Difrakce elektronů. Podstata difrakce
|
|
- Stanislava Horáčková
- před 6 lety
- Počet zobrazení:
Transkript
1 Difrakce elektronů 2d sin Θ=n λ n= 12,, 3... Podstata difrakce Rozptyl elektronů na elektronovém obalu a jádrech Duální povaha elektronového paprsku Louis de Broglie Primární monoenergetický svazek elektronů s vlnovou délkou λ kratší než je obvyklá mřížková konstanta pevných látek - λ dána urychlujícím napětím elektronové trysky
2 Difrakce elektronů Odhad difrakčních úhlů λ el = nm (1.97 pm) pro 300 kv urychlované elektrony typická hodnota pro vzdálenost krystalových rovin d = 0.2 nm dosazením do Braggovy rovnice hodnota difrakčního úhlu Θ = 0.28 Difrakční úhly v ED (elektronové difrakci) 0 < Θ < 2 Rovina mřížky skoro paralelní se směrem paprsku Mohou být analyzovány velmi malé krystaly Silná Coulombická interakce elektronů s látkou
3 Difrakce elektronů Obdobně jako u RTG difrakce odlišnost záznamu pro monokrystal a polykrystalický vzorek Proměřování monokrystalu při jeho rotaci podél tří os detailní informace o struktuře a orientaci Polykrystalický vzorek superpozice signálů od různě orientovaných krystalů typ krystalové struktury a mřížkové parametry
4 Difrakce elektronů LEED (Low-Energy Electron Diffraction ) difrakce elektronů s nízkou energií ev kolmo na povrch Charakterizace povrchů a povrchových struktur v laboratorních podmínkách RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií (měřená) na odraz energie kev, malý úhel dopadu (např. 30 mrad) Charakterizace povrchů např. studium epitaxního růstu, polovodičové materiály - sledování povrchu během procesů THEED (Transmission High-Energy Electron Diffraction ) difrakce elektronů s vysokou energií měřená v procházejícím paprsku Kombinace s TEM
5 Difrakce elektronů LEED (Low-Energy Electron Diffraction ) difrakce elektronů s nízkou energií ev (0,22 0, 05 nm) kolmo na povrch Elektricky nabité mřížky výběr je elasticky rozptýlených elektronů Informace o struktuře a uspořádanosti povrchu, informace o meziatomových vzdálenostech
6 Difrakce elektronů LEED (Low-Energy Electron Diffraction ) difrakce elektronů s nízkou energií ev (0,22 0, 05 nm) Jednoduchý model řada atomů (na povrchu) d = a sin θ = n λ
7 Difrakce elektronů RHEED (Reflection High- Energy Electron Diffraction difrakce elektronů s vysokou energií (měřená) na odraz energie kev, malý úhel dopadu (např. 30 mrad)
8 Difrakce elektronů RHEED (Reflection High- Energy Electron Diffraction difrakce elektronů s vysokou energií (měřená) na odraz energie kev, malý úhel dopadu (např. 30 mrad)
9 Difrakce elektronů Reflection high-energy electron diffraction (RHEED) is a standard diffraction method:in surface science, but contrary to low-energy electron diffraction (LEED) the analysis of morphology and defect structure is not as reliable due to inelastic scattering and a more complicated scattering geometry. These difficulties are mastered by adequate instrumentation and. measuring procedures as done with a novel high-resolution, energy-filtered RHEED instrument.
10 Difrakce elektronů - diamant J.M. Zuo and J.C. Mabon, Web-based Electron Microscopy Application Software: Web-EMAPS, Microsc Microanal 10(Suppl 2), 2004; URL:
11 Difrakce elektronů - grafit J.M. Zuo and J.C. Mabon, Web-based Electron Microscopy Application Software: Web-EMAPS, Microsc Microanal 10(Suppl 2), 2004; URL:
12 Difrakce elektronů (a) TEM image of a group of nanolime particles (WS sample); (b) electron diffraction image on A particle
13 Difrakce elektronů (a) TEM image of a group of small single particles; (b) electron diffraction image on A particle
14 Difrakce elektronů The morphology seen in this section is typical of the three sections prepared, namely: the sections are single crystals with electrondiffraction patterns that match barite. In the section from F 546=9 some internal structure is visible mainly in the form of striations,.
