Bioenergetika Bioenergetics

Rozměr: px
Začít zobrazení ze stránky:

Download "Bioenergetika Bioenergetics"

Transkript

1 Bioenergetika Bioenergetics Tomáš Kučera 2011 Tisková verze Print version Prezentace Presentation

2 Bioenergetika Slide 1a Bioenergetika

3 Bioenergetika Slide 1b Bioenergetika jak organismy získávají, přeměňují, ukládají a využívají energii

4 Bioenergetika Slide 2a Termodynamika

5 Bioenergetika Slide 2b Termodynamika vzájemné přeměny různých druhů energie směřování fyzikálních a chemických pochodů měřítko samovolnosti (uskutečnitelnosti dějů) rovnovážné stavy

6 Bioenergetika Slide 2c Termodynamika vzájemné přeměny různých druhů energie směřování fyzikálních a chemických pochodů měřítko samovolnosti (uskutečnitelnosti dějů) rovnovážné stavy Základní pojmy

7 Bioenergetika Slide 2d Termodynamika vzájemné přeměny různých druhů energie směřování fyzikálních a chemických pochodů měřítko samovolnosti (uskutečnitelnosti dějů) rovnovážné stavy Základní pojmy systém (soustava) libovolná část prostoru uvažovaná odděleně od okolí

8 Bioenergetika Slide 2e Termodynamika vzájemné přeměny různých druhů energie směřování fyzikálních a chemických pochodů měřítko samovolnosti (uskutečnitelnosti dějů) rovnovážné stavy Základní pojmy systém (soustava) libovolná část prostoru uvažovaná odděleně od okolí izolovaný nevyměňuje s okolím hmotu ani energii uzavřený vyměňuje s okolím jen energii, nikoli hmotu otevřený vyměňuje s okolím hmotu i energii

9 Bioenergetika Slide 2f Termodynamika vzájemné přeměny různých druhů energie směřování fyzikálních a chemických pochodů měřítko samovolnosti (uskutečnitelnosti dějů) rovnovážné stavy Základní pojmy systém (soustava) libovolná část prostoru uvažovaná odděleně od okolí izolovaný nevyměňuje s okolím hmotu ani energii uzavřený vyměňuje s okolím jen energii, nikoli hmotu otevřený vyměňuje s okolím hmotu i energii ŽIVÉ SYSTÉMY JSOU VŽDY OTEVŘENÉ!

10 Bioenergetika Slide 2g Termodynamika vzájemné přeměny různých druhů energie směřování fyzikálních a chemických pochodů měřítko samovolnosti (uskutečnitelnosti dějů) rovnovážné stavy Základní pojmy systém (soustava) libovolná část prostoru uvažovaná odděleně od okolí izolovaný nevyměňuje s okolím hmotu ani energii uzavřený vyměňuje s okolím jen energii, nikoli hmotu otevřený vyměňuje s okolím hmotu i energii okolí zbytek vesmíru ŽIVÉ SYSTÉMY JSOU VŽDY OTEVŘENÉ!

11 Bioenergetika Slide 3a První věta termodynamiky

12 Bioenergetika Slide 3b První věta termodynamiky Energii nelze vytvořit ani zničit.

13 Bioenergetika Slide 3c První věta termodynamiky Energii nelze vytvořit ani zničit. U = U konečná U počáteční = Q W U vnitřní energie soustavy Q teplo přijaté soustavou od okolí W práce vykonaná soustavou na okolí

14 Bioenergetika Slide 3d První věta termodynamiky Energii nelze vytvořit ani zničit. U = U konečná U počáteční = Q W U vnitřní energie soustavy Q teplo přijaté soustavou od okolí W práce vykonaná soustavou na okolí izochorický děj (V = konst.)

15 Bioenergetika Slide 3e První věta termodynamiky Energii nelze vytvořit ani zničit. U = U konečná U počáteční = Q W U vnitřní energie soustavy Q teplo přijaté soustavou od okolí W práce vykonaná soustavou na okolí izochorický děj (V = konst.) W = p dv U = Q V

16 Bioenergetika Slide 3f První věta termodynamiky Energii nelze vytvořit ani zničit. U = U konečná U počáteční = Q W U vnitřní energie soustavy Q teplo přijaté soustavou od okolí W práce vykonaná soustavou na okolí izochorický děj (V = konst.) izobarický děj (p = konst.) W = p dv U = Q V

17 Bioenergetika Slide 3g První věta termodynamiky Energii nelze vytvořit ani zničit. U = U konečná U počáteční = Q W U vnitřní energie soustavy Q teplo přijaté soustavou od okolí W práce vykonaná soustavou na okolí izochorický děj (V = konst.) izobarický děj (p = konst.) W = p dv U = Q V U = Q p (pv) U + pv = H H = (U + pv) = Q p p tlak, V objem, H enthalpie

18 Bioenergetika Slide 4a Druhá věta termodynamiky

19 Bioenergetika Slide 4b Druhá věta termodynamiky Nelze sestrojit periodicky pracující tepelný stroj, který by dodával okolí práci na úkor tepla odebíraného jedinému tepelnému rezervoáru.

20 Bioenergetika Slide 4c Druhá věta termodynamiky Nelze sestrojit periodicky pracující tepelný stroj, který by dodával okolí práci na úkor tepla odebíraného jedinému tepelnému rezervoáru. Teplo nemůže při styku dvou těles různých teplot samovolně přecházet z tělesa chladnějšího na těleso teplejší.

21 Bioenergetika Slide 4d Druhá věta termodynamiky Nelze sestrojit periodicky pracující tepelný stroj, který by dodával okolí práci na úkor tepla odebíraného jedinému tepelnému rezervoáru. Teplo nemůže při styku dvou těles různých teplot samovolně přecházet z tělesa chladnějšího na těleso teplejší. dq T 0

22 Bioenergetika Slide 4e Druhá věta termodynamiky Nelze sestrojit periodicky pracující tepelný stroj, který by dodával okolí práci na úkor tepla odebíraného jedinému tepelnému rezervoáru. Teplo nemůže při styku dvou těles různých teplot samovolně přecházet z tělesa chladnějšího na těleso teplejší. dq T 0 entropie S = Q T

23 Bioenergetika Slide 4f Druhá věta termodynamiky Nelze sestrojit periodicky pracující tepelný stroj, který by dodával okolí práci na úkor tepla odebíraného jedinému tepelnému rezervoáru. Teplo nemůže při styku dvou těles různých teplot samovolně přecházet z tělesa chladnějšího na těleso teplejší. dq T 0 entropie S = Q T S = k lnp

24 Bioenergetika Slide 4g Druhá věta termodynamiky Nelze sestrojit periodicky pracující tepelný stroj, který by dodával okolí práci na úkor tepla odebíraného jedinému tepelnému rezervoáru. Teplo nemůže při styku dvou těles různých teplot samovolně přecházet z tělesa chladnějšího na těleso teplejší. dq T 0 entropie S = Q T S = k lnp ukazatel samovolnosti děje v adiabaticky izolovaných soustavách

25 Bioenergetika Slide 4h Druhá věta termodynamiky Nelze sestrojit periodicky pracující tepelný stroj, který by dodával okolí práci na úkor tepla odebíraného jedinému tepelnému rezervoáru. Teplo nemůže při styku dvou těles různých teplot samovolně přecházet z tělesa chladnějšího na těleso teplejší. dq T 0 entropie S = Q T S = k lnp ukazatel samovolnosti děje v adiabaticky izolovaných soustavách S soustava + S okolí = S vesmír > 0

26 Bioenergetika Slide 5a Gibbsova (volná) energie G = H TS G = H T S = Q p T S

27 Bioenergetika Slide 5b Gibbsova (volná) energie G = H TS G = H T S = Q p T S koná-li systém práci, je G = Q p T S + W T S Q p G W

28 Bioenergetika Slide 5c Gibbsova (volná) energie G = H TS G = H T S = Q p T S koná-li systém práci, je G = Q p T S + W T S Q p G W v biol. systému objemová práce zanedbatelná G = max. práce

29 Bioenergetika Slide 5d Gibbsova (volná) energie G = H TS G = H T S = Q p T S koná-li systém práci, je G = Q p T S + W T S Q p G W v biol. systému objemová práce zanedbatelná G = max. práce reálný děj není nikdy reversibilní G < W Práci vloženou do systému nelze celou získat zpět.

30 Bioenergetika Slide 5e Gibbsova (volná) energie G = H TS G = H T S = Q p T S koná-li systém práci, je G = Q p T S + W T S Q p G W v biol. systému objemová práce zanedbatelná G = max. práce reálný děj není nikdy reversibilní G < W Práci vloženou do systému nelze celou získat zpět. Úbytek G je roven maximální práci, kterou může systém odevzdat při izotermicko-izobarickém ději do okolí.

31 Bioenergetika Slide 5f Gibbsova (volná) energie G = H TS G = H T S = Q p T S koná-li systém práci, je G = Q p T S + W T S Q p G W v biol. systému objemová práce zanedbatelná G = max. práce reálný děj není nikdy reversibilní G < W Práci vloženou do systému nelze celou získat zpět. Úbytek G je roven maximální práci, kterou může systém odevzdat při izotermicko-izobarickém ději do okolí. rovnováha: G = 0

32 Bioenergetika Slide 5g Gibbsova (volná) energie G = H TS G = H T S = Q p T S koná-li systém práci, je G = Q p T S + W T S Q p G W v biol. systému objemová práce zanedbatelná G = max. práce reálný děj není nikdy reversibilní G < W Práci vloženou do systému nelze celou získat zpět. Úbytek G je roven maximální práci, kterou může systém odevzdat při izotermicko-izobarickém ději do okolí. rovnováha: G = 0 samovolný (exergonický) děj: G < 0 (může konat práci)

33 Bioenergetika Slide 5h Gibbsova (volná) energie G = H TS G = H T S = Q p T S koná-li systém práci, je G = Q p T S + W T S Q p G W v biol. systému objemová práce zanedbatelná G = max. práce reálný děj není nikdy reversibilní G < W Práci vloženou do systému nelze celou získat zpět. Úbytek G je roven maximální práci, kterou může systém odevzdat při izotermicko-izobarickém ději do okolí. rovnováha: G = 0 samovolný (exergonický) děj: G < 0 (může konat práci) endergonický děj: G > 0

