Bioenergetika a makroergické sloučeniny

Rozměr: px
Začít zobrazení ze stránky:

Download "Bioenergetika a makroergické sloučeniny"

Transkript

1 Bioenergetika a makroergické sloučeniny Tomáš Kučera Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017

2 Bioenergetika jak organismy získávají, přeměňují, ukládají a využívají energii

3 Gibbsova (volná) energie G = H TS G = H T S = Q p T S Úbytek G je roven maximální práci, kterou může systém odevzdat při izotermicko-izobarickém ději do okolí. rovnováha: G = 0 samovolný (exergonický) děj: G < 0 (může konat práci) endergonický děj: G > 0

4 Gibbsova energie jeden z tzv. termodynamických potenciálů žádná informace o rychlosti ta dána mechanismem (ne)možnost děje dána jen počátečním a konečným stavem katalyzátor (enzym) může urychlit dosažení rovnováhy, ale ne změnit její stav možnost spřažení závisí na teplotě: rovnováha: T = H S H S G = H T S + Reakce je výhodná enthalpicky (exotermní) i entropicky. Bude spontánní (exergonická) při jakékoli teplotě. Reakce je enthalpicky výhodná, ale entropicky nevýhodná. Bude spontánní jen při teplotách pod T = H S. + + Reakce je enthalpicky nevýhodná, ale entropicky výhodná. Bude spontánní jen při teplotách nad T = H S. + Reakce je nevýhodná enthalpicky (endotermní) i entropicky. Bude nespontánní (endergonická) při jakékoli teplotě. Přepsáno z Voet, D., Voet, J. G.: Biochemistry, John Wiley & Sons, Inc., 2011 (4. vydání)

5 Chemické rovnováhy Reakce a A + b B c C + d D G = G 0 + RT ln [C]c [D] d [A] a [B] b ( G 0 = standardní změna G dané reakce) konstantní člen závisí jen na konkrétní reakci proměnný člen závisí na teplotě a koncentracích reaktantů a produktů Rovnováha G = 0 [C] c [D] d K eq = [A] a [B] b G 0 = RT ln K eq = e G 0 RT G 0 a K eq v přímém vztahu 10násobná změna K eq změní G 0 o 5,7 kj mol 1

6 Změna Gibbsovy energie G 0 = G 0 f (products) G 0 f (reactants) G 0 f = G 0 syntézy z prvků Sloučenina G 0 f (kj mol 1 ) acetaldehyd 139,7 acetát 369,2 acetyl-coa 374,1 a cis-akonitát 3 920,9 C 2 (g) 394,4 C 2 (aq) 386,2 HC 3 587,1 citrát ,6 dihydroxyaceton ,2 ethanol 181,5 fruktosa 915,4 fruktosa-6-fosfát ,3 fruktosa-1,6-bisfosfát ,8 fumarát 2 604,2 α-d-glukosa 917,2 glukosa-6-fosfát ,3 Sloučenina G 0 f (kj mol 1 ) glyceraldehyd-3-fosfát ,6 H + 0,0 H 2 (g) 0,0 H 2 (l) 237,2 isocitrát ,0 α-ketoglutarát 2 798,0 laktát 516,6 l-malát 2 845,1 H 157,3 oxalacetát 2 797,2 fosfoenolpyruvát ,5 2-fosfoglycerát ,6 3-fosfoglycerát ,7 pyruvát 474,5 sukcinát 2 690,2 sukcinyl-coa 686,7 a a pro vznik z volných prvků + volného CoA Přepsáno dle Voet, D., Voet, J. G.: Biochemistry, John Wiley & Sons, Inc., 2011 (4. vydání)

7 Změna Gibbsovy energie standardní stav aktivita 1 mol l 1 25 C 1 bar biochemický standardní stav aktivita vody = 1 ph = 7 látky podléhající acidobazické disociaci: c = celková c všech forem při ph = 7

8 Spřažené reakce A + B C + D G 1 D + E F + G G 2 A + B + E C + F + G G 3 = G 1 + G 2 < 0 Fosforylace glukosy: Glc + ATP Glc-6- P + ADP endergonická reakce: glukosa + P glukosa-6- P G 0 = 13,8 kj mol 1 exergonická reakce: ATP + H 2 ADP + P G 0 = 30,5 kj mol 1 celková (spřažená) reakce: glukosa + ATP glukosa-6- P + ADP G 0 = 16,7 kj mol 1

9 Redoxní potenciál také oxidačně redukční (oxidoredukční, redukční) vyjadřuje schopnost látky přijímat elektrony ox + n e red (poločlánek) Voet, D., Voet, J. G.: Biochemistry, John Wiley & Sons, Inc., 2011 (4. vydání) A ox + B red n e A red + B ox ernstova rovnice G = G 0 + RT ln [A red][b ox ] [A ox ][B red ] G = nf E E = E 0 RT nf ln [red] [ox] E = E 0 RT nf ln [A red][b ox ] [A ox ][B red ]

