 8.33 Určete hmotnostní úbytky v kg a v násobcích atomové hmotnostní konstanty m u u jader prvků: a) helium, b) lithium, c) beryllium. [a) m He = 6, kg, b) m Li = 11, kg, c) m Be = 14, kg] 8.34 Určete vazebnou energii připadající na jeden nukleon u nuklidů v úloze 8.33 v jednotkách J a ev. Použijte výsledky řešení úlohy Jaderné reakce se rozlišují podle druhu částice, kterou je jádro atomu ostřelováno. Jaké částice jsou "střelami" v následujících jaderných reakcích: 8.36 Proč neutrony snadněji pronikají do jader atomů než ostatní částice? 8.37 Doplňte následující jaderné reakce: 8.38 Při ozařování nuklidu boru zářením se z jádra uvolňují neutrony. Napište rovnici jaderné reakce Jádro atomu boru bylo ozařováno rychlými protony Pomocí mlžné komory bylo zjištěno, že přeměnou jádra atomu boru vznikají tři stejné částice, jejichž stopy jsou rozloženy symetricky do tří směrů. Určete, o jaké částice jde, a napište příslušnou rovnici jaderné reakce.

19 8.40 Jádro nuklidu se po zachycení protonu rozpadá na dvě částice. Určete celkovou kinetickou energii částic. Kinetickou energii protonu neuvažujte V atmosféře Země neustále probíhají jaderné reakce, při nichž kosmické záření obsahující neutrony bombarduje jádra plynů v atmosféře. Při tom dochází k přeměně jader dusíku v radionuklid uhlíku Ten se dále rozpadá opět na dusík. Napište rovnice příslušných jaderných reakcí Jádro uranu je počátečním radionuklidem přeměnové řady, jejímž posledním nuklidem je stabilní jádro olova Kolik přeměn α a β postupně proběhne? 8.43 Hmotnostní úbytek se často vyjadřuje v násobcích atomové hmotnostní konstanty m u. Určete energii odpovídající hmotnostnímu úbytku 1m u Určete vazebnou energii připadající na jeden nukleon pro jádro atomu helia. Hmotnost atomu helia je 4, m u Vazebná energie jádra nuklidu beryllia je 6,45 MeV na nukleon. Určete hmotnost jádra beryllia. Srovnejte vypočítanou hodnotu s poměrnou atomovou hmotností beryllia (A r = 9,012 2) a vysvětlete rozdíl obou hodnot V periodické soustavě prvků jsou vedle sebe tři radionuklidy, Y, Z. Přeměnou radionuklidu X vzniká radionuklid Y a přeměnou radionuklidu Y vzniká radionuklid Z, který se další přeměnou mění na izotop radionuklidu X. Popište přeměny a určete atomová a nukleonová čísla jednotlivých nuklidů. V přírodě takto probíhá např. přeměna radionuklidu nebo Pomocí tabulky periodické soustavy prvků určete, které nuklidy těmito přeměnami vznikají Dva radionuklidy X a Y mají poločasy přeměny 50 min a 100 min. Určete, v jakém poměru budou počty nepřeměněných jader obou radionuklidů po uplynutí 200 min od počátečního okamžiku, v němž měly oba radionuklidy stejný počet nepřeměněných jader Při přeměně radionuklidu radia Ra vzniká nuklid radonu a záření α. Poměrná atomová hmotnost radia je 225,98, radonu 221,97 a helia 4, Určete energii, která se při radioaktivní přeměně uvolní Vzorek horniny o hmotnosti 10 g obsahuje 3 % draslíku, v němž je obsaženo 0,012 % přirozeného radionuklidu Poločas přeměny tohoto radionuklidu je 1, roků. Určete aktivitu vzorku horniny Aktivita radionuklidu poklesla za 8 dní na 1/4. Určete poločas přeměny radionuklidu a jeho přeměnovou konstantu Radionuklid bizmutu vyzařuje záření α. Měřením na vzorku o hmotnosti 0,05 g bylo za 7 s zaregistrováno 1, přeměn. Určete: a) aktivitu vzorku, b) přeměnovou konstantu a poločas přeměny radionuklidu Při řetězové reakci uranu se jádro štěpí na dva fragmenty: xenon, stroncium a určitý počet neutronů. a) Napište rovnici štěpné reakce. b) Určete energii, která se při štěpné reakci uvolní. c) Určete rychlost uvolněných elektronů, jestliže jejich