34 Bioenergetika Slide 6a Gibbsova energie jeden z tzv. termodynamických potenciálů

35 Bioenergetika Slide 6b Gibbsova energie jeden z tzv. termodynamických potenciálů žádná informace o rychlosti ta dána mechanismem

36 Bioenergetika Slide 6c Gibbsova energie jeden z tzv. termodynamických potenciálů žádná informace o rychlosti ta dána mechanismem (ne)možnost děje dána jen počátečním a konečným stavem

37 Bioenergetika Slide 6d Gibbsova energie jeden z tzv. termodynamických potenciálů žádná informace o rychlosti ta dána mechanismem (ne)možnost děje dána jen počátečním a konečným stavem katalyzátor (enzym) může urychlit dosažení rovnováhy, ale ne změnit její stav

38 Bioenergetika Slide 6e Gibbsova energie jeden z tzv. termodynamických potenciálů žádná informace o rychlosti ta dána mechanismem (ne)možnost děje dána jen počátečním a konečným stavem katalyzátor (enzym) může urychlit dosažení rovnováhy, ale ne změnit její stav možnost spřažení

39 Bioenergetika Slide 6f Gibbsova energie jeden z tzv. termodynamických potenciálů žádná informace o rychlosti ta dána mechanismem (ne)možnost děje dána jen počátečním a konečným stavem katalyzátor (enzym) může urychlit dosažení rovnováhy, ale ne změnit její stav možnost spřažení závisí na teplotě: rovnováha: T = H S

40 Bioenergetika Slide 6g Gibbsova energie jeden z tzv. termodynamických potenciálů žádná informace o rychlosti ta dána mechanismem (ne)možnost děje dána jen počátečním a konečným stavem katalyzátor (enzym) může urychlit dosažení rovnováhy, ale ne změnit její stav možnost spřažení závisí na teplotě: rovnováha: T = H S

41 Bioenergetika Slide 7a Chemické rovnováhy pro reakci aa + bb cc + dd G = G 0 + RT ln [C]c [D] d [A] a [B] b G 0... standardní změna G dané reakce

42 Bioenergetika Slide 7b Chemické rovnováhy pro reakci aa + bb cc + dd G = G 0 + RT ln [C]c [D] d [A] a [B] b G 0... standardní změna G dané reakce konstantní člen závisí jen na konkrétní reakci

43 Bioenergetika Slide 7c Chemické rovnováhy pro reakci aa + bb cc + dd G = G 0 + RT ln [C]c [D] d G 0... standardní změna G dané reakce [A] a [B] b konstantní člen závisí jen na konkrétní reakci proměnný člen závisí na teplotě a koncentracích reaktantů a produktů

44 Bioenergetika Slide 7d Chemické rovnováhy pro reakci aa + bb cc + dd G = G 0 + RT ln [C]c [D] d G 0... standardní změna G dané reakce [A] a [B] b konstantní člen závisí jen na konkrétní reakci proměnný člen závisí na teplotě a koncentracích reaktantů a produktů rovnováha: G = 0 G 0 = RT ln K eq K eq = [C]c [D] d [A] a [B] b = e G0 RT

45 Bioenergetika Slide 7e Chemické rovnováhy pro reakci aa + bb cc + dd G = G 0 + RT ln [C]c [D] d G 0... standardní změna G dané reakce [A] a [B] b konstantní člen závisí jen na konkrétní reakci proměnný člen závisí na teplotě a koncentracích reaktantů a produktů rovnováha: G = 0 G 0 = RT ln K eq K eq = [C]c [D] d [A] a [B] b = e G0 RT G 0 a K eq v přímém vztahu

46 Bioenergetika Slide 7f Chemické rovnováhy pro reakci aa + bb cc + dd G = G 0 + RT ln [C]c [D] d G 0... standardní změna G dané reakce [A] a [B] b konstantní člen závisí jen na konkrétní reakci proměnný člen závisí na teplotě a koncentracích reaktantů a produktů rovnováha: G = 0 G 0 = RT ln K eq K eq = [C]c [D] d [A] a [B] b = e G0 RT G 0 a K eq v přímém vztahu 10násobná změna K eq změní G 0 o 5.7 kj/mol

47 Bioenergetika Slide 8a Změna Gibbsovy energie G 0 = G 0 f (products) G 0 f (reactants) G 0 f... G0 syntézy z prvků

48 Bioenergetika Slide 8b Změna Gibbsovy energie G 0 = G 0 f (products) G 0 f (reactants) G 0 f... G0 syntézy z prvků

49 Bioenergetika Změna Gibbsovy energie Slide 9a standardní stav

50 Bioenergetika Změna Gibbsovy energie Slide 9b standardní stav aktivita 1 mol/l

51 Bioenergetika Změna Gibbsovy energie Slide 9c standardní stav aktivita 1 mol/l 25 C

52 Bioenergetika Změna Gibbsovy energie Slide 9d standardní stav aktivita 1 mol/l 25 C 1 atm

53 Bioenergetika Slide 9e standardní stav aktivita 1 mol/l 25 C 1 atm Změna Gibbsovy energie biochemický standardní stav

54 Bioenergetika Slide 9f standardní stav aktivita 1 mol/l 25 C 1 atm Změna Gibbsovy energie biochemický standardní stav aktivita vody = 1

55 Bioenergetika Slide 9g standardní stav aktivita 1 mol/l 25 C 1 atm Změna Gibbsovy energie biochemický standardní stav aktivita vody = 1 ph = 7

56 Bioenergetika Slide 9h standardní stav aktivita 1 mol/l 25 C 1 atm Změna Gibbsovy energie biochemický standardní stav aktivita vody = 1 ph = 7 látky podléhající acidobazické disociaci: c = celková c všech forem při ph = 7

57 Bioenergetika Slide 10a Spřažené reakce

58 Bioenergetika Slide 10b Spřažené reakce A + B C + D G 1 D + E F + G G 2

59 Bioenergetika Slide 10c Spřažené reakce A + B C + D G 1 D + E F + G G 2 A + B + E C + F + G G 3 = G 1 + G 2 < 0

60 Bioenergetika Slide 10d Spřažené reakce A + B C + D G 1 D + E F + G G 2 A + B + E C + F + G G 3 = G 1 + G 2 < 0 ΔG 0 (kj.mol -1 ) Endergonická reakce: glukosa + P i glukosa-6-fosfát + H 2 O +13,8 Exergonická reakce: ATP + H 2 O ADP + P i 30,5 Spřažená reakce: glukosa + ATP glukosa-6-fosfát + ADP 16,7

61 Bioenergetika Slide 11a Redoxní potenciál

62 Bioenergetika Slide 11b Redoxní potenciál Aox n+ + B red A red + B n+ ox

63 Bioenergetika Slide 11c Redoxní potenciál Aox n+ + B red A red + B n+ ox

64 Bioenergetika Slide 11d Redoxní potenciál Aox n+ + B red A red + B n+ ox G = G 0 + RT ln [A red][b n+ ox] [A n+ ox ][B red ]

65 Bioenergetika Slide 11e Redoxní potenciál Aox n+ + B red A red + B n+ ox G = G 0 + RT ln [A red][b n+ ox] [A n+ ox ][B red ] G = nf E

66 Bioenergetika Slide 11f Redoxní potenciál Aox n+ + B red A red + B n+ ox Nernst : E = E 0 RT G = G 0 + RT ln [A red][b n+ ox] [A n+ ox ][B red ] nf G = nf E [red] ln [ox] E = E0 RT nf ln [A red][b n+ ox ] [Aox n+ ][B red ]

67 Bioenergetika Slide 12a E jako energetická škála Redoxní potenciál

68 Bioenergetika Redoxní potenciál Slide 12b E jako energetická škála Redukovaná forma Oxidovaná forma E 0 (V) ΔG 0 acetaldehyd acetát -0,60 hodnoty vyšší H 2 2H + -0,42 (reduktans) isocitrát 2-oxoglutarát + CO 2-0,38 glutathion-sh glutathion-ss -0,34 NADH + H + NAD + -0,32 glyceraldehyd-3-fosfát + H 3 P0 4 1,3-bisfosfoglycerát -0,28 FADH 2 FAD -0,20 laktát pyruvát -0,19 malát oxalacetát -0,17 cytochrom b (Fe 2+ ) cytochrom b (Fe 3+ ) 0,00 sukcinát fumarát +0,03 dihydroubichinon ubichinon +0,10 cytochrom c (Fe 2+ ) cytochrom c (Fe 3+ ) +0,26 +ne ne H 2 O 2 O 2 +0,29 + hodnoty H 2 O ½ O 2 +0,82 (oxidans) nižší exergonický děj endergonický děj

69 Bioenergetika Redoxní potenciál Slide 13a E 0 = 0V pro standardní vodíkový poločlánek (elektrodu)

70 Bioenergetika Redoxní potenciál Slide 13b E 0 = 0V pro standardní vodíkový poločlánek (elektrodu) H + při ph 0, 25 C, 1 atm v rovnováze s elektrodou z Pt černi sycenou H 2

71 Bioenergetika Redoxní potenciál Slide 13c E 0 = 0V pro standardní vodíkový poločlánek (elektrodu) H + při ph 0, 25 C, 1 atm v rovnováze s elektrodou z Pt černi sycenou H 2 ph = 7 E 0 = 0.421V

72 Bioenergetika Slide 14a NAD(P) + NikotinamidAdeninDinukleotid(fosfát)

73 Bioenergetika Slide 14b NAD(P) + NikotinamidAdeninDinukleotid(fosfát) Redoxní reakce NAD(P) + NAD(P)H + H +

74 Bioenergetika Slide 15a Makroergické sloučeniny jejich hydrolýza pohání endergonické reakce

75 Bioenergetika Slide 15b Makroergické sloučeniny jejich hydrolýza pohání endergonické reakce obsahují makroergickou vazbu

76 Bioenergetika Slide 15c Makroergické sloučeniny jejich hydrolýza pohání endergonické reakce obsahují makroergickou vazbu ATP centrální role (univerzální energetická měna buňky)

77 Bioenergetika Slide 15d Makroergické sloučeniny jejich hydrolýza pohání endergonické reakce obsahují makroergickou vazbu ATP centrální role (univerzální energetická měna buňky) 3 fosfátové skupiny vázané 1 fosfoesterovou a 2 fosfoanhydridovými vazbami