15 Difrakce neutronů 1. pokusy Počátky ve světě - po roce 1946 intenzivní zdroje neutronů jaderné reaktory výzkumné reaktory, pulsní neutronové zdroje 60. léta Řež - uvedení do provozu prvního neutronového difraktometru SPN-100 u výzkumného reaktoru VVR-S
16 Difrakce neutronů Fyzikální podstata Neutrony - vysoce pronikavé většinou materiálů Málo citlivé na povrchové vrstvy, informace o stavu vnitřních vrstev materiálů (nedestruktivně) - průniková vzdálenost v dokonalém krystalu je ~10-4 cm ve směru Braggova úhlu dané reflexní roviny (hkl) Rozptyl neutronů je jadernou interakcí Intenzita signálu není monotónní funkcí atomového čísla - přednost lokalizace lehkých prvků, rozlišení i izotopů např. vodík, deuterium např. při studiu struktury makromolekulárních látek Neutronový rozptyl má i magnetickou složku. - studium magnetických struktur důležitá oblast využití neutronového rozptylu
17 Difrakce a rozptyl neutronů Fyzikální podstata Vnějškově podobné RTG difrakci Ovšem rozptyl na jádrech Vlnová délka termálních neutronů cca m Tepelné neutrony - energie v oblasti 10-2 až 10-1 ev Srovnatelná s energií kmitů krystalové mříže Studium nejen statické struktury krystalů, ale i tepelný pohyb atomů Chladné neutrony - ohraničeny energií ev Spektrometr zdroj neutronů, kolimační systém, stíněný monochromátor, vlastní difraktometr s jedním či dvěma rameny, detektor
18 Difrakce a rozptyl neutronů Spektrometr zdroj neutronů, kolimační systém, stíněný monochromátor, vlastní difraktometr s jedním či dvěma rameny, detektor Přístroje pracující s konstantní vlnovou délkou monochromatického svazku. Jedná se o tzv. konvenční nebo též klasické uspořádání pro neutronovou difraktografii. Z polychromatického spektra vlnových délek vysílaných neutronovým zdrojem vybereme pomocí monochromátoru požadovanou vlnovou délku, po rozptylu na vzorku je difraktovaný svazek registrován detektorem umístěným na rameni přístroje, které buď krokově nebo kontinuálně probíhá oblast 2θ
19 Difrakce a rozptyl neutronů Spektrometr zdroj neutronů, kolimační systém, stíněný monochromátor, vlastní difraktometr s jedním či dvěma rameny, detektor Přístroje pracující s konstantním úhlem rozptylu 2θ. Jedná se o difraktometry založené na průletové metodě (TOF). Polychromatické záření pulzního zdroje dopadá přímo na vzorek, rozptýlené neutrony jsou snímány detektorem pod fixním úhlem 2θ. Separace v závislosti na vlnové délce je prováděna měřením doby potřebné pro průlet neutronů vymezenou vzdáleností L. K registraci impulsu detektoru se používá časového analyzátoru, kde každému kanálu odpovídá vlnová délka.