20 energie je rovna 3 % uvolněné energie. Vazebná energie na jeden nukleon je u uranu 7,5 MeV, u xenonu 8,2 MeV a u stroncia 8,5 MeV Štěpná jaderná reakce může probíhat také tak, že po zachycení neutronu jádrem uranu vzniknou dva fragmenty: a. Kolik neutronů při štěpení uranu vznikne? 8.54 Kolik jader uranu se musí rozštěpit za 1 s, aby ideální výkon jaderného reaktoru byl 1 W? Rozštěpením jednoho jádra se uvolní energie přibližně 200 MeV Reakce jaderné fúze dvou jader deuteria je popsána rovnicí Určete energii, která se při jaderné fúzi uvolní. Poměrná atomová hmotnost deuteria je A rd = 2,014, helia A rhe = 3,016 a neutronu A rn = 1, Kolik energie bychom získali jadernou fúzí deuteria o hmotnosti 4 g? Zhodnoťte výsledek z hlediska reálného využití.

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte: Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.

Více

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo JADERNÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Úvod 4 14 17 1 jádra E. Rutherford, 1914 první jaderná reakce: α+ N O H 2 7 8 + 1 jaderné síly = nový druh velmi silných sil vzdálenost

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

PEDAGOGICKÁ FAKULTA JIHOČESKÉ UVIVERZITY

PEDAGOGICKÁ FAKULTA JIHOČESKÉ UVIVERZITY PEDAGOGICKÁ FAKULTA JIHOČESKÉ UVIVERZITY Referát z jaderné fyziky Téma: Atomové jádro Vypracoval: Josef Peterka, MVT bak. II. Ročník Datum dokončení: 24. června 2002 Obsah: strana 1. Struktura atomu 2

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

Chemie - látky Variace č.: 1

Chemie - látky Variace č.: 1 Variace č.: . Složení látek a chemická vazba V tématickém celku si objasníme, proč mohou probíhat chemické děje. Začneme složením látek. Víme, že látky se skládají z atomů, které se slučují v molekuly.

Více

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012 Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

Elektrické vlastnosti látek

Elektrické vlastnosti látek Elektrické vlastnosti látek A) Výklad: Co mají popsané jevy společného? Při česání se vlasy přitahují k hřebenu, polyethylenový sáček se nechce oddělit od skleněné desky, proč se nám lepí kalhoty nebo

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 žák řeší úlohy na vztah pro okamžitou výchylku kmitavého pohybu, určí z rovnice periodu frekvenci, počáteční fázi kmitání vypočítá periodu a

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

Fyzika II mechanika zkouška 2014

Fyzika II mechanika zkouška 2014 Fyzika II mechanika zkouška 2014 Přirozené složky zrychlení Vztahy pro tečné, normálové a celkové zrychlení křivočarého pohybu, jejich odvození, aplikace (nakloněná rovina, bruslař, kruhový závěs apod.)

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

MO 1 - Základní chemické pojmy

MO 1 - Základní chemické pojmy MO 1 - Základní chemické pojmy Hmota, látka, atom, prvek, molekula, makromolekula, sloučenina, chemicky čistá látka, směs. Hmota Filozofická kategorie, která se používá k označení objektivní reality v

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

Jak se vyvíjejí hvězdy?

