Theory Česky (Czech Republic)
|
|
- Richard Valenta
- před 8 lety
- Počet zobrazení:
Transkript
1 Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider - Velký hadronový urychlovač) v CERNu. CERN je největší světovou laboratoří částicové fyziky. Jejím posláním je nahlédnout do tajů základních přírodních zákonů. Dvěma paprskům částic je udělena vysoká energie, jsou udržovány v prstenci urychlovače silným magnetickým polem a poté dojde k jejich srážce. Protony nejsou rozloženy rovnoměrně po obvodu urychlovače, ale jsou sdruženy do tzv. svazků. Částice vzniklé při srážce jsou pozorovány velkými detektory. Některé parametry LHC můžete najít v tabulce 1. Prstenec LHC Obvod prstence m Počet svazků v jednom protonovém paprsku 2808 Počet protonů v jednom svazku 1, Paprsky protonů Energie protonů 7, 00 TeV Energie srážky v těžišťové soustavě 14, 0 TeV Tabulka 1: Typické číselné hodnoty důležitých parametrů LHC V částicové fyzice se používají vhodnější jednotky energie, hybnosti a hmotnosti: Energie se měří v elektronvoltech [ev]. Z definice platí, že 1 ev je množství energie, které získá částice o elementárním náboji e, je-li urychlena potenciálovým rozdílem jednoho voltu (1 ev = 1, kg m 2 s 2 ). Hybnost se měří v jednotkách ev/c a hmotnost v jednotkách ev/c 2, kde c je rychlost světla ve vakuu. Jelikož 1 ev je velmi malé množství energie, užívají se v částicové fyzice často jednotky násobné: MeV (1 MeV = 10 6 ev), GeV (1 GeV = 10 9 ev) nebo TeV (1 TeV = ev). Část A se týká urychlování protonů a elektronů. Část B se zabývá rozpoznáváním částic vytvořených při srážkách v CERNu. Část A. Urychlovač LHC (6 bodů) Urychlování: Předpokládejte, že protony byly urychleny napětím V tak, že jejich rychlost je velice blízká rychlosti světla a zanedbejte všechny energetické ztráty způsobené vyzařováním nebo srážkami s jinými částicemi. A.1 Najděte přesný výraz pro výslednou rychlost protonů v jako funkci urychlovacího napětí V a fyzikálních konstant. 0.7pt Návrh budoucích experimentů v CERNu počítá s tím, že nechá srážet protony z LHC s elektrony mající energii 60, 0 GeV.
2 Q3-2 A.2 Částice s vysokou energií a nízkou hmotností mají malou relativní odchylku Δ = (c v)/c výsledné rychlosti v od rychlosti světla ve vakuu. Nalezněte aproximaci prvního řádu Δ a spočtěte Δ pro elektrony o energii 60, 0 GeV pomocí urychlovacího napětí a fyzikálních konstant. 0.8pt Vraťme se nyní k protonům v LHC. Předpokládejte, že trubice, ve které je paprsek, má průřez tvaru kruhu. A.3 Odvoďte vztah pro velikost magnetické indukce B homogenního magnetického pole nutného pro udržení paprsku protonů po kruhové dráze. Vztah by měl obsahovat pouze energii protonů E, obvod L, základní konstanty a čísla. Můžete použít vhodné aproximace, pokud je jejich efekt na výsledek menší, než přesnost daná počtem platných číslic. Spočítejte velikost magnetické indukce B pro protony o energii E = 7, 00 TeV, zanedbejte interakce mezi protony. 1.0pt Vyzářený výkon: Urychlená nabitá částice vyzařuje energii ve formě elektromagnetických vln. Vyzářený výkon P rad nabité částice, která krouží neměnnou úhlovou rychlostí závisí pouze na jejím zrychlení a, náboji q, rychlosti světla c a na permitivitě vakua ε 0. A.4 Rozměrovou analýzou nalezněte vztah pro vyzářený výkon P rad. 1.0pt Skutečný vztah pro vyzářený výkon obsahuje faktor 1/(6π); relativistické odvození navíc ještě přidá multiplikativní faktor γ 4, kdeγ = (1 v 2 /c 2 ) 1 2. A.5 Spočítejte celkový vyzářený výkon P tot protony v LHC o energii E = 7, 00 TeV (viz tabulka 1). Můžete použít vhodné aproximace. 1.0pt Lineární urychlení: V CERNu jsou protony z klidu urychlovány lineárním urychlovačem délky d = 30.0 m napětím V = 500 MV. Předpokládejte, že elektrické pole je homogenní. Lineární urychlovač sestává ze dvou desek jak je ukázáno na obr. 1. A.6 Určete čas T, který stráví protony v urychlovači, než jím projdou. 1.5pt