20 Difrakce a rozptyl neutronů Detektor - neutrony detegovány pomocí sekundárních produktů jaderných reakcí, které vyvolávají 10 B 1 n 7 Li 4 He 0,48MeV 93% 10 B 1 n 7 Li 4 He 7% 6 Li 1 n 3 T 4 He 3 He 1 n 1 H 3 T BF 3 počítač - plněn plynem BF 3 obohaceným na 96% B 10 Heliový počítač - 3 He (n,p) 3 H Štěpné komory elektrody potaženy vrstvou štěpného materiálu (obvykle U 3 O 8 ) - produkty štěpení do plynné náplně a způsobí ionizaci
21 Difrakce neutronů 60. léta Řež - uvedení do provozu prvního neutronového difraktometru SPN původně Spektrometr polarizovaných neutronů, později označen - Dvouosý difraktometr SPN-100 Difrakční experimenty jak s polarizovanými, tak nepolarizovanými neutrony o vlnové délce λ = ( ) nm Difrakce na feromagnetických dokonalých monokrystalech Difrakce neutronů na ultrazvukem buzených kmitajících monokrystalech
22 Difrakce neutronů a další efekty Brent Fultz, Tim Kelley, Mike McKerns, Jiao Lin, JaeDong Lee, Olivier Delaire, Max Kresch, Michael Aivazis: Experimental Inelastic Neutron Scattering
23 Difrakce neutronů Maloúhlový rozptyl neutronů (SANS) patří k experimentálním technikám často využívaným k výzkumu nehomogenit o rozměrech od 10 Å do 10 µm a má široké uplatnění v chemii, biologii a fyzice pevných látek Předností je možnost nedestruktivní kvantitativní analýzy parametrů mikrostruktury, průměrovaných přes makroskopický objem vzorku a tudíž neovlivněných povrchovými artefakty a lokálními fluktuacemi
24 Difrakce neutronů Např. studium porozity plasmově nanášených keramických materiálů, které jsou charakteristické přítomností širokého spektra pórů a trhlin
25 Difrakce neutronů
26 Difrakce neutronů Neutron radiation is a versatile probe for obtaining information from the interior of undisturbed museum objects and archaeological findings. Neutrons penetrate easily through coatings and corrosion layers deep into centimetre-thick artefacts, a property that makes them suitable for non-destructive analyses. A particular attraction of neutron techniques for archaeologists and conservation scientists is the prospect of locating hidden materials and structures inside objects.
27 Difrakce neutronů Neutron analysis techniques are based on a simple principle. A material is placed in a beam of neutrons which can interact with the atomic nuclei in two ways: the neutrons are either scattered or absorbed. These scattering and capture processes are material specific, that is, every material responds differently to neutron illumination. Detectors can be used to measure the intensity of the transmitted or scattered radiation, the scattering angles, or the energies of both neutrons and gamma rays.
28 Difrakce neutronů Scattered neutrons may be exploited to give information on the microscopic structure of a material in terms of the mineral or metal phase abundance, of the microstructure, of texture or porosity, to name some examples. Neutron Activation Analysis - the capture of neutrons Neutron Diffraction - the elastic scattering of thermal neutrons Small Angle Neutron Scattering - the elastic neutron scattering of thermal neutrons. Porosity of a material, and size and surface characteristics of mineral aggregates Inelastic neutron scattering - atomic and molecular motion as well as magnetic and crystal field excitations
29 Difrakce neutronů Neutron Diffraction - the elastic scattering of thermal neutrons capable of determining many structural aspects of a material such as phase composition and crystallographic texture. These properties are often related to the deformation and treatment history of the material the use - a non-destructive archaeometric tool to study ceramic and metal artefacts - depending on sample thickness and neutron spot sizes, the typical time needed to achieve satisfactory data statistics and resolution for a quantitative analysis ranged from a few minutes up to several hours for metal and pottery samples a complete mapping of objects by neutron diffraction is rather the exception than the rule
30 Difrakce neutronů Neutron and X-ray diffraction not competing but complementary methods For non-destructive studies of archaeological objects or historic artefacts, X- ray diffraction is a choice for studying surfaces whereas neutron diffraction sees the bulk Neutron diffraction is a direct method for examining all structural aspects of archaeological materials. Many archaeological materials (e.g. pottery, marble, pigments, metals, alloys, corrosion products) are poly-crystalline and multi-phase opposed to single-crystalline and single-phase, respectively. The corresponding multi-phase diffraction pattern is a superposition of the singlephase patterns. The diffraction pattern of a pure metal with cubic or hexagonal symmetry may contain a rather small number of about 20 Bragg peaks. A multi-mineralic piece of pottery generates thousands of peaks.
31 Difrakce neutronů The microscopic structure of a material often carries information about the mechanical deformation history. An important parameter is the crystallographic texture of a material. Polycrystalline samples are made of a large number of grains that are composed of tiny single crystals ( crystallites ). Each of the crystallites may have a size and orientation different from its neighbours. Often the grains are oriented at random, then the material is said to be free of texture. Otherwise, if the grains prefer certain orientations, e.g. from a particular mechanical treatment, then the material is said to exhibit texture. The presence and the absence of certain minerals in a piece of pottery, for example, and a quantitative assessment of the mineral mixture may provide information about the initial clay mixture and about firing temperatures and the firing atmosphere.