10 Redoxní potenciál E jako energetická škála Redukovaná forma xidovaná forma E 0 (V) ΔG 0 acetaldehyd acetát -0,60 hodnoty vyšší H2 2H + -0,42 (reduktans) isocitrát 2-oxoglutarát + C2-0,38 glutathion-sh glutathion-ss -0,34 ADH + H + AD + -0,32 glyceraldehyd-3-fosfát + H3P04 1,3-bisfosfoglycerát -0,28 FADH2 FAD -0,20 laktát pyruvát -0,19 malát oxalacetát -0,17 cytochrom b (Fe 2+ ) cytochrom b (Fe 3+ ) 0,00 sukcinát fumarát +0,03 dihydroubichinon ubichinon +0,10 cytochrom c (Fe 2+ ) cytochrom c (Fe 3+ ) +0,26 +ne ne H ,29 + hodnoty H2 ½ 2 +0,82 (oxidans) nižší exergonický děj endergonický děj Voet, D., Voet, J. G.: Biochemistry, John Wiley & Sons, Inc., 2011 (4. vydání) Skutečný směr reakce ale závisí také na poměru koncentrací [red]/[ox] (případně na dalších faktorech)

11 Redoxní potenciál E 0 = 0 V pro standardní vodíkový poločlánek (elektrodu) H + při ph0, 25 C, 1 bar v rovnováze s elektrodou z Pt černi sycenou H 2 ph = 7 E 0 = 0.421V

12 Makroergické sloučeniny obsahují makroergickou vazbu jejich hydrolýza pohání endergonické reakce ATP centrální role (univerzální energetická měna buňky) 3 fosfátové skupiny vázané 1 fosfoesterovou a 2 fosfoanhydridovými vazbami P γ fosfoandydridové vazby P β fosfoesterová vazba P α H H H H H H adenosin AMP ADP ATP H 2 Překresleno dle Voet, D., Voet, J. G.: Biochemistry, John Wiley & Sons, Inc., 2011 (4. vydání)

13 ATP R 1 P + R 2 H R 1 H + R 2 P reakce přenosu fosforylu obrovský metabolický význam ATP + H 2 ADP + P G 0 = 30,5 kj mol 1 ATP + H 2 AMP + P P G 0 = 45,6 kj mol 1 P P + H 2 2 P G 0 = 19,2 kj mol 1 kinetická stabilita, termodynamická nestabilita (vysoké G 0 ) energetický náboj buňky (obvykle 0,8 0,95) [ATP] [ADP] [ATP] + [ADP] + [AMP] adenylátkinasa: ATP + AMP 2 ADP ATP se obnovuje za pomoci ještě exergoničtějších reakcí

14 Spřažené reakce A B G 0 = 16,7 kj mol 1 [B] [A] = K eq = e G RT 0 = 1, A + ATP + H 2 B + ADP + P + H + v rovnováze: K eq = [B] [A] [ADP][ P ] = 2, [ATP] G 0 = 13,8 kj mol 1 [B] [A] = K [ATP] eq [ADP][ P ] = 2, = 1, rovnovážný poměr B/A je 10 8 krát vyšší! hydrolýza n molekul ATP poměr 10 8n krát vyšší!

15 Spotřeba ATP nízkoenergetické fosforylované sloučeniny vzájemné přeměny TP tvorba CTP, GTP, UTP, datp, dctp, dgtp, dttp nukleosiddifosfátkinasa ATP + DP ADP + TP děje založené na konformačních změnách proteinů skládání (folding) proteinů aktivní transport pohyby

16 ATP Vznik ATP substrátová fosforylace oxidační fosforylace (fotofosforylace) adenylátkinasová reakce fosfageny Metabolický obrat ATP průměrný dospělý jedinec v klidu kolem 3 mol h 1 (1,5 kg h 1 ), tj. kolem 40 kg d 1 intenzívní námaha až 0,5 kg min 1

17 Makroergická vazba makroergická vazba neexistuje! fosfoanhydridy rezonanční stabilizace vyšší solvatační energie produktů hydrolýzy elektrostatická repulze P H P H H P P H + P + R + P Překresleno dle Berg, J. M., Tymoczko, Gatto, G. J. Jr., J. L., Stryer, L.: Biochemistry, W. H. Freeman and Company, 2012 (8. vydání) ostatní anhydridy fosfosulfáty, acylfosfáty karbamoylfosfát fosfoguanidiny (fosfageny) fosfokreatin, fosfoarginin enolfosfáty thioestery

18 Makroergické sloučeniny makroergické sloučeniny také neexistují! H 2 P P P H H H 2C C P P H C H + 2 CH 3 CH 2 C H H H H adenosintrifosfát (ATP) acetylfosfát (acylfosfáty) fosfokreatin (fosfamidy) P P H H H H H H adenosindifosfát (ADP) H 2 H 2C P C C fosfoenolpyruvát (enolfosfáty) CoA S CCH 3 acetylkoenzym A (thioestery)

19 Schéma energetického metabolismu aminokyseliny mastné kyseliny β-oxidace cukry glykolýza pyruvát alternativní dráhy ADH AD + ADH AD + fermentační regenerace AD + laktát ethanol propionát butyrát butanol formiát H2 C2 acetát 2,3-butandiol sukcinát oxidační dekarboxylace citrátový cyklus Ac~S CoA Calvinův cyklus C 2 ADH AD + ADPH ADP + ADP respirační řetězec 2 fotosyntetický elektrontransportní řetězec hν ADP ATP oxidační fosforylace H 2 fotofosforylace ATP

20 Konec konec Děkuji za pozornost!

21 Gibbsova energie H S G = H T S + Reakce je výhodná enthalpicky (exotermní) i entropicky. Bude spontánní (exergonická) při jakékoli teplotě. Reakce je enthalpicky výhodná, ale entropicky nevýhodná. Bude spontánní jen při teplotách pod T = H S. + + Reakce je enthalpicky nevýhodná, ale entropicky výhodná. Bude spontánní jen při teplotách nad T = H S. + Reakce je nevýhodná enthalpicky (endotermní) i entropicky. Bude nespontánní (endergonická) při jakékoli teplotě.