78 Bioenergetika Slide 15e Makroergické sloučeniny jejich hydrolýza pohání endergonické reakce obsahují makroergickou vazbu ATP centrální role (univerzální energetická měna buňky) 3 fosfátové skupiny vázané 1 fosfoesterovou a 2 fosfoanhydridovými vazbami

79 Bioenergetika Slide 16a ATP R 1 O P + R 2 OH R 1 O H + R 2 OP reakce přenosu fosforylu obrovský metabolický význam

80 Bioenergetika ATP Slide 16b R 1 O P + R 2 OH R 1 O H + R 2 OP reakce přenosu fosforylu obrovský metabolický význam ATP + H 2 O ADP + P i G 0 = 30, 5 kj mol 1 ATP + H 2 O AMP + PP i G 0 = 45, 6 kj mol 1

81 Bioenergetika ATP Slide 16c R 1 O P + R 2 OH R 1 O H + R 2 OP reakce přenosu fosforylu obrovský metabolický význam ATP + H 2 O ADP + P i G 0 = 30, 5 kj mol 1 ATP + H 2 O AMP + PP i G 0 = 45, 6 kj mol 1 ATP se obnovuje za pomoci ještě exergoničtějších reakcí

82 Bioenergetika ATP Slide 16d R 1 O P + R 2 OH R 1 O H + R 2 OP reakce přenosu fosforylu obrovský metabolický význam ATP + H 2 O ADP + P i G 0 = 30, 5 kj mol 1 ATP + H 2 O AMP + PP i G 0 = 45, 6 kj mol 1 ATP se obnovuje za pomoci ještě exergoničtějších reakcí kinetická stabilita, termodynamická nestabilita (vysoké G 0 )

83 Bioenergetika Makroergická vazba Slide 17a

84 Bioenergetika Makroergická vazba Slide 17b fosfoanhydridy

85 Bioenergetika Makroergická vazba Slide 17c fosfoanhydridy rezonanční stabilizace

86 Bioenergetika Makroergická vazba Slide 17d fosfoanhydridy rezonanční stabilizace elektrostatická repulze

87 Bioenergetika Makroergická vazba Slide 17e fosfoanhydridy rezonanční stabilizace elektrostatická repulze

88 Bioenergetika Makroergická vazba Slide 17f fosfoanhydridy rezonanční stabilizace elektrostatická repulze vyšší solvatační energie produktů hydrolýzy

89 Bioenergetika Makroergická vazba Slide 17g fosfoanhydridy rezonanční stabilizace elektrostatická repulze vyšší solvatační energie produktů hydrolýzy ostatní anhydridy

90 Bioenergetika Makroergická vazba Slide 17h fosfoanhydridy rezonanční stabilizace elektrostatická repulze vyšší solvatační energie produktů hydrolýzy ostatní anhydridy fosfosulfáty

91 Bioenergetika Makroergická vazba Slide 17i fosfoanhydridy rezonanční stabilizace elektrostatická repulze vyšší solvatační energie produktů hydrolýzy ostatní anhydridy fosfosulfáty acylfosfáty

92 Bioenergetika Makroergická vazba Slide 17j fosfoanhydridy rezonanční stabilizace elektrostatická repulze vyšší solvatační energie produktů hydrolýzy ostatní anhydridy fosfosulfáty acylfosfáty fosfoguanidiny (fosfageny fosfokreatin, fosfoarginin)

93 Bioenergetika Makroergická vazba Slide 17k fosfoanhydridy rezonanční stabilizace elektrostatická repulze vyšší solvatační energie produktů hydrolýzy ostatní anhydridy fosfosulfáty acylfosfáty fosfoguanidiny (fosfageny fosfokreatin, fosfoarginin) enolfosfáty

94 Bioenergetika Makroergická vazba Slide 17l fosfoanhydridy rezonanční stabilizace elektrostatická repulze vyšší solvatační energie produktů hydrolýzy ostatní anhydridy fosfosulfáty acylfosfáty fosfoguanidiny (fosfageny fosfokreatin, fosfoarginin) enolfosfáty thioestery

95 Bioenergetika Slide 18a

96 Bioenergetika Slide 19a Rozdělení organismů podle způsobu výživy (trofiky) Zdroj energie Světlo CO 2 FOTOLITOTROFNÍ Zdroj uhlíku Organické látky FOTOORGANOTROFNÍ Oxidace substrátů zelené a purpurové sirné bakterie, řasy, sinice, zelené rostliny CHEMOLITOTROFNÍ (anorganické substráty) sirné, železité, nitrifikační bakterie purpurové nesirné bakterie, autotrofní prvoci (krásnoočko) CHEMOORGANOTROFNÍ (organické substráty) bakterie, houby, prvoci, živočichové

97 Bioenergetika Slide 20a Schéma energetického metabolismu aminokyseliny mastné kyseliny β-oxidace cukry glykolýza pyruvát alternativní dráhy NADH NAD + NADH NAD + fermentační regenerace NADH laktát ethanol propionát butyrát butanol formiát H2 CO2 acetát 2,3-butandiol sukcinát oxidační dekarboxylace citrátový cyklus Ac~S CoA Calvinův cyklus CO 2 NADH NAD + NADPH NADP + hν ADP respirační řetězec O 2 fotosyntetický elektrontransportní řetězec ADP ATP oxidační fosforylace H 2 O fotofosforylace ATP

98 Konec

99 Bioenergetika (verze pro tisk na konci souboru) Tomáš Kučera 2011

100 Bioenergetika Slide 1 Bioenergetika jak organismy získávají, přeměňují, ukládají a využívají energii

101 Bioenergetika Slide 2 Termodynamika vzájemné přeměny různých druhů energie směřování fyzikálních a chemických pochodů měřítko samovolnosti (uskutečnitelnosti dějů) rovnovážné stavy Základní pojmy systém (soustava) libovolná část prostoru uvažovaná odděleně od okolí izolovaný nevyměňuje s okolím hmotu ani energii uzavřený vyměňuje s okolím jen energii, nikoli hmotu otevřený vyměňuje s okolím hmotu i energii okolí zbytek vesmíru ŽIVÉ SYSTÉMY JSOU VŽDY OTEVŘENÉ!

102 Bioenergetika Slide 3 První věta termodynamiky Energii nelze vytvořit ani zničit. U = U konečná U počáteční = Q W U vnitřní energie soustavy Q teplo přijaté soustavou od okolí W práce vykonaná soustavou na okolí izochorický děj (V = konst.) izobarický děj (p = konst.) W = p dv U = Q V U = Q p (pv) U + pv = H H = (U + pv) = Q p p tlak, V objem, H enthalpie

103 Bioenergetika Slide 4 Druhá věta termodynamiky Nelze sestrojit periodicky pracující tepelný stroj, který by dodával okolí práci na úkor tepla odebíraného jedinému tepelnému rezervoáru. Teplo nemůže při styku dvou těles různých teplot samovolně přecházet z tělesa chladnějšího na těleso teplejší. dq T 0 entropie S = Q T S = k lnp ukazatel samovolnosti děje v adiabaticky izolovaných soustavách S soustava + S okolí = S vesmír > 0

104 Bioenergetika Slide 5 Gibbsova (volná) energie G = H TS G = H T S = Q p T S koná-li systém práci, je G = Q p T S + W T S Q p G W v biol. systému objemová práce zanedbatelná G = max. práce reálný děj není nikdy reversibilní G < W Práci vloženou do systému nelze celou získat zpět. Úbytek G je roven maximální práci, kterou může systém odevzdat při izotermicko-izobarickém ději do okolí. rovnováha: G = 0 samovolný (exergonický) děj: G < 0 (může konat práci) endergonický děj: G > 0

105 Bioenergetika Slide 6 Gibbsova energie jeden z tzv. termodynamických potenciálů žádná informace o rychlosti ta dána mechanismem (ne)možnost děje dána jen počátečním a konečným stavem katalyzátor (enzym) může urychlit dosažení rovnováhy, ale ne změnit její stav možnost spřažení závisí na teplotě: rovnováha: T = H S

106 Bioenergetika Slide 7 Chemické rovnováhy pro reakci aa + bb cc + dd G = G 0 + RT ln [C]c [D] d G 0... standardní změna G dané reakce [A] a [B] b konstantní člen závisí jen na konkrétní reakci proměnný člen závisí na teplotě a koncentracích reaktantů a produktů rovnováha: G = 0 G 0 = RT ln K eq K eq = [C]c [D] d [A] a [B] b = e G0 RT G 0 a K eq v přímém vztahu 10násobná změna K eq změní G 0 o 5.7 kj/mol

107 Bioenergetika Slide 8 Změna Gibbsovy energie G 0 = G 0 f (products) G 0 f (reactants) G 0 f... G0 syntézy z prvků

108 Bioenergetika Slide 9 standardní stav aktivita 1 mol/l 25 C 1 atm Změna Gibbsovy energie biochemický standardní stav aktivita vody = 1 ph = 7 látky podléhající acidobazické disociaci: c = celková c všech forem při ph = 7

109 Bioenergetika Slide 10 Spřažené reakce A + B C + D G 1 D + E F + G G 2 A + B + E C + F + G G 3 = G 1 + G 2 < 0 ΔG 0 (kj.mol -1 ) Endergonická reakce: glukosa + P i glukosa-6-fosfát + H 2 O +13,8 Exergonická reakce: ATP + H 2 O ADP + P i 30,5 Spřažená reakce: glukosa + ATP glukosa-6-fosfát + ADP 16,7

110 Bioenergetika Slide 11 Redoxní potenciál Aox n+ + B red A red + B n+ ox Nernst : E = E 0 RT G = G 0 + RT ln [A red][b n+ ox] [A n+ ox ][B red ] nf G = nf E [red] ln [ox] E = E0 RT nf ln [A red][b n+ ox ] [Aox n+ ][B red ]

111 Bioenergetika Slide 12 E jako energetická škála Redoxní potenciál Redukovaná forma Oxidovaná forma E 0 (V) ΔG 0 acetaldehyd acetát -0,60 hodnoty vyšší H 2 2H + -0,42 (reduktans) isocitrát 2-oxoglutarát + CO 2-0,38 glutathion-sh glutathion-ss -0,34 NADH + H + NAD + -0,32 glyceraldehyd-3-fosfát + H 3 P0 4 1,3-bisfosfoglycerát -0,28 FADH 2 FAD -0,20 laktát pyruvát -0,19 malát oxalacetát -0,17 cytochrom b (Fe 2+ ) cytochrom b (Fe 3+ ) 0,00 sukcinát fumarát +0,03 dihydroubichinon ubichinon +0,10 cytochrom c (Fe 2+ ) cytochrom c (Fe 3+ ) +0,26 +ne ne H 2 O 2 O 2 +0,29 + hodnoty H 2 O ½ O 2 +0,82 (oxidans) nižší exergonický děj endergonický děj