32 Difrakce neutronů It is important to underline that these structural features are obtained nondestructively. Neutron diffraction allows for separating corrosion and alteration phases from the alloy phases, and hence to obtain an unobstructed view onto the original alloy components, even in the presence of substantial surface corrosion and mineralisation. The experimental concepts presented in this paper are based on the timeof-flight (TOF) method, i.e. the energies of the neutrons are determined by a measurement of the flight times. The TOF techniques use a white neutron beam, containing neutrons with a wide range of velocities.
33 Difrakce neutronů
34 Difrakce neutronů
35 Rozptyl neutronů
Chemie a fyzika pevných látek p2
Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
Chemie a fyzika pevných látek l
Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných
Krystalografie a strukturní analýza
Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl
Možnosti rtg difrakce. Jan Drahokoupil (FZÚ) Zdeněk Pala (ÚFP) Jiří Čapek (FJFI)
Možnosti rtg difrakce Jan Drahokoupil (FZÚ) Zdeněk Pala (ÚFP) Jiří Čapek (FJFI) AdMat 13. 3. 2014 Aplikace Struktura krystalických látek Fázová analýza Mřížkové parametry Textura, orientace Makroskopická
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
Přednáška 12. Neutronová difrakce a rozptyl neutronů. Martin Kormunda
Přednáška 12 Neutronová difrakce a rozptyl neutronů Neutronová difrakce princip je shodný s rentgenovou difrakcí platí Braggova rovnice nλ = 2d sin θ Rozptyl záření na atomomech u XRD záření interaguje
Lasery RTG záření Fyzika pevných látek
Lasery RTG záření Fyzika pevných látek Lasery světlo monochromatické koherentní malá rozbíhavost svazku lze ho dobře zfokusovat aktivní prostředí rezonátor fotony bosony laser stejný kvantový stav učební
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4.1 Mikrostruktura stavebních hmot 4.1.1 Úvod Vlastnosti pevných látek, tak jak se jeví při makroskopickém zkoumání, jsou obrazem vnitřní struktury materiálu. Vnitřní
Teorie rentgenové difrakce
Teorie rentgenové difrakce Vlna primárního záření na atomy v krystalu. Jádra atomů zůstanou vzhledem ke své velké hmotnosti v klidu, ale elektrony jsou rozkmitány se stejnou frekvencí jako má primární
RTG difraktometrie 1.
RTG difraktometrie 1. Difrakce a struktura látek K difrakci dochází interferencí mřížkou vychylovaných vln Když dochází k rozptylu vlnění na různých atomech molekuly či krystalu, tyto vlny mohou interferovat
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
Charakterizace koloidních disperzí. Pavel Matějka
Charakterizace koloidních disperzí Pavel Matějka Charakterizace koloidních disperzí 1. Úvod koloidní disperze 2. Spektroskopie kvazielastického rozptylu 1. Princip metody 2. Instrumentace 3. Příklady použití
Dualismus vln a částic
Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz
1 Teoretický úvod. 1.2 Braggova rovnice. 1.3 Laueho experiment
RTG fázová analýza Michael Pokorný, pok@rny.cz, Střední škola aplikované kybernetiky s.r.o. Tomáš Jirman, jirman.tomas@seznam.cz, Gymnázium, Nad Alejí 1952, Praha 6 Abstrakt Rengenová fázová analýza se
Litosil - application
Litosil - application The series of Litosil is primarily determined for cut polished floors. The cut polished floors are supplied by some specialized firms which are fitted with the appropriate technical
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
EM, aneb TEM nebo SEM?
EM, aneb TEM nebo SEM? Jiří Šperka Přírodovědecká fakulta, Masarykova univerzita, Brno 2. únor 2011 / Prezentace pro studentský seminář Jiří Šperka (Masarykova univerzita) SEM a TEM 2. únor 2011 1 / 21
Detekce a spektrometrie neutronů
Detekce a spektrometrie neutronů 1. Pomalé neutrony a) aktivní detektory, b) pasivní detektory, c) mechanické monochromátory 2. Rychlé neutrony a) detektory používající zpomalování neutronů b) přímá detekce
FUNKČNÍ VZOREK FUNKČNÍ VZOREK ZAŘÍZENÍ HTPL-A PRO MĚŘENÍ RELATIVNÍ TOTÁLNÍ EMISIVITY POVLAKŮ
ODBOR TERMOMECHANIKA TECHNOLOGICKÝCH PROCESŮ FUNKČNÍ VZOREK FUNKČNÍ VZOREK ZAŘÍZENÍ HTPL-A PRO MĚŘENÍ RELATIVNÍ TOTÁLNÍ EMISIVITY POVLAKŮ Autor: Ing. Zdeněk Veselý, Ph.D. Doc. Ing. Milan Honner, Ph.D.