3 Q3-3 d + - V Obrázek 1: Náčrtek urychlovacího prvku.
4 Q3-4 Část B. Určování částic (4 body) Doba letu: Je důležité určit vysoce energetické částice, které vznikají při srážce, aby bylo možné vysvětlit proces srážky. Jednoduchá metoda je měřit čas (t), který částice se známou hybností potřebuje k uražení vzdálenosti l v tzv. detektoru doby letu (Time-of-Flight, ToF). Typické částice určované v detektoru společně s jejich hmotnostmi jsou v tabulce 2. Částice Hmotnost [MeV/c 2 ] Deuteron 1876 Proton 938 Nabitý kaon 494 Nabitý pion 140 Elektron 0, 511 Tabulka 2: Částice a jejich hmotnosti hmotnost m hybnost p y x čas t 1 délka l čas t 2 Obrázek 2: Schematický nákres detektoru doby letu. B.1 Vyjádřete hmotnost částice m jako funkci hybnosti p, délky letu l a doby letu t za předpokladu, že částice mají elementární náboj e a pohybují se rychlostí blízko c po přímých trajektoriích v ToF detektoru a pohybují se kolmo na obě detekční roviny (viz obr. 2). 0.8pt
5 Q3-5 B.2 Vypočtěte minimální délku l ToF detektoru, aby umožňoval bezpečně rozlišit nabitý kaon od nabitého pionu, je-li hybnost obou částic 1, 00 GeV/c. Pro dobré rozlišení požadujeme, aby rozdíl v době letu byl větší než trojnásobek časového rozlišení detektoru. Typické rozlišení ToF detektoru je 150 ps (1 ps = s). 0.7pt Uvažujeme v dalším textu, že částice vzniklé v LHC detektoru jsou určovány ve dvojstupňovém detektoru sestávajícím z trasovacího detektoru a ToF detektoru. Obr. 3 představuje složení detektoru v rovině příčné a v rovině podél protonového paprsku. Oba detektory mají tvar trubic obklopujících oblast srážek tak, že paprsek prochází středem těchto trubic. Trasovací detektor měří trajektorii nabité částice procházející magnetickým polem, jehož směr je rovnoběžný se směrem protonového paprsku. Poloměr r této trajektorie umožňuje určit příčnou složku hybnosti p T částice. Jelikož je znám okamžik srážky, ToF detektor potřebuje jen jednu trubici, aby mohl měřit dobu letu měřenou od okamžiku srážky k ToF trubici. Taková ToF trubice je umístěna kolem trasovací komory. Pro řešení této úlohy můžete předpokládat, že se všechny částice vzniklé při srážce pohybují kolmo k protonovému paprsku, tedy vzniklé částice mají nulovou složku hybnosti ve směru původního protonového paprsku. y x (2) y z (2) (1) (4) (4) (3) R (1) (5) (3) (5) (4) příčná rovina (1) průřez podélný (longitudinální) pohled do středu podél středu (osy) trubice (1) - ToF válec (2) - trajektorie (3) - bod srážky (4) - trasovací trubice (5) - protonový svazek - magnetické pole Obrázek 3 : Experimentální složení pro určování částic obsahující trasovací komoru a ToF detektor. Oba detektory mají tvar trubice obklopující bod srážky uprostřed. Vlevo : pohled kolmý na paprsek. Vpravo : podélný pohled rovnoběžný s paprskem. Vzniklá částice se pohybuje kolmo na paprsek.