112 Bioenergetika Slide 13 Redoxní potenciál E 0 = 0V pro standardní vodíkový poločlánek (elektrodu) H + při ph 0, 25 C, 1 atm v rovnováze s elektrodou z Pt černi sycenou H 2 ph = 7 E 0 = 0.421V

113 Bioenergetika Slide 14 NAD(P) + NikotinamidAdeninDinukleotid(fosfát) Redoxní reakce NAD(P) + NAD(P)H + H +

114 Bioenergetika Slide 15 Makroergické sloučeniny jejich hydrolýza pohání endergonické reakce obsahují makroergickou vazbu ATP centrální role (univerzální energetická měna buňky) 3 fosfátové skupiny vázané 1 fosfoesterovou a 2 fosfoanhydridovými vazbami

115 Bioenergetika Slide 16 ATP R 1 O P + R 2 OH R 1 O H + R 2 OP reakce přenosu fosforylu obrovský metabolický význam ATP + H 2 O ADP + P i G 0 = 30, 5 kj mol 1 ATP + H 2 O AMP + PP i G 0 = 45, 6 kj mol 1 ATP se obnovuje za pomoci ještě exergoničtějších reakcí kinetická stabilita, termodynamická nestabilita (vysoké G 0 )

116 Bioenergetika Slide 17 Makroergická vazba fosfoanhydridy rezonanční stabilizace elektrostatická repulze vyšší solvatační energie produktů hydrolýzy ostatní anhydridy fosfosulfáty acylfosfáty fosfoguanidiny (fosfageny fosfokreatin, fosfoarginin) enolfosfáty thioestery

117 Bioenergetika Slide 18

118 Bioenergetika Slide 19 Rozdělení organismů podle způsobu výživy (trofiky) Zdroj energie Světlo CO 2 FOTOLITOTROFNÍ Zdroj uhlíku Organické látky FOTOORGANOTROFNÍ Oxidace substrátů zelené a purpurové sirné bakterie, řasy, sinice, zelené rostliny CHEMOLITOTROFNÍ (anorganické substráty) sirné, železité, nitrifikační bakterie purpurové nesirné bakterie, autotrofní prvoci (krásnoočko) CHEMOORGANOTROFNÍ (organické substráty) bakterie, houby, prvoci, živočichové

119 Bioenergetika Slide 20 Schéma energetického metabolismu aminokyseliny mastné kyseliny β-oxidace cukry glykolýza pyruvát alternativní dráhy NADH NAD + NADH NAD + fermentační regenerace NADH laktát ethanol propionát butyrát butanol formiát H2 CO2 acetát 2,3-butandiol sukcinát oxidační dekarboxylace citrátový cyklus Ac~S CoA Calvinův cyklus CO 2 NADH NAD + NADPH NADP + hν ADP respirační řetězec O 2 fotosyntetický elektrontransportní řetězec ADP ATP oxidační fosforylace H 2 O fotofosforylace ATP

120 Konec

121 Bioenergetics Slide 1a Bioenergetics

122 Bioenergetics Slide 1b Bioenergetics how organisms gain, transform, store and utilize energy

123 Bioenergetics Slide 2a Thermodynamics

124 Bioenergetics Slide 2b Thermodynamics mutual conversions of different energy types directions of physical and chemical processes measure of spontaneity (possibility) of processes equilibrium states

125 Bioenergetics Slide 2c Thermodynamics mutual conversions of different energy types directions of physical and chemical processes measure of spontaneity (possibility) of processes equilibrium states Basic concepts

126 Bioenergetics Slide 2d Thermodynamics mutual conversions of different energy types directions of physical and chemical processes measure of spontaneity (possibility) of processes equilibrium states Basic concepts system an arbitrary part of space considered apart of its surroundings

127 Bioenergetics Slide 2e Thermodynamics mutual conversions of different energy types directions of physical and chemical processes measure of spontaneity (possibility) of processes equilibrium states Basic concepts system an arbitrary part of space considered apart of its surroundings isolated cannot exchange neither matter nor energy with the surroundings closed exchanges only energy, not matter isolated exchanges both energy and matter

128 Bioenergetics Slide 2f Thermodynamics mutual conversions of different energy types directions of physical and chemical processes measure of spontaneity (possibility) of processes equilibrium states Basic concepts system an arbitrary part of space considered apart of its surroundings isolated cannot exchange neither matter nor energy with the surroundings closed exchanges only energy, not matter isolated exchanges both energy and matter LIVING SYSTEMS ARE ALWAYS OPEN!

129 Bioenergetics Slide 2g Thermodynamics mutual conversions of different energy types directions of physical and chemical processes measure of spontaneity (possibility) of processes equilibrium states Basic concepts system an arbitrary part of space considered apart of its surroundings isolated cannot exchange neither matter nor energy with the surroundings closed exchanges only energy, not matter isolated exchanges both energy and matter LIVING SYSTEMS ARE ALWAYS OPEN! surroundings the rest of the universe

130 Bioenergetics Slide 3a First law of thermodynamics

131 Bioenergetics Slide 3b First law of thermodynamics Energy can neither be created nor destroyed.

132 Bioenergetics Slide 3c First law of thermodynamics Energy can neither be created nor destroyed. U = U final U initial = Q W U the system energy Q the heat absorbed by the system from the surroundings W work done by the system on the surroundings

133 Bioenergetics Slide 3d First law of thermodynamics Energy can neither be created nor destroyed. U = U final U initial = Q W U the system energy Q the heat absorbed by the system from the surroundings W work done by the system on the surroundings isochoric process (V = const.)

134 Bioenergetics Slide 3e First law of thermodynamics Energy can neither be created nor destroyed. U = U final U initial = Q W U the system energy Q the heat absorbed by the system from the surroundings W work done by the system on the surroundings isochoric process (V = const.) U = Q V

135 Bioenergetics Slide 3f First law of thermodynamics Energy can neither be created nor destroyed. U = U final U initial = Q W U the system energy Q the heat absorbed by the system from the surroundings W work done by the system on the surroundings isochoric process (V = const.) isobaric process (p = const.) U = Q V

136 Bioenergetics Slide 3g First law of thermodynamics Energy can neither be created nor destroyed. U = U final U initial = Q W U the system energy Q the heat absorbed by the system from the surroundings W work done by the system on the surroundings isochoric process (V = const.) isobaric process (p = const.) U = Q V U = Q p (pv) U + pv = H H = (U + pv) = Q p p pressure, V volume, H enthalpy

137 Bioenergetics Slide 4a Second law of thermodynamics

138 Bioenergetics Slide 4b Second law of thermodynamics No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work.

139 Bioenergetics Slide 4c Second law of thermodynamics No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work. No process is possible whose sole result is the transfer of heat from a body of lower temperature to a body of higher temperature.

140 Bioenergetics Slide 4d Second law of thermodynamics No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work. No process is possible whose sole result is the transfer of heat from a body of lower temperature to a body of higher temperature. dq T 0

141 Bioenergetics Slide 4e Second law of thermodynamics No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work. No process is possible whose sole result is the transfer of heat from a body of lower temperature to a body of higher temperature. dq T 0 entropy S = Q T

142 Bioenergetics Slide 4f Second law of thermodynamics No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work. No process is possible whose sole result is the transfer of heat from a body of lower temperature to a body of higher temperature. dq T 0 entropy S = Q T S = k lnp

143 Bioenergetics Slide 4g Second law of thermodynamics No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work. No process is possible whose sole result is the transfer of heat from a body of lower temperature to a body of higher temperature. dq T 0 entropy S = Q T S = k lnp an indicator of process spontaneity only in adiabatically isolated systems

144 Bioenergetics Slide 4h Second law of thermodynamics No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work. No process is possible whose sole result is the transfer of heat from a body of lower temperature to a body of higher temperature. dq T 0 entropy S = Q T S = k lnp an indicator of process spontaneity only in adiabatically isolated systems Ssystem + S surroundings = S universe > 0

145 Bioenergetics Slide 5a Gibbs free energy G = H TS G = H T S = Q p T S

146 Bioenergetics Slide 5b Gibbs free energy G = H TS G = H T S = Q p T S the system does a work, then G = Q p T S + W T S Q p G W

147 Bioenergetics Slide 5c Gibbs free energy G = H TS G = H T S = Q p T S the system does a work, then G = Q p T S + W T S Q p G W in a biol. system, pv-work unimportant G = max. work

148 Bioenergetics Slide 5d Gibbs free energy G = H TS G = H T S = Q p T S the system does a work, then G = Q p T S + W T S Q p G W in a biol. system, pv-work unimportant G = max. work a real process is never reversible G < W The work put into any system can never be fully recovered

149 Bioenergetics Slide 5e Gibbs free energy G = H TS G = H T S = Q p T S the system does a work, then G = Q p T S + W T S Q p G W in a biol. system, pv-work unimportant G = max. work a real process is never reversible G < W The work put into any system can never be fully recovered G decrease in a biological process represents its maximum recoverable work.