10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita
Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová
2. Difrakce elektronů na krystalu
2. Difrakce elektronů na krystalu Interpretace pozorování v TEM faktory ovlivňující interakci e - v krystalu 2 způsoby náhledu na interakci e - s krystalem Rozptyl x difrakce částice x vlna Difrakce odchýlení
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
ELECTROCHEMICAL HYDRIDING OF MAGNESIUM-BASED ALLOYS
ELEKTROCHEMICKÉ SYCENÍ HOŘČÍKOVÝCH SLITIN VODÍKEM ELECTROCHEMICAL HYDRIDING OF MAGNESIUM-BASED ALLOYS Dalibor Vojtěch a, Alena Michalcová a, Magda Morťaniková a, Borivoj Šustaršič b a Ústav kovových materiálů
Techniky prvkové povrchové analýzy elemental analysis
Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded
SMĚROVÁ KRYSTALIZACE EUTEKTIK SYSTÉMU Ti-Al-Si DIRECTIONAL CRYSTALLIZATION OF Ti-Al-Si EUTECTICS
SMĚROVÁ KRYSTALIZACE EUTEKTIK SYSTÉMU Ti-Al-Si DIRECTIONAL CRYSTALLIZATION OF Ti-Al-Si EUTECTICS Dalibor Vojtěch a Pavel Lejček b Jaromír Kopeček b Katrin Bialasová a a Ústav kovových materiálů a korozního
Metody povrchové analýzy založené na detekci iontů. Pavel Matějka
Metody povrchové analýzy založené na detekci iontů Pavel Matějka Metody povrchové analýzy založené na detekci iontů 1. sekundárních iontů - SIMS 1. Princip metody 2. Typy bombardování 3. Analyzátory iontů
CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ
CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ Lukáš ZUZÁNEK Katedra strojírenské technologie, Fakulta strojní, TU v Liberci, Studentská 2, 461 17 Liberec 1, CZ,
Analýza vrstev pomocí elektronové spektroskopie a podobných metod
1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
METODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:
WORKBOOK Subject: Teacher: Student: Mathematics.... School year:../ Conic section The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone.
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Rudolf Michalec Deset let práce v oboru difrakce pomalých neutronů v Československu Pokroky matematiky, fyziky a astronomie, Vol. 17 (1972), No. 6, 316--322 Persistent
Difrakce elektronů v krystalech, zobrazení atomů
Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
Náboj a hmotnost elektronu
1911 určení náboje elektronu q pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
STUDIUM ELEKTROCHEMICKÝCH KOROZNÍCH JEVŮ DVOUFÁZOVÝCH OCELÍ ZA POUŽITÍ METODY SRET.
STUDIUM ELEKTROCHEMICKÝCH KOROZNÍCH JEVŮ DVOUFÁZOVÝCH OCELÍ ZA POUŽITÍ METODY SRET. STUDY OF ELECTROCHEMICAL CORROSION PHENOMENA OF DUPLEX STAINLESS STEELS BY USE OF SRET METHODS Petr Kubečka a Vladimír
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 6. března 2007 Obor: Fyzika Ročník: III Semestr:
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA &KDSWHUSUHVHQWVWKHGHVLJQDQGIDEULFDW LRQRIPRGLILHG0LQNRZVNLIUDFWDODQWHQQD IRUZLUHOHVVFRPPXQLFDWLRQ7KHVLPXODWHG DQGPHDVXUHGUHVXOWVRIWKLVDQWHQQDDUH DOVRSUHVHQWHG
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz
1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.