Jak se vyvíjejí hvězdy? Jak se vyvíjejí hvězdy? tlak a teplota normální plyny degenerované plyny osud Slunce fáze červeného obra oblast horizontálního ramena oblast asymptotického ramena obrů planetární mlhovina bílý trpaslík

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Výjimky z pravidelné elektronové konfigurace atomů, aneb snaha o dosažení stability. Stabilita vzácných plynů Vzácné plyny mají velmi stabilní

Více

Fyzika opakovací seminář 2010-2011 tematické celky:

Fyzika opakovací seminář 2010-2011 tematické celky: Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143 Zpracovala: RNDr. Libuše Bartková Teorie Kosmologie - věda zabývající se vznikem a vývojem vesmírem. Vznik vesmírů je vysvětlován v bájích každé starobylé

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice KAPITOLA 2: PRVEK Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

VY_32_INOVACE_08.Fy.9. Slunce

VY_32_INOVACE_08.Fy.9. Slunce VY_32_INOVACE_08.Fy.9. Slunce SLUNCE Slunce je sice obyčejná hvězda, podobná těm, které vidíme na noční obloze, ale pro nás je velmi důležitá. Bez ní by naše Země byla tmavá a studená a žádný život by

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Elektrický

Více

6.2.7 Princip neurčitosti

6.2.7 Princip neurčitosti 6..7 Princip neurčitosti Předpoklady: 606 Minulá hodina: Elektrony se chovají jako částice, ale při průchodu dvojštěrbinou projevují interferenci zdá se, že neplatí předpoklad, že elektron letí buď otvorem

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

Jaderná vazebná energie

Jaderná vazebná energie Termojaderná fúze Jaderná vazebná energie Celkovou energii potřebnou k roztrhání jádra až na jednotlivé protony a neutrony můžeme vypočítat ze vztahu. Q = mc, kde hmotnostní úbytek m = Zm p + Nmn m j.

Více

JE+ZJE Přednáška 1. Jak stará je jaderná energetika?

JE+ZJE Přednáška 1. Jak stará je jaderná energetika? JE+ZJE Přednáška 1 Jak stará je jaderná energetika? Experimental Breeder Reactor 1. kritický stav 24. srpna 1951. 20. prosince poprvé vyrobena elektřina z jaderné energie. Příští den využita pro osvětlení

Více

Chemická vazba Něco málo opakování Něco málo opakování Co je to atom? Něco málo opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího

Více

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý Autor: Mgr. Stanislava Bubíková JADERNÁ ENERGIE Datum (období) tvorby: 25. 6. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce; chemie a společnost 1 Anotace: Žáci se

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

43.1 OBJEVENÍ JÁDRA 1130 KAPITOLA 43 JADERNÁ FYZIKA

43.1 OBJEVENÍ JÁDRA 1130 KAPITOLA 43 JADERNÁ FYZIKA 43 Jadern fyzika RadioaktivnÌ j dra podan pacientovi v injekci se shromaûôujì na urëit ch mìstech tïla, rozpadajì se a vysìlajì fotony z enì γ. Ty jsou zaznamen ny detektorem a po zpracov nì poëìtaëem

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Užití mikrovlnné techniky v termojaderné fúzi. A. Křivská 1,2. Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika

Užití mikrovlnné techniky v termojaderné fúzi. A. Křivská 1,2. Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika Užití mikrovlnné techniky v termojaderné fúzi A. Křivská 1,2 1 Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika 2 České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra telekomunikační

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

Astronomie, sluneční soustava

Astronomie, sluneční soustava Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Základní pravidla. Tipy a doporučení. Příklady správné praxe

Základní pravidla. Tipy a doporučení. Příklady správné praxe Pavel Teplý Základní pravidla Tipy a doporučení Příklady správné praxe jedna myšlenka = jeden snímek Vzácné plyny Helium, Neon, Argon, Krypton, Xenon, Radon Halogeny Fluor, Chlor, Brom, Jod, (Astat) Chalkogeny

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním

Více

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul.

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul. Chemická vazba co je chemická vazba charakteristiky chemické vazby jak vzniká vazba znázornění chemické vazby kovalentní a koordinační vazba vazba σ a π jednoduchá, dvojná a trojná vazba polarita vazby

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal. Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou

Více

ANODA KATODA elektrolyt:

ANODA KATODA elektrolyt: Ukázky z pracovních listů 1) Naznač pomocí šipek, které částice putují k anodě a které ke katodě. Co je elektrolytem? ANODA KATODA elektrolyt: Zn 2+ Cl - Zn 2+ Zn 2+ Cl - Cl - Cl - Cl - Cl - Zn 2+ Cl -

Více

JADERNÁ FYZIKA RADIOAKTIVNÍ ROZPAD REFERÁT NA TÉMA. Vypracoval:Donát Josef

JADERNÁ FYZIKA RADIOAKTIVNÍ ROZPAD REFERÁT NA TÉMA. Vypracoval:Donát Josef JADERNÁ FYZIKA REFERÁT NA TÉMA RADIOAKTIVNÍ ROZPAD Vypracoval:Donát Josef Úvod V prvních letech 20.století se o struktuře atomů nevědělo o mnoho více,než že obsahují elektrony.ani hmotnost elektronu objeveného

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-2-20 Téma: Test obecná chemie Střední škola Rok: 2012 2013 Varianta: A Test obecná chemie Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Otázka 1 OsO 4 je

Více

VNITŘNÍ ENERGIE, TEPLO A PRÁCE

VNITŘNÍ ENERGIE, TEPLO A PRÁCE VNITŘNÍ ENERGIE, TEPLO A PRÁCE 1. Vnitřní energie (U) Vnitřní energie je energie uložená v těleseh. Je těžké určit absolutní hodnotu. Pro většinu dějů to není nezbytné, protože ji nejsme shopni uvolnit

Více

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce Termochemie Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona U = Q + W U změna vnitřní energie Q teplo W práce Teplo a práce dodané soustavě zvyšují její

Více

35 ATOMOVÉ JÁDRO. Vazebná energie jádra Jaderné síly Jaderné reakce Jaderná energie

35 ATOMOVÉ JÁDRO. Vazebná energie jádra Jaderné síly Jaderné reakce Jaderná energie 420 35 ATOMOVÉ JÁDRO Vazebná energie jádra Jaderné síly Jaderné reakce Jaderná energie Radioaktivita, neboli přirozený rozpad prvků, prokázala jednoznačně, že i jádro, které Rutherford považoval za poslední

Více

4. Akustika. 4.1 Úvod. 4.2 Rychlost zvuku

4. Akustika. 4.1 Úvod. 4.2 Rychlost zvuku 4. Akustika 4.1 Úvod Fyzikálními ději, které probíhají při vzniku, šíření či vnímání zvuku, se zabývá akustika. Lidské ucho je schopné vnímat zvuky o frekvenčním rozsahu 16 Hz až 16 khz. Mechanické vlnění

Více

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu.

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu. 1 Pracovní úkoly 1. Změřte střední velikost zrna připraveného výbrusu polykrystalického vzorku. K vyhodnocení snímku ze skenovacího elektronového mikroskopu použijte kruhovou metodu. 2. Určete frakční

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

elektrický náboj elektrické pole

elektrický náboj elektrické pole elektrický náboj a elektrické pole Charles-Augustin de Coulomb elektrický náboj a jeho vlastnosti Elektrický náboj je fyzikální veličina, která vyjadřuje velikost schopnosti působit elektrickou silou.

Více

Bruno Kostura ESF ROVNÉ PŘÍLEŽITOSTI PRO VŠECHNY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA

Bruno Kostura ESF ROVNÉ PŘÍLEŽITOSTI PRO VŠECHNY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA CHEMIE I (Obecná chemie) Bruno Kostura Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3..15.1/0016 Studijní opory s převažujícími

Více

Přírodní radioaktivita

Přírodní radioaktivita Přírodní radioaktivita Náš celý svět, naše Země, je přirozeně radioaktivní, a to po celou dobu od svého vzniku. V přírodě můžeme najít několik tisíc radionuklidů, tj. prvků, které se samovolně rozpadají

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 19. 12. 2012 Pořadové číslo 09 1 RADIOAKTIVITA Předmět: Ročník: Jméno autora:

Více

Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles

Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles 6.ročník Výstupy Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles určí, zda je daná látka plynná, kapalná či pevná, a popíše rozdíl ve vlastnostech správně používá pojem