150 Bioenergetics Slide 5f Gibbs free energy G = H TS G = H T S = Q p T S the system does a work, then G = Q p T S + W T S Q p G W in a biol. system, pv-work unimportant G = max. work a real process is never reversible G < W The work put into any system can never be fully recovered G decrease in a biological process represents its maximum recoverable work. equilibrium: G = 0

151 Bioenergetics Slide 5g Gibbs free energy G = H TS G = H T S = Q p T S the system does a work, then G = Q p T S + W T S Q p G W in a biol. system, pv-work unimportant G = max. work a real process is never reversible G < W The work put into any system can never be fully recovered G decrease in a biological process represents its maximum recoverable work. equilibrium: G = 0 spontaneous (exergonic) process: G < 0 (it can do work)

152 Bioenergetics Slide 5h Gibbs free energy G = H TS G = H T S = Q p T S the system does a work, then G = Q p T S + W T S Q p G W in a biol. system, pv-work unimportant G = max. work a real process is never reversible G < W The work put into any system can never be fully recovered G decrease in a biological process represents its maximum recoverable work. equilibrium: G = 0 spontaneous (exergonic) process: G < 0 (it can do work) endergonic process: G > 0

153 Bioenergetics Slide 6a Free energy one of the thermodynamic potentials

154 Bioenergetics Slide 6b Free energy one of the thermodynamic potentials no information about the rate it is given by the mechanism

155 Bioenergetics Slide 6c Free energy one of the thermodynamic potentials no information about the rate it is given by the mechanism (non-)possibility of a process given only by the initial and final states

156 Bioenergetics Slide 6d Free energy one of the thermodynamic potentials no information about the rate it is given by the mechanism (non-)possibility of a process given only by the initial and final states a catalyst (enzyme) can only accelerate equilibrium attainment, not change its state

157 Bioenergetics Slide 6e Free energy one of the thermodynamic potentials no information about the rate it is given by the mechanism (non-)possibility of a process given only by the initial and final states a catalyst (enzyme) can only accelerate equilibrium attainment, not change its state coupling is possible

158 Bioenergetics Slide 6f Free energy one of the thermodynamic potentials no information about the rate it is given by the mechanism (non-)possibility of a process given only by the initial and final states a catalyst (enzyme) can only accelerate equilibrium attainment, not change its state coupling is possible depends on temperature: equilibrium: T = H S

159 Bioenergetics Slide 6g Free energy one of the thermodynamic potentials no information about the rate it is given by the mechanism (non-)possibility of a process given only by the initial and final states a catalyst (enzyme) can only accelerate equilibrium attainment, not change its state coupling is possible depends on temperature: equilibrium: T = H S

160 Bioenergetics Slide 7a Chemical equilibria for a reaction aa + bb cc + dd G = G 0 + RT ln [C]c [D] d [A] a [B] b G 0... standard G change of the reaction

161 Bioenergetics Slide 7b Chemical equilibria for a reaction aa + bb cc + dd G = G 0 + RT ln [C]c [D] d [A] a [B] b G 0... standard G change of the reaction constant term depends only on the reaction

162 Bioenergetics Slide 7c Chemical equilibria for a reaction aa + bb cc + dd G = G 0 + RT ln [C]c [D] d G 0... standard G change of the reaction [A] a [B] b constant term depends only on the reaction variable term depends on temperature and concentratins of reactants and products

163 Bioenergetics Slide 7d Chemical equilibria for a reaction aa + bb cc + dd G = G 0 + RT ln [C]c [D] d G 0... standard G change of the reaction [A] a [B] b constant term depends only on the reaction variable term depends on temperature and concentratins of reactants and products equilibrium: G = 0 G 0 = RT ln K eq K eq = [C]c [D] d [A] a [B] b = e G0 RT

164 Bioenergetics Slide 7e Chemical equilibria for a reaction aa + bb cc + dd G = G 0 + RT ln [C]c [D] d G 0... standard G change of the reaction [A] a [B] b constant term depends only on the reaction variable term depends on temperature and concentratins of reactants and products equilibrium: G = 0 G 0 = RT ln K eq K eq = [C]c [D] d [A] a [B] b = e G0 RT G 0 and K eq directly related

165 Bioenergetics Slide 7f Chemical equilibria for a reaction aa + bb cc + dd G = G 0 + RT ln [C]c [D] d G 0... standard G change of the reaction [A] a [B] b constant term depends only on the reaction variable term depends on temperature and concentratins of reactants and products equilibrium: G = 0 G 0 = RT ln K eq K eq = [C]c [D] d [A] a [B] b = e G0 RT G 0 and K eq directly related 10-fold change in K eq changes G 0 by 5.7 kj/mol

166 Bioenergetics Slide 8a Free energy changes G 0 = G 0 f (products) G 0 f (reactants) G 0 f... G0 of formation

167 Bioenergetics Slide 8b Free energy changes G 0 = G 0 f (products) G 0 f (reactants) G 0 f... G0 of formation

168 Bioenergetics Free energy changes Slide 9a standard state

169 Bioenergetics Free energy changes Slide 9b standard state activity 1 mol/l

170 Bioenergetics Free energy changes Slide 9c standard state activity 1 mol/l 25 C

171 Bioenergetics Free energy changes Slide 9d standard state activity 1 mol/l 25 C 1 atm

172 Bioenergetics Slide 9e standard state activity 1 mol/l 25 C 1 atm Free energy changes biochemical standard state

173 Bioenergetics Slide 9f standard state activity 1 mol/l 25 C 1 atm Free energy changes biochemical standard state water activity = 1

174 Bioenergetics Slide 9g standard state activity 1 mol/l 25 C 1 atm Free energy changes biochemical standard state water activity = 1 ph = 7

175 Bioenergetics Slide 9h standard state activity 1 mol/l 25 C 1 atm Free energy changes biochemical standard state water activity = 1 ph = 7 substances undergoing acidobasic dissociation: c = total c of all species at ph = 7

176 Bioenergetics Slide 10a Coupled reactions

177 Bioenergetics Slide 10b Coupled reactions A + B C + D G 1 D + E F + G G 2

178 Bioenergetics Slide 10c Coupled reactions A + B C + D G 1 D + E F + G G 2 A + B + E C + F + G G 3 = G 1 + G 2 < 0

179 Bioenergetics Slide 10d Coupled reactions A + B C + D G 1 D + E F + G G 2 A + B + E C + F + G G 3 = G 1 + G 2 < 0 ΔG 0 (kj.mol -1 ) Endergonic reaction: glucose + P i glucose-6-phosphate + H 2 O +13,8 Exergonic reaction: ATP + H 2 O ADP + P i 30,5 Coupled reaction: glucose + ATP glucose-6-phosphate + ADP 16,7

180 Bioenergetics Slide 11a Redox potential

181 Bioenergetics Slide 11b Redox potential Aox n+ + B red A red + B n+ ox

182 Bioenergetics Slide 11c Redox potential Aox n+ + B red A red + B n+ ox

183 Bioenergetics Slide 11d Redox potential Aox n+ + B red A red + B n+ ox G = G 0 + RT ln [A red][b n+ ox] [A n+ ox ][B red ]

184 Bioenergetics Slide 11e Redox potential Aox n+ + B red A red + B n+ ox G = G 0 + RT ln [A red][b n+ ox] [A n+ ox ][B red ] G = W = W el = nf E

185 Bioenergetics Slide 11f Redox potential Aox n+ + B red A red + B n+ ox Nernst : E = E 0 RT G = G 0 + RT ln [A red][b n+ ox] [A n+ ox ][B red ] G = W = W el = nf E nf [red] ln [ox] E = E0 RT nf ln [A red][b n+ ox ] [Aox n+ ][B red ]

186 Bioenergetics Slide 12a E as an energy scale Redox potential

187 Bioenergetics Redox potential Slide 12b E as an energy scale Reduced form Oxidized form E 0 (V) ΔG 0 acetaldehyde acetate -0,60 values higher H 2 2H + -0,42 (reductant) isocitrate 2-oxoglutarate + CO 2-0,38 glutathione-sh glutathione-ss -0,34 NADH + H + NAD + -0,32 glyceraldehyde-3-phosphate + H 3 PO 4 1,3-bisphosphoglycerate -0,28 FADH 2 FAD -0,20 lactate pyruvate -0,19 malate oxalacetate -0,17 cytochrome b (Fe 2+ ) cytochrome b (Fe 3+ ) 0,00 succinate fumarate +0,03 dihydroubiquinone ubiquinone +0,10 cytochrome c (Fe 2+ ) cytochrome c (Fe 3+ ) +0,26 +ne ne H 2 O 2 O 2 +0,29 + values H 2 O ½ O 2 +0,82 (oxidant) lower exergonic reaction endergonic reaction

188 Bioenergetics Slide 13a Redox potential E 0 = 0V for standard hydrogen half-reaction (electrode)

189 Bioenergetics Redox potential Slide 13b E 0 = 0V for standard hydrogen half-reaction (electrode) H + at ph 0, 25 C, 1 atm in equilibrium with Pt-black electrode saturated with H 2

190 Bioenergetics Redox potential Slide 13c E 0 = 0V for standard hydrogen half-reaction (electrode) H + at ph 0, 25 C, 1 atm in equilibrium with Pt-black electrode saturated with H 2 ph = 7 E 0 = 0.421V

191 Bioenergetics Slide 14a NAD(P) + Nicotinamide Adenine Dinucleotide (Phosphate)

192 Bioenergetics Slide 14b NAD(P) + Nicotinamide Adenine Dinucleotide (Phosphate) Redox reaction NAD(P) + NAD(P)H + H +

193 Bioenergetics Slide 15a High-energy compounds hydrolyzed to drive endergonic reactions

194 Bioenergetics Slide 15b High-energy compounds hydrolyzed to drive endergonic reactions contain high-energy bond

195 Bioenergetics Slide 15c High-energy compounds hydrolyzed to drive endergonic reactions contain high-energy bond ATP a central role (universal energy currency of the cell)

196 Bioenergetics Slide 15d High-energy compounds hydrolyzed to drive endergonic reactions contain high-energy bond ATP a central role (universal energy currency of the cell) 3 phosphoryl groups bound by one phosphoester and two phosphoanhydride bonds

197 Bioenergetics Slide 15e High-energy compounds hydrolyzed to drive endergonic reactions contain high-energy bond ATP a central role (universal energy currency of the cell) 3 phosphoryl groups bound by one phosphoester and two phosphoanhydride bonds

198 Bioenergetics Slide 16a ATP R 1 O P + R 2 OH R 1 O H + R 2 OP phosphoryl transfer reaction enormous metabolic significance

199 Bioenergetics ATP Slide 16b R 1 O P + R 2 OH R 1 O H + R 2 OP phosphoryl transfer reaction enormous metabolic significance ATP + H 2 O ADP + P i G 0 = 30.5 kj mol 1 ATP + H 2 O AMP + PP i G 0 = 45.6 kj mol 1

200 Bioenergetics ATP Slide 16c R 1 O P + R 2 OH R 1 O H + R 2 OP phosphoryl transfer reaction enormous metabolic significance ATP + H 2 O ADP + P i G 0 = 30.5 kj mol 1 ATP + H 2 O AMP + PP i G 0 = 45.6 kj mol 1 ATP formed using more highly exergonic reactions