1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci
Radiova meteoricka detekc nı stanice RMDS01A
Radiova meteoricka detekc nı stanice RMDS01A Jakub Ka kona, kaklik@mlab.cz 15. u nora 2014 Abstrakt Konstrukce za kladnı ho softwarove definovane ho pr ijı macı ho syste mu pro detekci meteoru. 1 Obsah
Elektronová mikroanalýza trocha historie
Elektronová mikroanalýza trocha historie 1949 - Castaing postavil první mikrosondu s vlnově disperzním spektrometrem a vypracoval teorii 1956 počátek výroby komerčních mikrosond (Cameca) 1965 - počátek
Rentgenová difrakce a spektrometrie
Rentgenová difrakce a spektrometrie RNDr.Jaroslav Maixner, CSc. VŠCHT v Praze Laboratoř rentgenové difraktometrie a spektrometrie Technická 5, 166 28 Praha 6 224354201, 24355023 Jaroslav.Maixner@vscht.cz
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
Elektronová mikroskopie II
Elektronová mikroskopie II Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Transmisní elektronová mikroskopie TEM Informace zprostředkována prošlými e - (TE, DE) Umožň žňuje studium vnitřní
Využití iontových svazků pro analýzu materiálů
Využití iontových svazků pro analýzu materiálů A. Macková, J. Bočan, P. Malinský Skupina jaderných analytických metod, Ústav jaderné fyziky AV ČR, Řež u Prahy, 250 68 Mackova@ujf.cas.cz. Úvod Počátek rozvoje
Difrakce elektronů v krystalech a zobrazení atomů
Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: II/2 Inovace a zkvalitnění výuky cizích jazyků na středních
Metody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
Unit 3 Stereochemistry
Unit 3 Stereochemistry Stereoisomers hirality (R) and (S) Nomenclature Depicting Asymmetric arbons Diastereomers Fischer Projections Stereochemical Relationships Optical Activity Resolution of Enantiomers
MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER
MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER Kamil Krybus a Jaromír Drápala b a OSRAM Bruntál, spol. s r.
Transformers. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení
Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ..07/..30/0.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je
Bioimaging rostlinných buněk, CV.2
Bioimaging rostlinných buněk, CV.2 Konstrukce mikroskopu (optika, fyzikální principy...) Rozlišení - kontrast Live cell microscopy Modulace kontrastu (Phase contrast, DIC) Videomikroskopia Nízký kontrast
Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION
UHLÍKATÉ ČÁSTICE V OVZDUŠÍ MORAVSKO- SLEZSKÉHO KRAJE CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION Ing. MAREK KUCBEL Ing. Barbora SÝKOROVÁ, prof. Ing. Helena RACLAVSKÁ, CSc. Aim of this work
Typy interakcí. Obsah přednášky
Co je to inteligentní a progresivní materiál - Jaderné analytické metody-využití iontových svazků v materiálové analýze Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Obsah přednášky fyzikální princip
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
Principy a metody monokrystalové strukturní analýzy
Principy a metody monokrystalové strukturní analýzy Jaromír Marek Obsah přednášky Monokrystalová krystalografie jako chemická metodika Historie difrakční krystalografie, krystalografické databáze Principy
Náboj a hmotnost elektronu
1911 změřil náboj elektronu Pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován, Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty
Studium elektronové struktury povrchu elektronovými spektroskopiemi
Studium elektronové struktury povrchu elektronovými spektroskopiemi Autor: Petr Blumentrit Ve své disertační práci se zabývám Augerovou elektronovou spektroskopií ve speciálním uspořádání, ve kterém jsou
Přednáška č. 3. Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování minerálů.
Přednáška č. 3 Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování minerálů. Strukturní krystalografie Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování
Elektronová Mikroskopie SEM
Elektronová Mikroskopie SEM 26. listopadu 2012 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986 Historie elektronové mikroskopie První SEM Manfred von Ardenne
SPECIFICATION FOR ALDER LED
SPECIFICATION FOR ALDER LED MODEL:AS-D75xxyy-C2LZ-H1-E 1 / 13 Absolute Maximum Ratings (Ta = 25 C) Parameter Symbol Absolute maximum Rating Unit Peak Forward Current I FP 500 ma Forward Current(DC) IF
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
Elektronová mikroanalýz Instrumentace. Metody charakterizace nanomateriálů II
Elektronová mikroanalýz ýza 1 Instrumentace Metody charakterizace nanomateriálů II RNDr. Věra V Vodičkov ková,, PhD. Elektronová mikroanalýza relativně nedestruktivní rentgenová spektroskopická metoda
Základy fyzikálněchemických
Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé
Spectroscopy. Radiation and Matter Spectroscopic Methods. Luís Santos
Spectroscopy Radiation and Matter Spectroscopic Methods Spectroscopy Spectroscopy studies the way electromagnetic radiation (light) interacts with matter as a function of frequency, thus, it studies the
Klepnutím lze upravit styl předlohy. Klepnutím lze upravit styl předlohy. nadpisů. nadpisů. Aleš Křupka.