6 Q3-6 B.3 Vyjádřete hmotnost částice jako funkci magnetické indukce B, poloměru R ToF trubice, fundamentálních konstant a naměřených veličin: poloměru r trajektorie a doby letu t. 1.7pt Detekovali jsme čtyři různé částice a potřebujeme je určit. Magnetická indukce v trasovacím detektoru je B = T. Poloměr R ToF trubice je 3.70 m. Následující tabulka obsahuje výsledky měření (1 ns = 10 9 s): Částice Poloměr trajektorie r [m] Doba letu t [ns] A 5, B 2, C 6, D 2, B.4 Určete uvedené čtyři částice výpočtem jejich hmotností. 0.8pt
Urychlovače částic principy standardních urychlovačů částic
Urychlovače částic principy standardních urychlovačů částic Základní info technické zařízení, které dodává kinetickou energii částicím, které je potřeba urychlit nabité částice jsou v urychlovači urychleny
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ
Fyzika II, FMMI. 1. Elektrostatické pole
Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých
Příklady Kosmické záření
Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum
Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích
3.1 Magnetické pole ve vakuu a v látkovén prostředí
3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká
Cvičení F2070 Elektřina a magnetismus
Cvičení F2070 Elektřina a magnetismus 20.3.2009 Elektrický potenciál, elektrická potenciální energie, ekvipotenciální plochy, potenciál bodového náboje, soustavy bodových nábojů, elektrického pole dipólu,
Fyzika 6. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. témata / učivo. očekávané výstupy RVP. očekávané výstupy ŠVP
očekávané výstupy RVP témata / učivo 1. Časový vývoj mechanických soustav Studium konkrétních příkladů 1.1 Pohyby družic a planet Keplerovy zákony Newtonův gravitační zákon (vektorový zápis) pohyb satelitů
Jana Nováková Proč jet do CERNu? MFF UK
Jana Nováková MFF UK Proč jet do CERNu? Plán přednášky 4 krát částice kolem nás intermediální bosony mediální hvězdy hon na Higgsův boson - hit současné fyziky urychlovač není projímadlo detektor není
S p e c i f i c k ý n á b o j e l e k t r o n u. Z hlediska mechanických účinků je magnetická síla vlastně silou dostředivou.
S p e c i f i c k ý n á b o j e l e k t r o n u Ú k o l : Na základě pohybu elektronu v homogenním magnetickém poli stanovit jeho specifický náboj. P o t ř e b y : Viz seznam v deskách u úlohy na pracovním
Měrný náboj elektronu
Měrný náboj elektronu Miroslav Frantes 1, Tomáš Hejda 2, Lukáš Mach 3, Ondřej Maršálek 4, Michal Petera 5 1 miro11@seznam.cz; Gymnázium Benešov, 2 tohe@centrum.cz; Gymnázium Christiana Dopplera, Praha
Experiment ATLAS. Shluky protiběžných částic se srážejí každých 25 ns. tj. s frekvencí. Počet kanálů detektoru je 150 mil.
Experiment ATLAS Shluky protiběžných částic se srážejí každých 25 ns tj. s frekvencí 40 MHz Počet srážek 40 MHz x 20 = 800 milionů / s Počet kanálů detektoru je 150 mil. Po 1. úrovni rozhodování (L1 trigger)
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu.
Přijímací zkouška na navazující magisterské studium - 017 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Těleso s hmotností
Elektrický náboj a elektrické pole
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Elektrický náboj a elektrické
Mezony π, mezony K, mezony η, η, bosony 1
Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, (piony) a) Nabité piony hmotnost, rozpady, doba života, spin, parita, nezachování parity v jejich rozpadech b) Neutrální piony hmotnost, rozpady, doba
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník
ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče
5.8 Jak se změní velikost elektrické síly mezi dvěma bodovými náboji v případě, že jejich vzdálenost a) zdvojnásobíme, b) ztrojnásobíme?