201 Bioenergetics ATP Slide 16d R 1 O P + R 2 OH R 1 O H + R 2 OP phosphoryl transfer reaction enormous metabolic significance ATP + H 2 O ADP + P i G 0 = 30.5 kj mol 1 ATP + H 2 O AMP + PP i G 0 = 45.6 kj mol 1 ATP formed using more highly exergonic reactions kinetic stability, thermodynamic instability (high G 0 )

202 Bioenergetics High-energy bonds Slide 17a

203 Bioenergetics High-energy bonds Slide 17b phosphoanhydrides

204 Bioenergetics High-energy bonds Slide 17c phosphoanhydrides resonance stabilization

205 Bioenergetics High-energy bonds Slide 17d phosphoanhydrides resonance stabilization electrostatic repulsion

206 Bioenergetics High-energy bonds Slide 17e phosphoanhydrides resonance stabilization electrostatic repulsion

207 Bioenergetics High-energy bonds Slide 17f phosphoanhydrides resonance stabilization electrostatic repulsion higher solvation energy of the hydrolysis products

208 Bioenergetics High-energy bonds Slide 17g phosphoanhydrides resonance stabilization electrostatic repulsion higher solvation energy of the hydrolysis products other anhydrides

209 Bioenergetics High-energy bonds Slide 17h phosphoanhydrides resonance stabilization electrostatic repulsion higher solvation energy of the hydrolysis products other anhydrides phosphosulphates

210 Bioenergetics High-energy bonds Slide 17i phosphoanhydrides resonance stabilization electrostatic repulsion higher solvation energy of the hydrolysis products other anhydrides phosphosulphates acylphosphates

211 Bioenergetics High-energy bonds Slide 17j phosphoanhydrides resonance stabilization electrostatic repulsion higher solvation energy of the hydrolysis products other anhydrides phosphosulphates acylphosphates phosphoguanidines (phosphagens phosphocreatine, phosphoarginine)

212 Bioenergetics High-energy bonds Slide 17k phosphoanhydrides resonance stabilization electrostatic repulsion higher solvation energy of the hydrolysis products other anhydrides phosphosulphates acylphosphates phosphoguanidines (phosphagens phosphocreatine, phosphoarginine) enol phosphates

213 Bioenergetics High-energy bonds Slide 17l phosphoanhydrides resonance stabilization electrostatic repulsion higher solvation energy of the hydrolysis products other anhydrides phosphosulphates acylphosphates phosphoguanidines (phosphagens phosphocreatine, phosphoarginine) enol phosphates thioesters

214 Bioenergetics Slide 18a

215 Bioenergetics Slide 19a Organisms according to the metabolism type (trophics) Energy source Light CO 2 PHOTOLITOTROPHIC Carbon source Organic compounds PHOTOORGANOTROPHIC Substrate oxidation green and purple sulphur bacteria, cyanobacteria, algae, green plants CHEMOLITOTROPHIC (inorganic substrates) sulphur, ferric, nitrifying bacteria purple non sulphur bacteria, photototrophic protists (Euglena) CHEMOORGANOTROPHIC (organic substrates) bacteria, fungi, protists, animals

216 Bioenergetics Slide 20a Energy metabolism scheme amino acids fatty acids β-oxidation sugars glycolysis pyruvate alternative pathways NADH NAD + NADH NAD + fermentative NADH regeneration lactate ethanol propionate butyrate butanol formate H2 CO2 acetate 2,3-butandiol succinate oxidative decarboxylation citric acid cycle Ac~S CoA Calvin cycle CO 2 NADH NAD + NADPH NADP + hν ADP respiration chain O 2 photosynthetic electron transport chain ADP ATP oxidative phosphorylation H 2 O photophosphorylation ATP

217 The End

218 Bioenergetics (print version in the end of the file) Tomáš Kučera 2011

219 Bioenergetics Slide 1 Bioenergetics how organisms gain, transform, store and utilize energy

220 Bioenergetics Slide 2 Thermodynamics mutual conversions of different energy types directions of physical and chemical processes measure of spontaneity (possibility) of processes equilibrium states Basic concepts system an arbitrary part of space considered apart of its surroundings isolated cannot exchange neither matter nor energy with the surroundings closed exchanges only energy, not matter isolated exchanges both energy and matter LIVING SYSTEMS ARE ALWAYS OPEN! surroundings the rest of the universe

221 Bioenergetics Slide 3 First law of thermodynamics Energy can neither be created nor destroyed. U = U final U initial = Q W U the system energy Q the heat absorbed by the system from the surroundings W work done by the system on the surroundings isochoric process (V = const.) isobaric process (p = const.) U = Q V U = Q p (pv) U + pv = H H = (U + pv) = Q p p pressure, V volume, H enthalpy

222 Bioenergetics Slide 4 Second law of thermodynamics No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work. No process is possible whose sole result is the transfer of heat from a body of lower temperature to a body of higher temperature. dq T 0 entropy S = Q T S = k lnp an indicator of process spontaneity only in adiabatically isolated systems Ssystem + S surroundings = S universe > 0

223 Bioenergetics Slide 5 Gibbs free energy G = H TS G = H T S = Q p T S the system does a work, then G = Q p T S + W T S Q p G W in a biol. system, pv-work unimportant G = max. work a real process is never reversible G < W The work put into any system can never be fully recovered G decrease in a biological process represents its maximum recoverable work. equilibrium: G = 0 spontaneous (exergonic) process: G < 0 (it can do work) endergonic process: G > 0

224 Bioenergetics Slide 6 Free energy one of the thermodynamic potentials no information about the rate it is given by the mechanism (non-)possibility of a process given only by the initial and final states a catalyst (enzyme) can only accelerate equilibrium attainment, not change its state coupling is possible depends on temperature: equilibrium: T = H S

225 Bioenergetics Slide 7 Chemical equilibria for a reaction aa + bb cc + dd G = G 0 + RT ln [C]c [D] d G 0... standard G change of the reaction [A] a [B] b constant term depends only on the reaction variable term depends on temperature and concentratins of reactants and products equilibrium: G = 0 G 0 = RT ln K eq K eq = [C]c [D] d [A] a [B] b = e G0 RT G 0 and K eq directly related 10-fold change in K eq changes G 0 by 5.7 kj/mol

226 Bioenergetics Slide 8 Free energy changes G 0 = G 0 f (products) G 0 f (reactants) G 0 f... G0 of formation

227 Bioenergetics Slide 9 standard state activity 1 mol/l 25 C 1 atm Free energy changes biochemical standard state water activity = 1 ph = 7 substances undergoing acidobasic dissociation: c = total c of all species at ph = 7

228 Bioenergetics Slide 10 Coupled reactions A + B C + D G 1 D + E F + G G 2 A + B + E C + F + G G 3 = G 1 + G 2 < 0 ΔG 0 (kj.mol -1 ) Endergonic reaction: glucose + P i glucose-6-phosphate + H 2 O +13,8 Exergonic reaction: ATP + H 2 O ADP + P i 30,5 Coupled reaction: glucose + ATP glucose-6-phosphate + ADP 16,7

229 Bioenergetics Slide 11 Redox potential Aox n+ + B red A red + B n+ ox Nernst : E = E 0 RT G = G 0 + RT ln [A red][b n+ ox] [A n+ ox ][B red ] G = W = W el = nf E nf [red] ln [ox] E = E0 RT nf ln [A red][b n+ ox ] [Aox n+ ][B red ]

230 Bioenergetics Slide 12 E as an energy scale Redox potential Reduced form Oxidized form E 0 (V) ΔG 0 acetaldehyde acetate -0,60 values higher H 2 2H + -0,42 (reductant) isocitrate 2-oxoglutarate + CO 2-0,38 glutathione-sh glutathione-ss -0,34 NADH + H + NAD + -0,32 glyceraldehyde-3-phosphate + H 3 PO 4 1,3-bisphosphoglycerate -0,28 FADH 2 FAD -0,20 lactate pyruvate -0,19 malate oxalacetate -0,17 cytochrome b (Fe 2+ ) cytochrome b (Fe 3+ ) 0,00 succinate fumarate +0,03 dihydroubiquinone ubiquinone +0,10 cytochrome c (Fe 2+ ) cytochrome c (Fe 3+ ) +0,26 +ne ne H 2 O 2 O 2 +0,29 + values H 2 O ½ O 2 +0,82 (oxidant) lower exergonic reaction endergonic reaction

231 Bioenergetics Slide 13 Redox potential E 0 = 0V for standard hydrogen half-reaction (electrode) H + at ph 0, 25 C, 1 atm in equilibrium with Pt-black electrode saturated with H 2 ph = 7 E 0 = 0.421V

232 Bioenergetics Slide 14 NAD(P) + Nicotinamide Adenine Dinucleotide (Phosphate) Redox reaction NAD(P) + NAD(P)H + H +

233 Bioenergetics Slide 15 High-energy compounds hydrolyzed to drive endergonic reactions contain high-energy bond ATP a central role (universal energy currency of the cell) 3 phosphoryl groups bound by one phosphoester and two phosphoanhydride bonds

234 Bioenergetics Slide 16 ATP R 1 O P + R 2 OH R 1 O H + R 2 OP phosphoryl transfer reaction enormous metabolic significance ATP + H 2 O ADP + P i G 0 = 30.5 kj mol 1 ATP + H 2 O AMP + PP i G 0 = 45.6 kj mol 1 ATP formed using more highly exergonic reactions kinetic stability, thermodynamic instability (high G 0 )

235 Bioenergetics Slide 17 phosphoanhydrides resonance stabilization electrostatic repulsion High-energy bonds higher solvation energy of the hydrolysis products other anhydrides phosphosulphates acylphosphates phosphoguanidines (phosphagens phosphocreatine, phosphoarginine) enol phosphates thioesters

236 Bioenergetics Slide 18

Bioenergetika Bioenergetics

Bioenergetika Bioenergetics Bioenergetika Bioenergetics Tomáš Kučera 2012 Tisková verze Print version Prezentace Presentation Bioenergetika Slide 1a Bioenergetika Bioenergetika Slide 1b Bioenergetika jak organismy získávají, přeměňují,

Více

Bioenergetika a makroergické sloučeniny

Bioenergetika a makroergické sloučeniny Bioenergetika a makroergické sloučeniny Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole

Více

Biologické redoxní děje Biological redox processes. Tisková verze Print version Prezentace Presentation

Biologické redoxní děje Biological redox processes. Tisková verze Print version Prezentace Presentation Biologické redoxní děje Biological redox processes Tomáš Kučera 2011 Tisková verze Print version Prezentace Presentation Biologické redoxní děje Slide 1a Biologické redoxní děje Biologické redoxní děje

Více

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie

Více

Metabolismus. Source:

Metabolismus. Source: Source: http://www.roche.com/ http://www.expasy.org/ Metabolismus Source: http://www.roche.com/sustainability/for_communities_and_environment/philanthropy/science_education/pathways.htm Metabolismus -

Více

Citrátový cyklus. Tomáš Kučera.