1 / 13 Klepnutím lze upravit styl předlohy Klepnutím lze upravit styl předlohy www.splab.cz Aleš Křupka akrupka@phd.feec.vutbr.cz Department of Telecommunications Faculty of Electrotechnical Engineering
TechoLED H A N D B O O K
TechoLED HANDBOOK Světelné panely TechoLED Úvod TechoLED LED světelné zdroje jsou moderním a perspektivním zdrojem světla se širokými možnostmi použití. Umožňují plnohodnotnou náhradu žárovek, zářivkových
Jiří Oswald. Fyzikální ústav AV ČR v.v.i.
Jiří Oswald Fyzikální ústav AV ČR v.v.i. I. Úvod Polovodiče Zákládní pojmy Kvantově-rozměrový jev II. Luminiscence Si nanokrystalů III. Luminiscence polovodičových nanostruktur A III B V IV. Aplikace Pásová
Přednáška 11. GISAX (Grazing-Incidence Small-Angle X-Ray Scattering) Martin Kormunda
Přednáška 11 GISAX (Grazing-Incidence Small-Angle X-Ray Scattering) Grazing Incidence Small Angle X-ray Scattering Rozptyl rengenovských fotonů pod malým úhlem první publikovaná idea 1986 tato oblast je
Konfokální XRF. Ing. Radek Prokeš Katedra dozimetrie a aplikace ionizujícího záření Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze
Konfokální XRF Ing. Radek Prokeš Katedra dozimetrie a aplikace ionizujícího záření Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze Obsah Od klasické ke konfokální XRF Princip konfokální XRF Polykapilární
MTP-7-optické materiály. Optické vlastnosti materiálů
MTP-7-optické materiály Optické vlastnosti materiálů Barva, teplota světla Draper point 525 C Žárovka a výbojka - spektra Světlo pod vodou LASER (light amplification by stimulated emission of radiation)
KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE
české pracovní lékařství číslo 1 28 Původní práce SUMMARy KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE globe STEREOTHERMOMETER A NEW DEVICE FOR measurement and
F7030 Rentgenový rozptyl na tenkých vrstvách
F7030 Rentgenový rozptyl na tenkých vrstvách O. Caha PřF MU Prezentace k přednášce Numerické simulace Příklady experimentů Vybrané vztahy Sylabus Elementární popis vlnového pole: Rtg vlna ve vakuu; Greenova
Tomáš Grygar: Metody analýza pevných látek L4-difrakce.doc
4. Rtg prášková difrakce (XRD, p-xrd) Tomáš Grygar: Metody analýza pevných látek Termíny Angstrom Å - 10-10 m = 0.1 nm. Tuhle jednotku hned tak něco nevymýtí. Důvodem je, jak pěkně se s ní popisují velikosti
STUDIUM SKLOKERAMICKÝCH POVLAKŮ V BIOLOGICKÉM PROSTŘEDÍ
STUDIUM SKLOKERAMICKÝCH POVLAKŮ V BIOLOGICKÉM PROSTŘEDÍ Ing. Vratislav Bártek e-mail: vratislav.bartek.st@vsb.cz doc. Ing. Jitka Podjuklová, CSc. e-mail: jitka.podjuklova@vsb.cz Ing. Tomáš Laník e-mail:
místo, kde se rodí nápady
místo, kde se rodí nápady a private european network of information centres on materials and innovative products. Created in 2001 in Paris, it provides members with a large selection of specific, reproducible
The tension belt serves as a tension unit. After emptying the belt is cleaned with a scraper.