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

C-1 ELEKTŘINA Z CITRONU

C-1 ELEKTŘINA Z CITRONU Experiment C-1 ELEKTŘINA Z CITRONU CÍL EXPERIMENTU Praktické ověření, že z citronu a také jiných potravin standardně dostupných v domácnosti lze sestavit funkční elektrochemické články. Měření napětí elektrochemického

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

ČÁST I - Ú V O D. 1. Předmět fyziky 2. Rozdělení fyziky 3. Fyzikální pojmy a veličiny 4. Mezinárodní soustava jednotek - SI

ČÁST I - Ú V O D. 1. Předmět fyziky 2. Rozdělení fyziky 3. Fyzikální pojmy a veličiny 4. Mezinárodní soustava jednotek - SI ČÁST I - Ú V O D 1. Předmět fyziky 2. Rozdělení fyziky 3. Fyzikální pojmy a veličiny 4. Mezinárodní soustava jednotek - SI 2 1 PŘEDMĚT FYZIKY Každá věda - a fyzika bezpochyby vědou je - musí mít definován

Více

ČÁST VIII - M I K R O Č Á S T I C E

ČÁST VIII - M I K R O Č Á S T I C E ČÁST VIII - M I K R O Č Á S T I C E 32 Základní částice 33 Dynamika mikročástic 34 Atom - elektronový obal 35 Atomové jádro 36 Radioaktivita 37 Molekuly 378 Pod pojmem mikročástice budeme rozumět tzv.

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

OBECNÁ A ANORGANICKÁ CHEMIE

OBECNÁ A ANORGANICKÁ CHEMIE OBECNÁ A ANORGANICKÁ CHEMIE 1. díl pro vyšší stupeň Gymnázia v Duchcově JIŘÍ ROUBAL motto: Z ničeho se nemá dělat věda ani z vědy. Jan Werich Předmluva k třetímu vydání. Předkládaná skripta představují

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

Gama spektroskopie. Ústav jaderné fyziky AV ČR, Řež u Prahy. Konzultanti: RNDr. Vladimír Wagner, CSc. Ing. Ondřej Svoboda.

Gama spektroskopie. Ústav jaderné fyziky AV ČR, Řež u Prahy. Konzultanti: RNDr. Vladimír Wagner, CSc. Ing. Ondřej Svoboda. Gama spektroskopie Ústav jaderné fyziky AV ČR, Řež u Prahy Autor: Sláma Ondřej Konzultanti: RNDr. Vladimír Wagner, CSc. Rok: 2009/2010 Ing. Ondřej Svoboda Úvod Jaderná fyzika, oblast vědy, která je stará

Více

2.9.3 Exponenciální závislosti

2.9.3 Exponenciální závislosti .9.3 Eponenciální závislosti Předpoklady: 9 Pedagogická poznámka: Látka připravená v této hodině zabere tak jeden a půl vyučovací hodiny. Proč probíráme tak eotickou funkci jako je eponenciální? V životě

Více

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptlkách PaedDr. Jozef Beňuška jbenuska@nextra.sk Optická soustava - je soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Zjistil, že při dopadu elektronů s velkou kinetickou energií na kovovou anodu vzniká záření, které proniká i neprůhlednými předměty.

Zjistil, že při dopadu elektronů s velkou kinetickou energií na kovovou anodu vzniká záření, které proniká i neprůhlednými předměty. 2.snímek Historie rentgenového záření Na počátku vzniku stál německý fyzik W.C. Röntgen (1845-1923). V roce 1895 objevil při studiu výbojů v plynech neznámý druh záření. Röntgen zkoumal katodové záření,

Více

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák:

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák: očekávané výstupy RVP témata / učivo Chemie - 1. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 7.3. 1. Chemie a její význam charakteristika

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Modularizace a modernizace studijního programu počáteční přípravy učitele fyziky Studijní modul Atomová a jaderná fyzika Vít Procházka Olomouc 2012 2 Recenzovali: Mgr. Milan Vůjtek, Ph.D. Ing. Tomáš Hatala

Více