Citrátový cyklus. Tomáš Kučera. itrátový cyklus Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017 Schéma energetického

Více

16a. Makroergické sloučeniny

16a. Makroergické sloučeniny 16a. Makroergické sloučeniny Makroergickými sloučeninami v biochemii nazýváme skupinu látek umožňujících uvolnění značného množství energie v jednoduché reakci. Nelze je definovat prostě jako sloučeniny

Více

Metabolismus. - soubor všech chemických reakcí a příslušných fyzikálních procesů, které souvisejí s aktivními projevy života daného organismu

Metabolismus. - soubor všech chemických reakcí a příslušných fyzikálních procesů, které souvisejí s aktivními projevy života daného organismu Metabolismus Obecné znaky metabolismu Získání a využití energie - bioenergetika Buněčné dýchání (glykolysa + CKC + oxidativní fosforylace) Biosynthesa sacharidů + fotosynthesa Metabolismus lipidů Metabolismus

Více

03a-Chemické reakce v živých organizmech FRVŠ 1647/2012

03a-Chemické reakce v živých organizmech FRVŠ 1647/2012 C3181 Biochemie I 03a-Chemické reakce v živých organizmech FRVŠ 1647/2012 Petr Zbořil 9/23/2014 1 Obsah Obecné rysy metabolismu Chemické reakce a jejich energetika Makroergické sloučeniny Petr Zbořil 9/23/2014

Více

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.

Více

MitoSeminář II: Trochu výpočtů v bioenergetice. Souhrn. MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK

MitoSeminář II: Trochu výpočtů v bioenergetice. Souhrn. MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK MitoSeminář II: Trochu výpočtů v bioenergetice MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK (se zahrnutím cenných připomínek, kterými přispěl prof. MUDr. Jiří Kraml, DrSc.) 1 Dýchacířet etězec

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje

Více

9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy

9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy 9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy Obtížnost A Vyjmenujte kofaktory, které využívá multienzymový komplex pyruvátdehydrogenasy; které z nich řadíme mezi koenzymy

Více

- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím

- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím Otázka: Obecné rysy metabolismu Předmět: Chemie Přidal(a): Bára V. ZÁKLADY LÁTKOVÉHO A ENERGETICKÉHO METABOLISMU - metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy

Více

CZ.1.07/2.2.00/ Obecný metabolismus. Energetický metabolismus (obecně) (1).

CZ.1.07/2.2.00/ Obecný metabolismus. Energetický metabolismus (obecně) (1). mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 becný metabolismus Energetický metabolismus (obecně) (1). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

Energetika a metabolismus buňky

Energetika a metabolismus buňky Předmět: KBB/BB1P Energetika a metabolismus buňky Cíl přednášky: seznámit posluchače s tím, jak buňky získávají energii k životu a jak s ní hospodaří Klíčová slova: energetika buňky, volná energie, enzymy,

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Informace Seminář z biochemie II Laboratorní cvičení z biochemie

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Informace Seminář z biochemie II Laboratorní cvičení z biochemie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Informace Seminář z biochemie II Laboratorní cvičení z biochemie Pravidla pro udělení klasifikovaného zápočtu ze Semináře z Biochemie

Více

Metabolismus krok za krokem - volitelný předmět -

Metabolismus krok za krokem - volitelný předmět - Metabolismus krok za krokem - volitelný předmět - Vladimíra Kvasnicová pracovna: 411, tel. 267 102 411, vladimira.kvasnicova@lf3.cuni.cz informace, studijní materiály: http://vyuka.lf3.cuni.cz Sylabus

Více

ANABOLISMUS SACHARIDŮ

ANABOLISMUS SACHARIDŮ zdroj sacharidů: autotrofní org. produkty fotosyntézy heterotrofní org. příjem v potravě důležitou roli hraje GLUKÓZA METABOLISMUS SACHARIDŮ ANABOLISMUS SACHARIDŮ 1. FOTOSYNTÉZA autotrofní org. 2. GLUKONEOGENEZE

Více

IDEÁLNÍ PLYN. Stavová rovnice

IDEÁLNÍ PLYN. Stavová rovnice IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale

Více

B4, 2007/2008, I. Literák

B4, 2007/2008, I. Literák B4, 2007/2008, I. Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují pořádek ve světě, který spěje k čím dál většímu chaosu Druhá věta termodynamiky: Ve vesmíru nebo jakékoliv izolované

Více

Energetický metabolismus rostlin

Energetický metabolismus rostlin Energetický metabolismus rostlin Sylabus - témata (Fischer, Duchoslav) 1. Energie v živých systémech Formy energie a základní principy přeměny energií; změny volné energie, rovnovážná konstanta, spřažení

Více

Termodynamika a živé systémy. Helena Uhrová

Termodynamika a živé systémy. Helena Uhrová Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor

Více

Fyzikální chemie. 1.2 Termodynamika

Fyzikální chemie. 1.2 Termodynamika Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

Energetický metabolismus rostlin

Energetický metabolismus rostlin Energetický metabolismus rostlin Sylabus - témata (Fischer, Šantrůček) 1. Základy energetiky v živých systémech Formy energie a základní principy přeměny energií; změny volné energie, rovnovážná konstanta,

Více

Buněčný metabolismus. J. Vondráček

Buněčný metabolismus. J. Vondráček Buněčný metabolismus J. Vondráček Téma přednášky BUNĚČNÝ METABOLISMUS základní dráhy energetického metabolismu buňky a dynamická podstata jejich regulací glykolýza, citrátový cyklus a oxidativní fosforylace,

Více

Úvod do buněčného metabolismu Citrátový cyklus. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK

Úvod do buněčného metabolismu Citrátový cyklus. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK Úvod do buněčného metabolismu Citrátový cyklus Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK METABOLISMUS = přeměna látek v organismu - má stránku chemickou (látkovou) - reakce anabolické

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

FYZIKÁLNÍ CHEMIE chemická termodynamika

FYZIKÁLNÍ CHEMIE chemická termodynamika FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky

Více

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi 1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4

Více

Oxidace a redukce. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2. Redukce = odebrání kyslíku

Oxidace a redukce. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2. Redukce = odebrání kyslíku Oxidace a redukce Hoření = slučování s kyslíkem = oxidace 2 Mg + O 2 2 MgO S + O 2 SO 2 Redukce = odebrání kyslíku Fe 2 O 3 + 3 C 2 Fe + 3 CO CuO + H 2 Cu + H 2 O 1 Oxidace a redukce Širší pojem oxidace

Více

8. Chemické reakce Energetika - Termochemie

8. Chemické reakce Energetika - Termochemie - Termochemie TERMOCHEMIE oddíl termodynamiky Tepelné zabarvení chemických reakcí Samovolnost chemických reakcí Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti - Termochemie TERMOCHEMIE

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Rychlost chemické reakce

Rychlost chemické reakce Reakční kinetika Rychlost chemické reakce A B energeticky minimální reakční cesta Rare event vznik/zánik vazeb ~1-10 fs Náhodnost reakce ~ms až roky P R Rychlost chemické reakce A B energeticky minimální

Více

Termomechanika 4. přednáška

Termomechanika 4. přednáška ermomechanika 4. přednáška Miroslav Holeček Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných zdrojů

Více

Didaktické testy z biochemie 2

Didaktické testy z biochemie 2 Didaktické testy z biochemie 2 Metabolismus Milada Roštejnská Helena Klímová br. 1. Schéma metabolismu Zažívací trubice Sacharidy Bílkoviny Lipidy Ukládány jako glykogen v játrech Ukládány Ukládány jako

Více

Metabolismus mikroorganismů

Metabolismus mikroorganismů Metabolismus mikroorganismů Metabolismus organismů Souvisí s metabolismem polysacharidů, bílkovin, nukleových kyselin a lipidů Cytoplazma, mitochondrie (matrix, membrána) H 3 PO 4 Polysacharidy Pentózový

Více

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Termodynamické zákony

Termodynamické zákony Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce

Více

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10

Více

Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa

Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa 8. Dýchací řetězec a fotosyntéza Obtížnost A Pomocí následující tabulky charakterizujte jednotlivé složky mitochondriálního dýchacího řetězce. SLOŽKA Pořadí v dýchacím řetězci 1) Molekulový typ 2) Charakteristika

Více

Katalýza / inhibice. Katalýza. Katalyzátory. Inhibitory. katalyzátor: Faktory ovlivňující rychlost chemické reakce. Homogenní

Katalýza / inhibice. Katalýza. Katalyzátory. Inhibitory. katalyzátor: Faktory ovlivňující rychlost chemické reakce. Homogenní Katalýza Katalýza / inhibice Homogenní acidobazická (katalyzátor: H + nebo OH - ) autokatalýza (katalyzátor: produkt reakce) selektivní (katalyzátor: enzym) Ovlivnění rychlosti chemické reakce pomocí katalyzátoru

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

LOGO. Struktura a vlastnosti plynů Ideální plyn

LOGO. Struktura a vlastnosti plynů Ideální plyn Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu

Více

SOIL ECOLOGY the general patterns, and the particular

SOIL ECOLOGY the general patterns, and the particular Soil Biology topic No. 5: SOIL ECOLOGY the general patterns, and the particular patterns SOIL ECOLOGY is an applied scientific discipline dealing with living components of soil, their activities and THEIR

Více

Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika

Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika Kapitoly z fyzikální chemie KFC/KFCH II. Termodynamika Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Termodynamika therme - teplo a dunamis - síla popis jak systémy

Více

součástí našeho každodenního života spalování paliv koroze kovů ad.

součástí našeho každodenního života spalování paliv koroze kovů ad. Oxidace a redukce Biochemický ústav LF MU (E.T.) 2012 1 Význam oxidačně-redukčních reakcí Oxidačně-redukční (redoxní) reakce jsou součástí našeho každodenního života metabolismus živin fotosyntéza buněčná

Více

Aktivita CLIL Chemie I.

Aktivita CLIL Chemie I. Škola: Gymnázium Bystřice nad Pernštejnem Jméno vyučujícího: Mgr. Marie Dřínovská Aktivita CLIL Chemie I. Název aktivity: Uhlíkový cyklus v přírodě Carbon cycle Předmět: Chemie Ročník, třída: kvinta Jazyk

Více

součástí našeho každodenního života spalování paliv koroze kovů ad.

součástí našeho každodenního života spalování paliv koroze kovů ad. Oxidace a redukce Srážecí rovnováhy, součin rozpustnosti Biochemický ústav LF MU (E.T.) 2013 1 Význam oxidačně-redukčních reakcí Oxidačně-redukční (redoxní) reakce jsou součástí našeho každodenního života

Více

soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy

soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy Soustava soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy Okolí Hraniční plocha Soustava Soustava Rozdělení podle vztahu

Více

Biosyntéza sacharidů 1

Biosyntéza sacharidů 1 Biosyntéza sacharidů 1 S a c h a r id y p o tr a v y (š k r o b, g ly k o g e n, sa c h a r o sa, a j.) R e z e r v n í p o ly sa c h a r id y J in é m o n o sa c h a r id y Trávení (amylásy - sliny, pankreas)

Více

Bp1252 Biochemie. #8 Metabolismus živin

Bp1252 Biochemie. #8 Metabolismus živin Bp1252 Biochemie #8 Metabolismus živin Chemické reakce probíhající v organismu Katabolické reakce přeměna složitějších látek na jednoduché, jsou většinou exergonické. Anabolické reakce syntéza složitějších

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Bioenergetika. přeměny energie v živých organismech

Bioenergetika. přeměny energie v živých organismech Bioenergetika přeměny energie v živých organismech Chemiosmotická teorie 1978 Mitchell Nobelova cena na semipermeabilní membráně tvorba elektrochemického gradientu na membráně protonové pumpy protonmotivní

Více

Oxidace a redukce. Objev kyslíku nový prvek, vyvrácení flogistonové teorie. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2

Oxidace a redukce. Objev kyslíku nový prvek, vyvrácení flogistonové teorie. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2 Oxidace a redukce Objev kyslíku nový prvek, vyvrácení flogistonové teorie Hoření = slučování s kyslíkem = oxidace 2 Mg + O 2 2 MgO S + O 2 SO 2 Lavoisier Redukce = odebrání kyslíku Fe 2 O 3 + 3 C 2 Fe

Více

Katabolismus - jak budeme postupovat

Katabolismus - jak budeme postupovat Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův

Více

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD Ukázky z pracovních listů z biochemie pro SŠ A ÚVD 1) Doplň chybějící údaje. Jak se značí makroergní vazba? Kolik je v ATP makroergních vazeb? Co je to ADP Kolik je v ADP makroergních vazeb 1) Pojmenuj

Více

Fotosyntéza. Ondřej Prášil

Fotosyntéza. Ondřej Prášil Fotosyntéza 2 Ondřej Prášil prasil@alga.cz 384-340430 Obsah přednášky membrány a organely světlo termodynamika historie Fotosyntetické membrány Electron tomography Cells contain ~100 chlorosomes appressed

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Energetika chemických reakcí

Energetika chemických reakcí Energetika chemických reakcí Bioenergetika Kinetika Biochemický ústav LF MU (J.D.) 2013 1 Základní pojmy Systém - část prostoru oddělená od svého okolí izolovaný žádná komunikace s okolím uzavřený výměna

Více

Electrochemistry of Selected Phosphorus Oxoacids on a Bulk Pt Electrode. Tomas Bystron Martin Prokop Karel Bouzek

Electrochemistry of Selected Phosphorus Oxoacids on a Bulk Pt Electrode. Tomas Bystron Martin Prokop Karel Bouzek Electrochemistry of Selected Phosphorus Oxoacids on a Bulk Pt Electrode Tomas Bystron Martin Prokop Karel Bouzek High Temperature PEM Fuel Cell (HT PEM FC) Operation temperature 130-200 C Enhanced rate

Více

33.Krebsův cyklus. AZ Smart Marie Poštová

33.Krebsův cyklus. AZ Smart Marie Poštová 33.Krebsův cyklus AZ Smart Marie Poštová m.postova@gmail.com Metabolismus Metabolismus je souhrn chemických reakcí v organismu. Základní metabolické děje jsou: a) katabolické odbourávací (složité látky

Více

Sacharidy a polysacharidy (struktura a metabolismus)

Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana

Více

Elektroenergetika 1. Termodynamika

Elektroenergetika 1. Termodynamika Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Fotosyntéza (2/34) = fotosyntetická asimilace

Fotosyntéza (2/34) = fotosyntetická asimilace Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější

Více

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Regulace metabolických drah na úrovni buňky

Regulace metabolických drah na úrovni buňky Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

Intermediární metabolismus. Vladimíra Kvasnicová

Intermediární metabolismus. Vladimíra Kvasnicová Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

Termodynamika 1. UJOP Hostivař 2014

Termodynamika 1. UJOP Hostivař 2014 Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo

Více

Elektroenergetika 1. Termodynamika a termodynamické oběhy

Elektroenergetika 1. Termodynamika a termodynamické oběhy Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu Enzymy Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech z chemického hlediska jednoduché nebo

Více

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter. CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické

Více

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy JAN ILLNER Dýchací řetězec & oxidativní fosforylace Tvorba energie v živých systémech ATP zdroj E pro biochemické procesy Tvorba

Více

BIOCHEMIE. František Vácha.

BIOCHEMIE. František Vácha. BIOCHEMIE František Vácha http://www.prf.jcu.cz/~vacha/ Doporučená literatura: D.L. Nelson, M.M. Cox Lehninger Principles of Biochemistry D.J. Voet, J.G. Voet, C.W. Pratt Principles of Biochemistry L.

Více

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza

Více

IDEÁLNÍ PLYN 14. TEPELNÉ STROJE, PRVNÍ A DRUHÝ TERMODYNAMICKÝ ZÁKON

IDEÁLNÍ PLYN 14. TEPELNÉ STROJE, PRVNÍ A DRUHÝ TERMODYNAMICKÝ ZÁKON IDEÁLNÍ PLYN 14. TEPELNÉ STROJE, PRVNÍ A DRUHÝ TERMODYNAMICKÝ ZÁKON Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPELNÝ STROJ Tepelný stroj je stroj, který pracuje na základě prvního termodynamického

Více

Chemie Ch3 volitelný předmět pro 4. ročník

Chemie Ch3 volitelný předmět pro 4. ročník Chemie Ch3 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Chemie. Mezipředmětové přesahy a vazby

Více

Předmět: KBB/BB1P; KBB/BUBIO

Předmět: KBB/BB1P; KBB/BUBIO Předmět: KBB/BB1P; KBB/BUBIO Energie z mitochondrií a chloroplastů Cíl přednášky: seznámit posluchače se základními principy získávání energie v mitochondriích a chloroplastech Klíčová slova: mitochondrie,

Více

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,

Více

14. Fyziologie rostlin - fotosyntéza, respirace

14. Fyziologie rostlin - fotosyntéza, respirace 14. Fyziologie rostlin - fotosyntéza, respirace Metabolismus -přeměna látek a energií (informací) -procesy: anabolický katabolický autotrofie Anabolismus heterotrofie Autotrofní organismy 1. Chemoautotrofy

Více

je část změny celkové energie schopná konat práci, když systém směřuje k rovnováze (za konstantního P a T). aa + bb cc + dd.

je část změny celkové energie schopná konat práci, když systém směřuje k rovnováze (za konstantního P a T). aa + bb cc + dd. BIOENERGETIA Základním znakem živých organismů je vysoký stupeň organisovanosti. Ve sání s okolím mají vysoký stupeň strukturní uspořádanosti. To se týká i energetického aparátu. Živý organismus je otevřeným

Více

Melting the ash from biomass

Melting the ash from biomass Ing. Karla Kryštofová Rožnov pod Radhoštěm 2015 Introduction The research was conducted on the ashes of bark mulch, as representatives of biomass. Determining the influence of changes in the chemical composition

Více

Molekulová fyzika a termika. Přehled základních pojmů

Molekulová fyzika a termika. Přehled základních pojmů Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou

Více

Thermos teplo Dynamic změna

Thermos teplo Dynamic změna Termodynamika Plán přednášky: Předmět studia Základní pojmy Termodynamické zákony předmět studia Co je to termodynamika? Soubor matematických modelů a představ, které nám umožňují popsat jakým způsobem

Více

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Ročník 1.

Více

1. ročník Počet hodin

1. ročník Počet hodin SOUSTAVY LÁTEK A JEJICH SLOŽENÍ rozdělení přírodních látek a vlastnosti chemických látek soustavy látek a jejich složení STAVBA ATOMU historie pohledu na atom složení a struktura atomu stavba atomu VELIČINY

Více

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák BUŇKA A ENERGIE kajman brýlový Caiman crocodilus Kostarika, 2004 Biologie 8, 2017/2018, Ivan Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují POŘÁDEK VE SVĚTĚ, KTERÝ SPĚJE K ČÍM

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní

Více

Termodynamika v biochemii

Termodynamika v biochemii Termodynamika v biochemii Studium energetických změn Klasická x statistická Rovnovážná x nerovnovážná lineárn rní a nelineárn rní Základní pojmy Makroskopický systém, okolí systému Termodynamický systém

Více

13 Oxidačně redukční reakce

13 Oxidačně redukční reakce 13 Oxidačně redukční reakce Oxidaci a redukci ve smyslu elektronových představ chápeme jako odevzdávání a přibírání elektronů. Kdykoliv se nějaká látka (atom, molekula, ion) oxiduje, odevzdává elektrony

Více

METABOLISMUS MONOSACHARIDŮ

METABOLISMUS MONOSACHARIDŮ METABOLISMUS MONOSACHARIDŮ Metabolismus monosacharidů (zejména jejich katabolismus) je prakticky metabolismem glukosy. Ostatní monosacharidy z ní v případě potřeby vznikají, nebo jsou na ni několika reakcemi

Více