22 Změna Gibbsovy energie Sloučenina G 0 f (kj mol 1 ) acetaldehyd 139,7 acetát 369,2 acetyl-coa 374,1 a cis-akonitát 3 920,9 C 2 (g) 394,4 C 2 (aq) 386,2 HC 3 587,1 citrát ,6 dihydroxyaceton ,2 ethanol 181,5 fruktosa 915,4 fruktosa-6-fosfát ,3 fruktosa-1,6-bisfosfát ,8 fumarát 2 604,2 α-d-glukosa 917,2 glukosa-6-fosfát ,3 Slo gly H + H 2 H 2 iso α-k lak l-m H oxa fos 2-f 3-f py suk suk a pro vz

23 Sloučenina G 0 f (kj mol 1 ) glyceraldehyd-3-fosfát ,6 H + 0,0 H 2 (g) 0,0 H 2 (l) 237,2 isocitrát ,0 α-ketoglutarát 2 798,0 laktát 516,6 l-malát 2 845,1 H 157,3 oxalacetát 2 797,2 fosfoenolpyruvát ,5 2-fosfoglycerát ,6 3-fosfoglycerát ,7 pyruvát 474,5 sukcinát 2 690,2 sukcinyl-coa a pro vznik z volných prvků + volného CoA 686,7 a t, D., Voet, J. G.: Biochemistry, John Wiley & Sons, Inc., 2011 (4. vydání)

24 Makroergické sloučeniny dridovými vazbami H 2 fosfoandydridové vazby fosfoesterová vazba P γ P β P α H H H ADP ATP H H H adenosin AMP

25 Makroergická vazba elektrostatická repulze P H P H H P H + P ostatní anhydridy fosfosulfáty, acylfosfáty karbamoylfosfát fosfoguanidiny (fosfageny) fosfokreatin,

26 R P + + P ekresleno dle Berg, J. M., Tymoczko, Gatto,. J. Jr., J. L., Stryer, L.: Biochemistry, W. H. eeman and Company, 2012 (8. vydání)

27

28 Redukovaná forma xidovaná forma E 0 (V) ΔG 0 acetaldehyd acetát -0,60 hodnoty vyšší H 2 2H + -0,42 (reduktans) isocitrát 2-oxoglutarát + C 2-0,38 glutathion-sh glutathion-ss -0,34 ADH + H + AD + -0,32 glyceraldehyd-3-fosfát + H 3P0 4 1,3-bisfosfoglycerát -0,28 FADH 2 FAD -0,20 laktát pyruvát -0,19 malát oxalacetát -0,17 cytochrom b (Fe 2+ ) cytochrom b (Fe 3+ ) 0,00 sukcinát fumarát +0,03 dihydroubichinon ubichinon +0,10 cytochrom c (Fe 2+ ) cytochrom c (Fe 3+ ) +0,26 +ne ne H ,29 + hodnoty H 2 ½ 2 +0,82 (oxidans) nižší exergonický děj endergonický děj

29 aminokyseliny mastné kyseliny β-oxidace cukry glykolýza pyruvát alternativní dráhy ADH AD + ADH AD + fermentační regenerace AD + laktát ethanol propionát butyrát butanol formiát H2 C2 acetát 2,3-butandiol sukcinát oxidační dekarboxylace citrátový cyklus Ac~S CoA Calvinův cyklus C 2 ADH AD + ADPH ADP + ADP respirační řetězec 2 fotosyntetický elektrontransportní řetězec hν ADP ATP oxidační fosforylace H 2 fotofosforylace ATP

Citrátový cyklus. Tomáš Kučera.

Citrátový cyklus. Tomáš Kučera. itrátový cyklus Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017 Schéma energetického

Více

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie

Více

Bioenergetika Bioenergetics

Bioenergetika Bioenergetics Bioenergetika Bioenergetics Tomáš Kučera 2012 Tisková verze Print version Prezentace Presentation Bioenergetika Slide 1a Bioenergetika Bioenergetika Slide 1b Bioenergetika jak organismy získávají, přeměňují,

Více

16a. Makroergické sloučeniny

16a. Makroergické sloučeniny 16a. Makroergické sloučeniny Makroergickými sloučeninami v biochemii nazýváme skupinu látek umožňujících uvolnění značného množství energie v jednoduché reakci. Nelze je definovat prostě jako sloučeniny

Více

03a-Chemické reakce v živých organizmech FRVŠ 1647/2012

03a-Chemické reakce v živých organizmech FRVŠ 1647/2012 C3181 Biochemie I 03a-Chemické reakce v živých organizmech FRVŠ 1647/2012 Petr Zbořil 9/23/2014 1 Obsah Obecné rysy metabolismu Chemické reakce a jejich energetika Makroergické sloučeniny Petr Zbořil 9/23/2014

Více

Bioenergetika Bioenergetics

Bioenergetika Bioenergetics Bioenergetika Bioenergetics Tomáš Kučera 2011 Tisková verze Print version Prezentace Presentation Bioenergetika Slide 1a Bioenergetika Bioenergetika Slide 1b Bioenergetika jak organismy získávají, přeměňují,

Více

CZ.1.07/2.2.00/ Obecný metabolismus. Energetický metabolismus (obecně) (1).

CZ.1.07/2.2.00/ Obecný metabolismus. Energetický metabolismus (obecně) (1). mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 becný metabolismus Energetický metabolismus (obecně) (1). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.

Více

Biologické redoxní děje Biological redox processes. Tisková verze Print version Prezentace Presentation

Biologické redoxní děje Biological redox processes. Tisková verze Print version Prezentace Presentation Biologické redoxní děje Biological redox processes Tomáš Kučera 2011 Tisková verze Print version Prezentace Presentation Biologické redoxní děje Slide 1a Biologické redoxní děje Biologické redoxní děje

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy

9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy 9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy Obtížnost A Vyjmenujte kofaktory, které využívá multienzymový komplex pyruvátdehydrogenasy; které z nich řadíme mezi koenzymy

Více

Metabolismus. - soubor všech chemických reakcí a příslušných fyzikálních procesů, které souvisejí s aktivními projevy života daného organismu

Metabolismus. - soubor všech chemických reakcí a příslušných fyzikálních procesů, které souvisejí s aktivními projevy života daného organismu Metabolismus Obecné znaky metabolismu Získání a využití energie - bioenergetika Buněčné dýchání (glykolysa + CKC + oxidativní fosforylace) Biosynthesa sacharidů + fotosynthesa Metabolismus lipidů Metabolismus

Více

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje

Více

Metabolismus. Source:

Metabolismus. Source: Source: http://www.roche.com/ http://www.expasy.org/ Metabolismus Source: http://www.roche.com/sustainability/for_communities_and_environment/philanthropy/science_education/pathways.htm Metabolismus -

Více

- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím

- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím Otázka: Obecné rysy metabolismu Předmět: Chemie Přidal(a): Bára V. ZÁKLADY LÁTKOVÉHO A ENERGETICKÉHO METABOLISMU - metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Informace Seminář z biochemie II Laboratorní cvičení z biochemie

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Informace Seminář z biochemie II Laboratorní cvičení z biochemie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Informace Seminář z biochemie II Laboratorní cvičení z biochemie Pravidla pro udělení klasifikovaného zápočtu ze Semináře z Biochemie

Více

Buněčný metabolismus. J. Vondráček

Buněčný metabolismus. J. Vondráček Buněčný metabolismus J. Vondráček Téma přednášky BUNĚČNÝ METABOLISMUS základní dráhy energetického metabolismu buňky a dynamická podstata jejich regulací glykolýza, citrátový cyklus a oxidativní fosforylace,

Více

Bp1252 Biochemie. #8 Metabolismus živin

Bp1252 Biochemie. #8 Metabolismus živin Bp1252 Biochemie #8 Metabolismus živin Chemické reakce probíhající v organismu Katabolické reakce přeměna složitějších látek na jednoduché, jsou většinou exergonické. Anabolické reakce syntéza složitějších

Více

Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa

Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa 8. Dýchací řetězec a fotosyntéza Obtížnost A Pomocí následující tabulky charakterizujte jednotlivé složky mitochondriálního dýchacího řetězce. SLOŽKA Pořadí v dýchacím řetězci 1) Molekulový typ 2) Charakteristika

Více

MitoSeminář II: Trochu výpočtů v bioenergetice. Souhrn. MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK

MitoSeminář II: Trochu výpočtů v bioenergetice. Souhrn. MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK MitoSeminář II: Trochu výpočtů v bioenergetice MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK (se zahrnutím cenných připomínek, kterými přispěl prof. MUDr. Jiří Kraml, DrSc.) 1 Dýchacířet etězec

Více

ANABOLISMUS SACHARIDŮ

ANABOLISMUS SACHARIDŮ zdroj sacharidů: autotrofní org. produkty fotosyntézy heterotrofní org. příjem v potravě důležitou roli hraje GLUKÓZA METABOLISMUS SACHARIDŮ ANABOLISMUS SACHARIDŮ 1. FOTOSYNTÉZA autotrofní org. 2. GLUKONEOGENEZE

Více

Didaktické testy z biochemie 2

Didaktické testy z biochemie 2 Didaktické testy z biochemie 2 Metabolismus Milada Roštejnská Helena Klímová br. 1. Schéma metabolismu Zažívací trubice Sacharidy Bílkoviny Lipidy Ukládány jako glykogen v játrech Ukládány Ukládány jako

Více

Metabolismus krok za krokem - volitelný předmět -

Metabolismus krok za krokem - volitelný předmět - Metabolismus krok za krokem - volitelný předmět - Vladimíra Kvasnicová pracovna: 411, tel. 267 102 411, vladimira.kvasnicova@lf3.cuni.cz informace, studijní materiály: http://vyuka.lf3.cuni.cz Sylabus