5.1 Elektrické pole V úlohách této kapitoly dosazujte e = 1,602 10 19 C, k = 9 10 9 N m 2 C 2, ε 0 = 8,85 10 12 C 2 N 1 m 2. 5.6 Kolik elementárních nábojů odpovídá náboji 1 µc? 5.7 Novodurová tyč získala
Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2
Gyrační poloměr jako invariant relativistického pohybu nabité částice v konfiguraci rovnoběžného konstantního vnějšího elektromagnetického pole 1 Popis problému Uvažujme pohyb nabité částice v E 3 v takové
1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.
Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)
Theory Česky (Czech Republic)
Q1-1 Dvě úlohy z mechaniky (10 bodíků) Než se pustíte do řešení, přečtěte si obecné pokyny ve zvláštní obálce. Část A. Ukrytý disk (3,5 bodu) Uvažujeme plný dřevěný válec o poloměru podstavy r 1 a výšce
Laboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.
Podivnosti na LHC. Abstrakt
Podivnosti na LHC O. Havelka 1, J. Jerhot 2, P. Smísitel 3, L. Vozdecký 4 1 Gymnýzium Trutnov, ondra10ax@centrum.cz 2 SPŠ Strojní a elektrotechnická, České Budějovice, jerrydog@seznam.cz 3 Gymnázium Vyškov,
Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka
Mgr. Jan Ptáčník Elektrodynamika Fyzika - kvarta! Gymnázium J. V. Jirsíka Vodič v magnetickém poli Vodič s proudem - M-pole! Vložení vodiče s proudem do vnějšího M-pole = interakce pole vnějšího a pole
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II Sbírka příkladů pro ekonomické obory kombinovaného studia Dopravní fakulty Jana Pernera (PZF2K)
STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník
STACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Magnetické pole Vytváří se okolo trvalého magnetu. Magnetické pole vodiče Na základě experimentů bylo
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
zve studenty 1, 2, 3, 4, 5, 6, 7, (tedy všech) ročníků
detektory statistické metody Skupina částicové fyziky SLO/UPOL zve studenty 1, 2, 3, 4, 5, 6, 7, (tedy všech) ročníků na stručnou prezentaci výsledků své práce a nabídku neuronové sítě statistické metody
FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník
FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová
Za hranice současné fyziky
Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie
Měření permitivity a permeability vakua
Měření permitivity a permeability vakua Online: http://www.sclpx.eu/lab3r.php?exp=2 Permitivita i permeabilita vakua patří svojí hodnotou měřenou v základních jednotkách SI mezi poměrně malé fyzikální
Hmotnostní spektrometrie
Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení
Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.
Magnetické pole Stacionární magnetické pole Kolem trvalého magnetu existuje magnetické pole. Stacionární magnetické pole Pilinový obrazec magnetického pole tyčového magnetu Stacionární magnetické pole
Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:
Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly
5.8 Jak se změní velikost elektrické síly mezi dvěma bodovými náboji v případě, že jejich vzdálenost a) zdvojnásobíme, b) ztrojnásobíme?
Elektrostatika 1 1) Co je elektrický náboj? 2) Jaké znáš jednotky elektrického náboje? 3) Co je elementární náboj? Jakou má hodnotu? 4) Jak na sebe silově působí nabité částice? 5) Jak můžeme graficky
Příklady: 31. Elektromagnetická indukce
16. prosince 2008 FI FSI VUT v Brn 1 Příklady: 31. Elektromagnetická indukce 1. Tuhý drát ohnutý do půlkružnice o poloměru a se rovnoměrně otáčí s úhlovou frekvencí ω v homogenním magnetickém poli o indukci
2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru
Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé
KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 10. POSUVNÝ PROUD A POYNTINGŮV VEKTOR 3 10.1 ÚKOLY 3 10. POSUVNÝ
Dualismus vln a částic
Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz
F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18
F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18 Podpis: Třída: Verze testu: A Čas na vypracování: 120 min. Datum: Učitel: INSTRUKCE PRO VYPRACOVÁNÍ PÍSEMNÉ PRÁCE: Na vypracování zkoušky máte 120 minut.