Second School Year BELT AND WORM CONVEYORS They are machines for transporting piece or loose materials even for great distances. In loaders and unloaders it is not necessary to stop the conveyor. The transport
POROVNÁNÍ VLIVU DEPOSICE TENKÝCH VRSTEV A NAVAŘOVÁNÍ NA DEGRADACI ZÁKLADNÍHO MATERIÁLU
POROVNÁNÍ VLIVU DEPOSICE TENKÝCH VRSTEV A NAVAŘOVÁNÍ NA DEGRADACI ZÁKLADNÍHO MATERIÁLU COMPARISON OF INFLUENCES OF DEPOSITION THIN FILMS AND WELDING ON DEGRADATION OF BASIC MATERIAL Monika Hadáčková a
Metody pro studium pevných látek
Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi
Measurement of fiber diameter by laser diffraction Měření průměru vláken pomocí laserové difrakce
Progres in textile science and technology TUL Liberec 24 Pokroky v textilních vědách a technologiích TUL v Liberci 24 Sec. 9 Sek. 9 Measurement of fiber diameter by laser diffraction Měření průměru vláken
Rentgenografické difrakční určení mřížového parametru známé kubické látky
Rentgenografické difrakční určení mřížového parametru známé kubické látky Rozšířená webová verze zadání úlohy dostupná na: http://krystal.karlov.mff.cuni.cz/kfes/vyuka/lp/ Prášková difrakce - princip metody
POVRCHOVÉ VYTVRZENÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM PLAZMOVOU NITRIDACÍ SURFACE HARDENING OF NIOBIUM-CONTAINING PM TOOL STEEL BY PLASMA NITRIDING
POVRCHOVÉ VYTVRZENÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM PLAZMOVOU NITRIDACÍ SURFACE HARDENING OF NIOBIUM-CONTAINING PM TOOL STEEL BY PLASMA NITRIDING P. Novák, D. Vojtech, J. Šerák Ústav kovových materiálu
HODNOCENÍ MIKROSTRUKTURY A VLASTNOSTÍ ODLITKŮ ZE SLITINY AZ91HP EVALUATION OF MICROSTRUCTURE AND PROPERTIES OF SAND CAST AZ91HP MAGNESIUM ALLOY
HODNOCENÍ MIKROSTRUKTURY A VLASTNOSTÍ ODLITKŮ ZE SLITINY AZ91HP EVALUATION OF MICROSTRUCTURE AND PROPERTIES OF SAND CAST AZ91HP MAGNESIUM ALLOY Vít Janík a,b, Eva Kalabisová b, Petr Zuna a, Jakub Horník
2. Entity, Architecture, Process
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Praktika návrhu číslicových obvodů Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Miloš
Elektroinstalační lišty a tvarovky. Elektroinstalační lišty / Cable trunkings
Elektroinstalační lišty a tvarovky Elektroinstalační lišty / Cable trunkings Z důvodu jednodušší instalace jsou lišty na spodní straně opatřeny montážními otvory. Délka 2m. Na přání lze vyrobit v různých
Objemové ultrajemnozrnné materiály. Miloš Janeček Katedra fyziky materiálů, MFF UK
Objemové ultrajemnozrnné materiály Miloš Janeček Katedra fyziky materiálů, MFF UK Definice Objemové ultrajemnozrnné materiály (bulk UFG ultrafine grained materials) Malá velikost zrn (> 1µm resp. 100 nm)
Effect of temperature. transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC
Effect of temperature on water vapour transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC Outline Introduction motivation, water vapour transport Experimental
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: II/2 Inovace a zkvalitnění výuky cizích jazyků na středních
Metody pro studium pevných látek
Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi
M-LOCK Magnetický zámek pro křídlové sklněné dveře. M-LOCK Magnetic lock for glass swing doors
M-LOCK Magnetický zámek pro křídlové sklněné dveře M-LOCK Magnetic lock for glass swing doors M-L ock Serratura Magnetica Magnetický zámek M-Lock Přednosti (výhody) 31 mm Extrémně malé rozměry Extrémně
Melting the ash from biomass
Ing. Karla Kryštofová Rožnov pod Radhoštěm 2015 Introduction The research was conducted on the ashes of bark mulch, as representatives of biomass. Determining the influence of changes in the chemical composition