Více

Úvod do buněčného metabolismu Citrátový cyklus. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK

Úvod do buněčného metabolismu Citrátový cyklus. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK Úvod do buněčného metabolismu Citrátový cyklus Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK METABOLISMUS = přeměna látek v organismu - má stránku chemickou (látkovou) - reakce anabolické

Více

33.Krebsův cyklus. AZ Smart Marie Poštová

33.Krebsův cyklus. AZ Smart Marie Poštová 33.Krebsův cyklus AZ Smart Marie Poštová m.postova@gmail.com Metabolismus Metabolismus je souhrn chemických reakcí v organismu. Základní metabolické děje jsou: a) katabolické odbourávací (složité látky

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

Metabolismus mikroorganismů

Metabolismus mikroorganismů Metabolismus mikroorganismů Metabolismus organismů Souvisí s metabolismem polysacharidů, bílkovin, nukleových kyselin a lipidů Cytoplazma, mitochondrie (matrix, membrána) H 3 PO 4 Polysacharidy Pentózový

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Energetika a metabolismus buňky

Energetika a metabolismus buňky Předmět: KBB/BB1P Energetika a metabolismus buňky Cíl přednášky: seznámit posluchače s tím, jak buňky získávají energii k životu a jak s ní hospodaří Klíčová slova: energetika buňky, volná energie, enzymy,

Více

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu Enzymy Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech z chemického hlediska jednoduché nebo

Více

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza

Více

Citrátový cyklus a Dýchací řetězec. Milada Roštejnská Helena Klímová

Citrátový cyklus a Dýchací řetězec. Milada Roštejnská Helena Klímová Citrátový cyklus a Dýchací řetězec Milada oštejnská elena Klímová 1 bsah 1 Citrátový cyklus Citrátový cyklus (reakce) Citrátový cyklus (schéma) espirace (dýchání) Vnější a vnitřní respirace Dýchací řetězec

Více

Katabolismus - jak budeme postupovat

Katabolismus - jak budeme postupovat Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve

Více

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy JAN ILLNER Dýchací řetězec & oxidativní fosforylace Tvorba energie v živých systémech ATP zdroj E pro biochemické procesy Tvorba

Více

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu

1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu Test pro přijímací řízení magisterské studium Biochemie 2018 1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

Intermediární metabolismus. Vladimíra Kvasnicová

Intermediární metabolismus. Vladimíra Kvasnicová Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,

Více

Brno e) Správná odpověď není uvedena. c) KHPO4. e) Správná odpověď není uvedena. c) 49 % e) Správná odpověď není uvedena.

Brno e) Správná odpověď není uvedena. c) KHPO4. e) Správná odpověď není uvedena. c) 49 % e) Správná odpověď není uvedena. Brno 2019 1. Vyberte vzoreček hydrogenfosforečnanu draselného. a) K2HP4 d) K3P4 b) K(HP4)2 c) KHP4 2. Vyjádřete hmotnostní procenta síry v kyselině thiosírové. Ar(S) = 32, Ar() = 16, Ar(H) = 1 a) 28 %

Více

Energetika chemických reakcí

Energetika chemických reakcí Energetika chemických reakcí Bioenergetika Kinetika Biochemický ústav LF MU (J.D.) 2013 1 Základní pojmy Systém - část prostoru oddělená od svého okolí izolovaný žádná komunikace s okolím uzavřený výměna

Více

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD Ukázky z pracovních listů z biochemie pro SŠ A ÚVD 1) Doplň chybějící údaje. Jak se značí makroergní vazba? Kolik je v ATP makroergních vazeb? Co je to ADP Kolik je v ADP makroergních vazeb 1) Pojmenuj

Více

Oxidace a redukce. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2. Redukce = odebrání kyslíku

Oxidace a redukce. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2. Redukce = odebrání kyslíku Oxidace a redukce Hoření = slučování s kyslíkem = oxidace 2 Mg + O 2 2 MgO S + O 2 SO 2 Redukce = odebrání kyslíku Fe 2 O 3 + 3 C 2 Fe + 3 CO CuO + H 2 Cu + H 2 O 1 Oxidace a redukce Širší pojem oxidace

Více

AMPK AMP) Tomáš Kuc era. Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze

AMPK AMP) Tomáš Kuc era. Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze AMPK (KINASA AKTIVOVANÁ AMP) Tomáš Kuc era Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze 2013 AMPK PROTEINKINASA AKTIVOVANÁ AMP přítomna ve všech eukaryotních

Více

Biosyntéza sacharidů 1

Biosyntéza sacharidů 1 Biosyntéza sacharidů 1 S a c h a r id y p o tr a v y (š k r o b, g ly k o g e n, sa c h a r o sa, a j.) R e z e r v n í p o ly sa c h a r id y J in é m o n o sa c h a r id y Trávení (amylásy - sliny, pankreas)

Více

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,

Více

součástí našeho každodenního života spalování paliv koroze kovů ad.

součástí našeho každodenního života spalování paliv koroze kovů ad. Oxidace a redukce Srážecí rovnováhy, součin rozpustnosti Biochemický ústav LF MU (E.T.) 2013 1 Význam oxidačně-redukčních reakcí Oxidačně-redukční (redoxní) reakce jsou součástí našeho každodenního života

Více

součástí našeho každodenního života spalování paliv koroze kovů ad.

součástí našeho každodenního života spalování paliv koroze kovů ad. Oxidace a redukce Biochemický ústav LF MU (E.T.) 2012 1 Význam oxidačně-redukčních reakcí Oxidačně-redukční (redoxní) reakce jsou součástí našeho každodenního života metabolismus živin fotosyntéza buněčná

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Glykolýza a neoglukogenese

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Glykolýza a neoglukogenese Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Glykolýza a neoglukogenese z řečtiny glykos sladký, lysis uvolňování sled metabolických reakcí od glukosy přes fruktosa-1,6-bisfosfát

Více

[ ] d[ Y] rychlost REAKČNÍ KINETIKA X Y

[ ] d[ Y] rychlost REAKČNÍ KINETIKA X Y REAKČNÍ KINETIKA Faktory ovlivňující rychlost chemických reakcí Chemická povaha reaktantů - reaktivita Fyzikální stav reaktantů homogenní vs. heterogenní reakce Teplota 10 C zvýšení rychlosti 2x 3x zýšení

Více

Oxidace a redukce. Objev kyslíku nový prvek, vyvrácení flogistonové teorie. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2

Oxidace a redukce. Objev kyslíku nový prvek, vyvrácení flogistonové teorie. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2 Oxidace a redukce Objev kyslíku nový prvek, vyvrácení flogistonové teorie Hoření = slučování s kyslíkem = oxidace 2 Mg + O 2 2 MgO S + O 2 SO 2 Lavoisier Redukce = odebrání kyslíku Fe 2 O 3 + 3 C 2 Fe

Více

Integrace metabolických drah v organismu. Zdeňka Klusáčková

Integrace metabolických drah v organismu. Zdeňka Klusáčková Integrace metabolických drah v organismu Zdeňka Klusáčková Hydrolýza a resorpce základních složek potravy Přehled hlavních metabolických drah Biochemie výživy A) resorpční fáze (přísun živin) glukóza hlavní

Více

Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová

Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová Vyberte esenciální aminokyseliny a) Asp, Glu b) Val, Leu, Ile c) Ala, Ser, Gly d) Phe, Trp Vyberte esenciální aminokyseliny a) Asp,

Více

Dýchací řetězec (DŘ)

Dýchací řetězec (DŘ) Dýchací řetězec (DŘ) Vladimíra Kvasnicová animace na internetu: http://vcell.ndsu.nodak.edu/animations/etc/index.htm http://vcell.ndsu.nodak.edu/animations/atpgradient/index.htm http://www.wiley.com/college/pratt/0471393878/student/animations/oxidative_phosphorylation/index.html

Více

Regulace metabolických drah na úrovni buňky

Regulace metabolických drah na úrovni buňky Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace

Více

Redoxní děj v neživých a živých soustavách

Redoxní děj v neživých a živých soustavách Enzymy Enzymy Katalyzují chemické reakce, kdy se mění substrát na produkt Katalytickým působením se snižuje aktivační energie reagujících molekul substrátu, tím se reakce urychlí Za přítomnosti enzymu

Více

Odbourávání a syntéza glukózy

Odbourávání a syntéza glukózy Odbourávání a syntéza glukózy Josef Fontana EB - 54 Obsah přednášky Glukóza význam glukózy pro buňku, glykémie role glukózy v metabolismu transport glukózy přes buněčné membrány enzymy fosforylující a

Více

Přednáška 6: Respirace u rostlin

Přednáška 6: Respirace u rostlin Přednáška 6: Respirace u rostlin co vás v s dnes čeká: Co rostliny získávají respirací Procesy respirace: glykolýza Krebsův cyklus dýchací řetězec oxidativní fosforylace faktory ovlivňující rychlost respirace

Více

Přehled energetického metabolismu

Přehled energetického metabolismu Přehled energetického metabolismu Josef Fontana EB 40 Obsah přednášky Důležité termíny energetického metabolismu Základní schéma energetického metabolismu Hlavní metabolické dráhy energetického metabolismu

Více

FOTOSYNTÉZA. Princip, jednotlivé fáze

FOTOSYNTÉZA. Princip, jednotlivé fáze FOTOSYNTÉZA Princip, jednotlivé fáze FOTOSYNTETICKÉ PIGMENTY - chlorofyl a modrozelený - chlorofyl b žlutozelený + karoteny, xantofyly žluté a oranžové zbarvení CHLOROFYL a, b CHLOROFYL a - nejdůležitější

Více

B4, 2007/2008, I. Literák

B4, 2007/2008, I. Literák B4, 2007/2008, I. Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují pořádek ve světě, který spěje k čím dál většímu chaosu Druhá věta termodynamiky: Ve vesmíru nebo jakékoliv izolované

Více

je část změny celkové energie schopná konat práci, když systém směřuje k rovnováze (za konstantního P a T). aa + bb cc + dd.

je část změny celkové energie schopná konat práci, když systém směřuje k rovnováze (za konstantního P a T). aa + bb cc + dd. BIOENERGETIA Základním znakem živých organismů je vysoký stupeň organisovanosti. Ve sání s okolím mají vysoký stupeň strukturní uspořádanosti. To se týká i energetického aparátu. Živý organismus je otevřeným

Více

Biochemicky významné sloučeniny a reakce - testík na procvičení

Biochemicky významné sloučeniny a reakce - testík na procvičení Biochemicky významné sloučeniny a reakce - testík na procvičení Vladimíra Kvasnicová Vyberte pravdivé(á) tvrzení o heterocyklech: a) pyrrol je součástí struktury hemu b) indol je součástí struktury histidinu

Více

Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K

Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K Test pro přijímací řízení magisterské studium Biochemie 2017 1. Napište vzorce aminokyselin Q a K Dále zakroužkujte správné tvrzení (pouze jedna správná odpověď) 2. Enzym tyrozinkinasu řadíme do třídy

Více

Enzymologie. Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar. akad. rok 2017/2018

Enzymologie. Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar. akad. rok 2017/2018 Enzymologie Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar akad. rok 2017/2018 Osnova I. Základní principy enzymových reakcí II. Termodynamické a kinetické aspekty enzymové

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

E ŘEŠENÍ KONTROLNÍHO TESTU ŠKOLNÍHO KOLA

E ŘEŠENÍ KONTROLNÍHO TESTU ŠKOLNÍHO KOLA Ústřední komise Chemické olympiády 48. ročník 2011/2012 ŠKOLNÍ KOLO kategorie A a E ŘEŠENÍ KONTROLNÍ TESTU ŠKOLNÍ KOLA KONTROLNÍ TEST ŠKOLNÍ KOLA (60 BODŮ) ANORGANICKÁ CEMIE 16 BODŮ Úloha 1 8 bodů Napište

Více

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík, DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické

Více

FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi

FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi Fotosyntéza FOTOSYNTÉZA soubor chemických reakcí,, probíhaj hajících ch v rostlinách a sinicích ch zachycení a využit ití sluneční energie k tvorbě složitých chemických sloučenin z CO2 a vody jediný zdroj

Více

Sacharidy a polysacharidy (struktura a metabolismus)

Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABLISMUS SAHARIDŮ GLUKNEGENEZE GLUKNEGENEZE entrální úloha glukosy Palivo Prekursor strukturních sacharidů a jiných molekul Syntéza glukosy z necukerných prekurzorů Laktát Aminokyseliny (uhlíkatý řetězec

Více

NUKLEOTID U. Tomáš Kučera.

NUKLEOTID U. Tomáš Kučera. METABLISMUS UKLETID U Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017 UKLETIDY nukleotid

Více

13 Oxidačně redukční reakce

13 Oxidačně redukční reakce 13 Oxidačně redukční reakce Oxidaci a redukci ve smyslu elektronových představ chápeme jako odevzdávání a přibírání elektronů. Kdykoliv se nějaká látka (atom, molekula, ion) oxiduje, odevzdává elektrony

Více

35.Fotosyntéza. AZ Smart Marie Poštová

35.Fotosyntéza. AZ Smart Marie Poštová 35.Fotosyntéza AZ Smart Marie Poštová m.postova@gmail.com Fotosyntéza - úvod Syntéza glukosy redukcí CO 2 : chlorofyl + slun.zareni 6 CO 2 + 12H 2 O C 6 H 12 O 6 + 6O 2 + 6H 2 O (Kyslík vzniká fotolýzou

Více

Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová

Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba

Více

Trávení a metabolismus

Trávení a metabolismus Trávení a metabolismus Milada Roštejnská elena Klímová br. 1. Proces vylučování [1] 1 bsah (1. část) Zařazení člověka podle metabolismu Potrava sud potravy v lidském těle Trávení (obecně) Trávení sacharidů

Více

pátek, 24. července 15 GLYKOLÝZA

pátek, 24. července 15 GLYKOLÝZA pátek,. července 15 GLYKLÝZ sacharosa threalosa laktosa sacharasa threlasa laktasa D-glukosa D-fruktosa T T hexokinasa T hexokinasa glykogen - škrob fosforylasa D-galaktosa UD-galaktosa UD-glukosa fruktokinasa

Více

12. Elektrochemie základní pojmy

12. Elektrochemie základní pojmy Důležité veličiny Elektroda, článek Potenciometrie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Důležité veličiny proud I (ampér - A) náboj Q (coulomb - C) Q t 0 I dt napětí, potenciál

Více

Biochemicky významné reakce. Biochemický ústav LF MU (J.D.) 2013

Biochemicky významné reakce. Biochemický ústav LF MU (J.D.) 2013 Biochemicky významné reakce Biochemický ústav LF MU (J.D.) 2013 1 Vzájemné reakce vybraných sloučenin Kyselina Aldehyd Thiol Alkohol Alkohol ester poloacetal - ether Thiol thioester thiopoloacetal sulfid

Více

Centrální dogma molekulární biologie

Centrální dogma molekulární biologie řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových

Více

Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno:

Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno: Bruno Sopko Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno: Z předchozí rovnice vyplývá: Pokud katalýza při 25

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Transport elektronů a oxidativní fosforylace Oxidativní fosforylace vs. fotofosforylace vyvrcholení katabolismu Všechny oxidační degradace

Více

Propojení metabolických drah. Alice Skoumalová

Propojení metabolických drah. Alice Skoumalová Propojení metabolických drah Alice Skoumalová Metabolické stavy 1. Resorpční fáze po dobu vstřebávání živin z GIT (~ 2 h) glukóza je hlavní energetický zdroj 2. Postresorpční fáze mezi jídly (~ 2 h po

Více

Efektivní adaptace začínajících učitelů na požadavky školské praxe

Efektivní adaptace začínajících učitelů na požadavky školské praxe Mezipředmětová integrace tělesná výchova biologie chemie Biochemie pro učitele tělesné výchovy III.: aerobní metabolismus (průvodce studiem) Filip Neuls, Ph.D. Průvodce studiem Z pohledu tělesného zatížení

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotosyntéza Fotosyntéza pohlcení energie slunečního záření a její přeměna na chemickou energii rovnováha fotosyntetisujících a heterotrofních

Více

NaLékařskou.cz Přijímačky nanečisto

NaLékařskou.cz Přijímačky nanečisto alékařskou.cz Chemie 2016 1) Vyberte vzorec dichromanu sodného: a) a(cr 2 7) 2 b) a 2Cr 2 7 c) a(cr 2 9) 2 d) a 2Cr 2 9 2) Vypočítejte hmotnostní zlomek dusíku v indolu. a) 0,109 b) 0,112 c) 0,237 d) 0,120

Více

Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Intermediární metabolizmus a energetická homeostáza

Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Intermediární metabolizmus a energetická homeostáza 1 Intermediární metabolizmus a energetická homeostáza Biologické oxidace Dýchací řetězec a oxidativní fosforylace Krebsův cyklus Přehled intermediárního metabolizmu studuje změny energie provázející chemické

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Citrátový cyklus. VY_32_INOVACE_Ch0218.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Citrátový cyklus. VY_32_INOVACE_Ch0218. Vzdělávací materiál vytvořený v projektu P VK ázev školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: ázev projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Základní chemické výpočty I

Základní chemické výpočty I Základní chemické výpočty I Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017 Relativní

Více

Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa

Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa Konsultační hodina základy biochemie pro 1. ročník Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa Přírodní látky 1 Co to je? Cukry (Sacharidy) Organické látky,

Více

12-Fotosyntéza FRVŠ 1647/2012

12-Fotosyntéza FRVŠ 1647/2012 C3181 Biochemie I 12-Fotosyntéza FRVŠ 1647/2012 Petr Zbořil 10/6/2014 1 Obsah Fotosyntéza, světelná fáze. Chlorofyly, struktura fotosyntetického centra. Komponenty přenosu elektronů (cytochromy, chinony,

Více

Energetický metabolismus rostlin

Energetický metabolismus rostlin Energetický metabolismus rostlin Sylabus - témata (Fischer, Šantrůček) 1. Základy energetiky v živých systémech Formy energie a základní principy přeměny energií; změny volné energie, rovnovážná konstanta,

Více

Základy biochemie KBC/BCH

Základy biochemie KBC/BCH ÚVOD Základy biochemie KBC/BCH Přednáška 4 h, Út, Pá od 8:00 do 9:30 Počet kreditů - 4 Materiály budou na webu KBC Další výukové materiály http://ibiochemie.upol.cz Zkouška písemná předtermíny v týdnu

Více

9. Dýchací řetězec a oxidativní fosforylace. mitochondriální syntéza ATP a fotosyntéza

9. Dýchací řetězec a oxidativní fosforylace. mitochondriální syntéza ATP a fotosyntéza 9. Dýchací řetězec a oxidativní fosforylace mitochondriální syntéza ATP a fotosyntéza CHEMIOSMOTICKÁ TEORIE SYNTÉZY ATP Heterotrofní organismy získávají hlavní podíl energie (cca 90%) uložené ve struktuře

Více

Respirace - buněčné dýchání (katabolismus)

Respirace - buněčné dýchání (katabolismus) Respirace - buněčné dýchání (katabolismus) Schéma základního energetického metabolismu rostlinné buňky Fotosyntéza Fotochemie Calvinův cyklus Respirace Glykolýza (+ β-oxidace, ) Krebsův cyklus Dýchací

Více

Energetický metabolismus rostlin

Energetický metabolismus rostlin Energetický metabolismus rostlin Sylabus - témata (Fischer, Duchoslav) 1. Energie v živých systémech Formy energie a základní principy přeměny energií; změny volné energie, rovnovážná konstanta, spřažení

Více

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák BUŇKA A ENERGIE kajman brýlový Caiman crocodilus Kostarika, 2004 Biologie 8, 2017/2018, Ivan Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují POŘÁDEK VE SVĚTĚ, KTERÝ SPĚJE K ČÍM

Více

Stanovení vybraných enzymů. Roman Kanďár

Stanovení vybraných enzymů. Roman Kanďár Stanovení vybraných enzymů Roman Kanďár Takže prvně malé opakování ENZYM Protein (RNA) s katalytickou aktivitou Protein (RNA) kofaktor (prosthetická skupina, koenzym) Jaký je vlastně rozdíl mezi prosthetickou

Více