FYZIKA DIDAKTICKÝ TEST
NOVÁ MATURITNÍ ZKOUŠKA Ilustrační test 2008 FY2VCZMZ08DT FYZIKA DIDAKTICKÝ TEST Testový sešit obsahuje 20 úloh. Na řešení úloh máte 90 minut. Odpovědi pište do záznamového archu. Poznámky si můžete dělat
Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A]
Pracovní úkol 1. Proměřte závislost magnetické indukce na proudu magnetu. 2. Pomocí kamery změřte ve směru kolmém k magnetickému poli rozštěpení červené spektrální čáry kadmia pro 8-10 hodnot magnetické
c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky
Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda
Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.
Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako
ELEKTROMAGNETICKÉ POLE
ELEKTROMAGNETICKÉ POLE 1. Magnetická síla působící na náboj v magnetickém poli Fyzikové Lorentz a Ampér zjistili, že silové působení magnetického pole na náboj Q, závisí na: 1. velikosti náboje Q, 2. relativní
Prověřování Standardního modelu
Prověřování Standardního modelu 1) QCD hluboce nepružný rozptyl, elektron (mion) proton, strukturní funkce fotoprodukce γ proton produkce gluonů v e + e produkce jetů, hadronů 2) Elektroslabá torie interference
Měření hmoty Higgsova bosonu podle doby letu tau leptonu
Měření hmoty Higgsova bosonu podle doby letu tau leptonu Jana Nováková, Tomáš Davídek UČJF Higgs -> tau tau na LHC v oblasti malých hmot Higgse dává významný příspěvek měřitelné v oblasti m H [115, 140]
Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika
1 Fyzika 1, bakaláři AFY1 BFY1 KFY1 ZS 08/09 Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách Mechanika Při studiu části mechanika se zaměřte na zvládnutí následujících pojmů: Kartézská
FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli
FYZIKA II Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli Osnova přednášky Stacionární magnetické pole Lorentzova síla Hallův jev Pohyb a urychlování nabitých částic (cyklotron,
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
Balmerova série, určení mřížkové a Rydbergovy konstanty
Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Praktikum IV
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum IV Úloha č. A13 Určení měrného náboje elektronu z charakteristik magnetronu Název: Pracoval: Martin Dlask. stud. sk.: 11 dne:
Relativistická dynamika
Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
Datum: 16. 4. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34.
Datum: 16. 4. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_99 Škola: Akademie VOŠ, Gymn. a SOŠUP Světlá nad Sázavou
GE - Vyšší kvalita výuky CZ.1.07/1.5.00/
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Alena Škárová Vodič a izolant
Základní zákony a terminologie v elektrotechnice
Základní zákony a terminologie v elektrotechnice (opakování učiva SŠ, Fyziky) Určeno pro studenty komb. formy FMMI předmětu 452702 / 04 Elektrotechnika Zpracoval: Jan Dudek Prosinec 2006 Elektrický náboj
Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
Teoretické úlohy celostátního kola 53. ročníku FO
rozevřete, až se prsty narovnají, a znovu rychle tyč uchopte. Tuto dobu změříte stopkami velmi obtížně. Poměrně přesně dokážete zjistit, kam se posunulo na tyči místo úchopu. Vzdálenost obou míst, v nichž
2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického
1 Pracovní úkol 1. Změřte V-A charakteristiky magnetronu při konstantním magnetickém poli. Rozsah napětí na magnetronu volte 0-200 V (s minimálním krokem 0.1-0.3 V v oblasti skoku). Proměřte 10-15 charakteristik
Úvod do moderní fyziky. lekce 3 stavba a struktura atomu
Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi
Elektřina a magnetizmus - elektrické napětí a elektrický proud
DUM Základy přírodních věd DUM III/2-T3-03 Téma: Elektrické napětí a elektrický proud Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: X Název: Hallův jev Pracoval: Pavel Brožek stud. skup. 12 dne 19.12.2008 Odevzdal dne:
Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu
NESTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník
NESTACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Nestacionární magnetické pole Vektor magnetické indukce v čase mění směr nebo velikost. a. nepohybující
1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek
1 Pracovní úkoly 1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek (a) v zapojení s nesouhlasným směrem proudu při vzdálenostech 1, 16, 0 cm (b) v zapojení se
Lineární urychlovače. Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace
Lineární urychlovače Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace Lineární urychlovače Elektrostatické urychlovače Indukční urychlovače Rezonanční urychlovače
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou
Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3
Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý
Základní pasivní a aktivní obvodové prvky
OBSAH Strana 1 / 21 Přednáška č. 2: Základní pasivní a aktivní obvodové prvky Obsah 1 Klasifikace obvodových prvků 2 2 Rezistor o odporu R 4 3 Induktor o indukčnosti L 8 5 Nezávislý zdroj napětí u 16 6
Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model
Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle
Magnetické pole - stacionární
Magnetické pole - stacionární magnetické pole, jehož charakteristické veličiny se s časem nemění kolem vodiče s elektrickým polem je magnetické pole Magnetické indukční čáry Uzavřené orientované křivky,
Fyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
PEM - rámcové příklady Elektrostatické pole a stacionární elektrický proud
PEM - rámcové příklady Elektrostatické pole a stacionární elektrický proud 1. Mějme bodový náboj o velikosti 1 C. Jaký počet elementárních nábojů vytváří celkovou velikost tohoto náboje? 2. Měděná mince
Maturitní otázky z předmětu FYZIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu FYZIKA 1. Pohyby z hlediska kinematiky a jejich zákony Klasifikace pohybů z hlediska trajektorie a závislosti rychlosti
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
Přehled veličin elektrických obvodů
Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic
2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru
1 Pracovní úkol 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé
Fyzika. 7. Motor o příkonu 5 kw pracuje s účinností 80 %. Pracuje-li 1 hodinu, vykoná práci: a) 14, J b) Wh c) 4 kwh d) kj
Fyzika 1. Která veličina je bezrozměrná? a) permitivita prostředí b) relativní permeabilita prostředí c) zvětšení čočky d) absolutní index lomu prostředí 2. Do odměrného válce o vnitřním průměru 50 mm
4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul
Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20
Měření magnetické indukce permanentního magnetu z jeho zrychlení
Měření magnetické indukce permanentního magnetu z jeho zrychlení Online: http://www.sclpx.eu/lab3r.php?exp=3 K provedení tohoto experimentu budeme potřebovat dva kruhové prstencové magnety s otvorem uprostřed,
Experimentální metody ve fyzice vysokých energií Alice Valkárová
Experimentální metody ve fyzice vysokých energií Alice Valkárová alice@ipnp.troja.mff.cuni.cz 10/20/2004 1 Literatura o detektorech částic Knihy: C.Grupen, Particle detectors,cambridge University Press,1996
Vysoké frekvence a mikrovlny
Vysoké frekvence a mikrovlny Osnova Úvod Maxwellovy rovnice Typy mikrovlnného vedení Použití ve fyzice plazmatu Úvod Mikrovlny jsou elektromagnetické vlny o vlnové délce větší než 1mm a menší než 1m, což
[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka
10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.
7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro
7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4)
Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas 1,, ), V. Vícha 4) 1.a) Mezi spodní destičkou a podložkou působí proti vzájemnému pohybu síla tření o velikosti
Kinetická teorie ideálního plynu
Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na
Elektřina: Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.
Elektřina pro bakalářské obory Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, K.LF Elektron ( v antice ) = jantar Jak souvisí jantar s elektřinou?? Jak souvisí jantar s elektřinou: Mechanické působení
1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová