DZDDPZ5 Zvýraznění obrazu - prahování. Doc. Dr. Ing. Jiří Horák Ing. Tomáš Peňáz, Ph.D. Institut geoinformatiky VŠB-TU Ostrava
|
|
- Bohumil Toman
- před 6 lety
- Počet zobrazení:
Transkript
1 DZDDPZ5 Zvýraznění obrazu - prahování Doc. Dr. Ing. Jiří Horák Ing. Tomáš Peňáz, Ph.D. Institut geoinformatiky VŠB-TU Ostrava
2 Zvýraznění obrazu Bodová zvýraznění 1-pásmové (radiometrické), vícepásmové (spektrální) - zvýraznění každého pixelu v obrazovém záznamu nezávisle na jiných pixelech Spektrální zvýraznění někdy samostatně, protože lze provádět fúzi obrazů různého prostorového rozlišení Prostorová zvýraznění (ohniskové filtrace, Fourierovy transf.) - zvýraznění každého pixelu v obrazovém záznamu v závislosti na hodnotách okolních pixelů
3 Dobrovolný
4 Zvýrazňování obrazových záznamů hlavní cíle: úprava vzhledu, usnadnění vizuální interpretace (zvětšení rozdílů mezi spektrálními a radiometrickými projevy objektů nebo jevů v obrazovém záznamu), příprava pro další počítačové zpracování (rozšíření příznakového prostoru multispektrálních obrazových záznamů)
5 Zvýraznění obrazového záznamu z hlediska trvání výsledku operace zvýraznění: dočasné zápis do paměti (na displeji počítače při vizualizaci) trvalé zápis do souboru nebo do databáze
6 Bodová radiometrická zvýraznění Používání zobrazovací funkce - určité DN hodnotě pixelu ve vstupním obrazu přiřazuje novou hodnotu ve výsledném obraze v diskrétním obraze - LUT (look-up table) Metody: Úpravy kontrastu (Contrast Modification) Prahování (Thresholding) Někdy samostatně hustotní řezy (Level Slicing) (nebo součást prahování)
7 Zvýraznění kontrastu (Contrast Enhancement) radiometrická rozlišovací schopnost systému (dynamický rozsah měřených hodnot záření) Původní histogram obsahuje DN v určitém rozmezí, nevyužívá se celého rozsahu stupnice šedi -> nedokážeme rozlišit rozdíly 8 bitový záznam možných hodnot DN (0-255) skutečný rozsah naměřených DN hodnot jiný Transformace
8 Zvýraznění kontrastu (grafické znázornění)
9 Možnosti zvýraznění kontrastu lineární zvýraznění kontrastu (Linear Contrast Enhancement) nelineární zvýraznění kontrastu (Nonlinear Contrast Enhancement)
10 Typy zvýraznění kontrastu (grafické znázornění)
11 Možnosti úpravy kontrastu (grafické znázornění)
12 Lineární zvýraznění kontrastu zobrazovací funkce h je lineární rostoucí funkce - zvýraznění kontrastu klesající funkce - potlačení kontrastu 1) ( ) ( ) ( ) ( i k l m n m i h 1) ( ) ( ) ( ) ( i k l m n m i h
13 Lineární roztažení histogramu Dobrovolný
14 Lineární zvýraznění kontrastu roztažení histogramu (v celém rozsahu) roztažení histogramu po částech (piecewise linear contrast stretch) roztažení části histogramu
15 Dobrovolný
16 Lineární roztažení po částech (grafické znázornění)
17 Lineární zvýraznění (grafické znázornění 1)
18 Lineární zvýraznění (grafické znázornění 2)
19 Lineární zvýraznění (grafické znázornění 3)
20 Lineární zvýraznění (grafické znázornění 4)
21 Nelineární zvýraznění kontrastu vyrovnání histogramu (histogram equalization) hyperbolizace histogramu saturace histogramu (histogram saturation)
22 Vyrovnání histogramu snaha o dosažení: přibližně stejné frekvence výskytu hodnot nestejných intervalů dat kontrast se zvýší v oblasti střední hodnoty se sníží v oblasti okrajových hodnot vznik mezer v histogramu t( x) x j 0 M j 0 h( h( j) j). N j = 0, 1,, M
23 Dobrovolný
24 Vyrovnání histogramu Statistické řešení např. pomocí metody nejmenších čtverců (optimalizace na co největší počet co možná nejvíce odlišných tříd)
25 Vyrovnání histogramu (grafické znázornění 2)
26 Vyrovnání histogramu (grafické znázornění 3)
27 Hyperbolizace histogramu zadává se konstanta c pro c > 0 úprava podobná ekvalizaci c < 0 snížení kontrastu v oblasti středních hodnot zvýšení kontrastu v oblasti okrajových hodnot N počet výstupních úrovní M počet vstupních úrovní t( x) x j 0 M j 0 h h c c ( ( j). N j) j = 0, 1,, M
28 Dobrovolný
29 Ruční úpravy LUT SW zpravidla umožňuje ruční úpravu LUT podle individuální potřeby uživatele Transformace po částech Vyhlazení výsledné transformační křivky
30 Příklad z metodiky NIKM Šedé sloupce znázorňují statistické rozložení skutečných hodnot jasu jednoho ze spektrálních kanálů v celém obraze, tzn. tak, jak jsou změřené hodnoty intenzity zemského povrchu uloženy v datovém souboru. Tenká linie s lomovými body je gradační křivka, s jejíž pomocí se upravuje zobrazení snímku na monitoru tak, aby obraz byl co nejlépe čitelný. Uzly gradační křivky jsou číselně vyjádřeny v Tabulce 1. Zelené sloupce pak zobrazují účinek této statistické úpravy obrazu.
31 Příklad z metodiky NIKM
32 Výsledek úpravy kontrastu pro kanály RGB (NIKM)
33 Prahování (thresholding)
34 Prahování (thresholding) Zvolí se práh (prahová DN hodnota) a podle ní se rozdělí hodnoty pixelu na snímků do 2 kategorií hodnoty pod a nad limit (práh). Prahování je založeno na myšlence, že objekty a pozadí mají rozdílnou úroveň intenzity. nejstarší a nejjednodušší segmentační metoda Používá se pro tvorbu zájmových oblastí (masek) v obraze. Např. např. oddělení souše od vodních ploch - spektrálně snadno oddělitelné povrchy v pásmu vlnových délek blízkého infračerveného záření (LANDSAT TM-4) Široce používaná, jednoduchost, snadná implementace a malá časová náročnost. Výsledek prahování získáme po jediném průchodu obrazem. Výsledek zpravidla binární obraz
35 Varianty prahování globální prahování práh platí pro celý obraz. Problém nerovnoměrnost osvětlení, dá se odstranit vhodným předzpracováním vstupního obrazu např. minimální filtr nebo morfologický tophat. procentní prahování - nezadává se přímo úroveň šedi jako práh, ale procentní zastoupení bodů v obraze, které jsou vyšší (respektive nižší) nebo rovny nějakému vhodnému prahu. Vhodné např. při převodu skenovaných dokumentů na text, pokud víme, že průměrné pokrytí stránky textem se pohybuje okolo 5%. Poloprahování (částečné prahování) - pixelům majícím vyšší nebo rovnu hodnotu prahu T se nepřiřazuje určitá hodnota (zpravidla 0-1), ale ponechá se jim jejich vlastní hodnota.
36 Dobrovolný
37 Globální prahování Kalová
38 Poloprahování - částečné prahování Kalová
39 Varianty prahování Adaptivní prahování práh je funkcí polohy, tj. určuje se pro část obrazu. Pro každou takovou oblast je pak určen práh zvlášť. Rozdělení snímku může být: Do několika předem daných disjuktních oblastí (nejčastěji stejných čtverců či obdélníků). Problém nevyzpytatelného chování na hranicích mezi jednotlivými oblastmi. Částečně se překrývající oblasti Interpolace hodnot mezi oblastmi Lokální oblast kolem každého pixelu výpočetně náročné (a už není bodové zvýraznění) Postup částečně kompenzuje vliv nerovnoměrného osvětlení. Problém určit správně velikost oblasti Vícestupňové prahování (hustotní řezy) určí se ne 1 ale n prahů, které rozdělí množinu pixelů do n+1 disjuktních tříd. Viz dále hustotní řezy.
40 Adaptivní prahování Kalová
41 Varianty prahování Hysterezní prahování (double thresholding) za zájmové objekty jsou označeny oblasti, jejichž intenzita je větší než definovaný práh T1 a navíc obsahují alespoň 1 pixel s hodnotou vyšší než T2. Implementace např. pomocí morfologické rekonstrukce. Na začátku se provede dvojí prahování. Po prahovaní s T1 vznikne maska a po prahování s T2 vznikne obraz semínek. Následně se provede dilatace semínek a ořezání podle masky. Tento krok se opakuje dokud se obraz mění. Algoritmus: 1. Do obrazu maska přiřaď výsledek prahování s prahem T1. 2. Do obrazu semínka přiřaď výsledek prahování s prahem T2. 3. Proved dilataci obrazu semínka a ořízni ho podle obrazu maska. 4. Opakuj krok 3 dokud probíhají změny v obraze semínka. V praxi se krok 3 provádí pouze pro množinu aktivních bodů, což jsou body jež byly za body objektu označeny v předcházející iteraci. Výpočet pak končí ve chvíli, kdy je tato množina prázdná.
42 Určení hodnoty prahu Experimentální pokus-omyl Z histogramu vhodné pro bimodální histogramy (dobře separovaná maxima), kdy se práh umístí do: Lokálního minima mezi 2 maximy Poloviny vzdálenosti mezi 2 maximy Procentní pomocí odhadu plochy zájmového objektu ve snímku Ze statistik práh určen pomocí statistické charakteristiky v dané oblasti, např. aritmetický průměr, medián, (max+min)/2 Z globální znalosti předem víme, jakou přesně hodnotu hledáme automatické určování prahu - založeny na analýze histogramu. Metody se liší způsobem nalezení prahu v závislosti na podobě histogramu, tedy na tom zda obsahuje jeden nebo více dominantních vrcholů.
43 Určení hodnoty prahu Z histogramu Procentní Ze statistik Kalová
44 Dobrovolný
45 Dobrovolný
46 Dobrovolný
47 Před operací hustotní řezy (grafické znázornění)
48 Po operaci hustotní řezy (grafické znázornění)
49 Barevné zvýraznění Aspekty barvy: tón (odstín) H, sytost (S), jas (B) Lidské oko rozezná asi 10x více barevných tónů (odstínů) než úrovní šedí (cca 200) Prohlížení čb obrazu registrujeme pouze změny jasu Použití barev: obarvení 1 pásma = pseudobarvy (např. černobílý snímek), lépe rozlišíme jednotlivé třídy hodnot Transformace buď spojitou nebo diskrétní funkcí Barevná syntéza: 3 složky víceobrazu, každé přiřadíme jinou barvu Skutečné barvy: snímku z červené části spektra přiřadíme červenou barvu, z modré B a zelené G Nepravé barvy: jiné kombinace (např. IR, R, G)
50 Dobrovolný
51 Dobrovolný
52 Dobrovolný
53 Barevné syntézy NIKM - Družicové snímky Landsat 7 ve spektrální kombinaci (R-G-B): termální pásmo (spektrální kanál č. 6) - zobrazení objektů, které silně tepelně vyzařují. Červený kanál. Zdroje tepla se tedy zobrazí zpravidla červenými až žlutými odstíny. Termální záření prozradí především objekty, v nichž probíhají energetické procesy, nebo které se oproti okolí snáze ohřejí a poté získané teplo zpětně vyzařují; spektrální kanál č. 5 (střední oblast infračerveného spektra) - zřetelné některé typy materiálů využívané např. ve stavebnictví; tento obraz je zařazen do modrého barevného kanálu monitoru. Stavební materiály se ukázaly být indikátorem přítomnosti některých typů skládek. Dále je v tomto pásmu možno identifikovat objekty obsahující relativně čerstvě odkryté horniny. Zájmové objekty budou zpravidla mít zabarvení bílé, světle modré nebo zelené, v kombinaci s termálními projevy také fialové nebo oranžové. Konkrétní zabarvení silně závisí na typu materiálu, proto nelze jednoznačně stanovit očekávanou barvu. Podle barvy ale lze naopak alespoň hrubě určit typ materiálu pozorovaného objektu, jsou-li k dispozici určité nezbytné "kalibrační údaje"; výše uvedené spektrální kanály jsou zobrazeny v určité barevné protiváze, která je vyvažována třetí barevnou složkou v zeleném barevném kanálu RGB monitoru obrazem z červené (viditelné) složky družicového snímku. Zelená barva je v této složité syntéze pro zobrazení obtížně využitelná, neboť koliduje se zelenou barvou vegetace, která dominuje v letecké fotomapě. Proto je využita naopak k úpravě zobrazení jiných barevných složek, neboť zde využitý spektrální kanál 3 svými vlastnostmi přiměřeně potlačuje vliv vegetace a zesiluje tak barevný kontrast detekovaných objektů, jejichž charakter je vždy odlišný od vlastností vegetačního krytu.
54 ta/3-dpz-imageanal.pdf Hranice Sudán-Eritrea, LandSat TM Vlevo silně metamorfovaný komplex s intruzemi granitů a bazaltových žil, vpravo mladší terén s peridotity, metabazalty a metasedimenty. Hranice mezi nimi aluvium velké řeky na velké střižné zóně. 30 km. Syntézy: a) TM 321 RGB přiroz.b. nejméně informací b) TM 432 RGB standardní s. v nepravých barvách c) TM 531 RGB distribuce horninových typů, potlačení vegetace d) TM 315 RGB špatná volba posloupnosti špatně vidět
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
Analýza a zpracování digitálního obrazu
Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové
Č ást 1 Základníprincipy, senzory, multispektrálnídata. Co je DPZ?
DPZ Č ást 1 Základníprincipy, senzory, multispektrálnídata Co je DPZ? Dálkový průzkum získávání informacío objektech na dálku, tj. bez přímého kontaktu se zkoumaný mi jevy a procesy. upraveno podle Lillesand
Zpracování digitalizovaného obrazu (ZDO) - Segmentace
Zpracování digitalizovaného obrazu (ZDO) - Segmentace úvod, prahování Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného obrazu
Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země
Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný
Omezení barevného prostoru
Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech
1 Jasové transformace
1 Jasové transformace 1.1 Teoretický rozbor 1.1.1 Princip jasové transformace Jasové transformace představují transformační funkce, které mění vždy určitou hodnotu vstupní jasové funkce na výstupní. Transformace
Grafika na počítači. Bc. Veronika Tomsová
Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování
Metody zvýrazňování obrazu III. Vícepásmová zvýraznění. Spektrální příznaky. Příznakový prostor. Podstata vícepásmových zvýraznění
Podstata vícepásmových zvýraznění Metody zvýrazňování obrazu III Vícepásmová zvýraznění DN hodnoty jako příznaky a, tzv. příznakový prostor. Vytváření nových pásem s cílem zvýšit odlišení různých objektů
Cvičení 4 komplexní zpracování dat. Analýza povodí řeky Kongo
Cvičení 4 komplexní zpracování dat Analýza povodí řeky Kongo Tato případová studie (včetně cvičných dat) je převzata a přepracována z evropského vzdělávacího projektu Eduspace [0]. Pro zpracování této
GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU. Veronika Berková 1
GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU Veronika Berková 1 1 Katedra mapování a kartografie, Fakulta stavební, ČVUT, Thákurova 7, 166 29, Praha, ČR veronika.berkova@fsv.cvut.cz Abstrakt. Metody
2010 Josef Pelikán, CGG MFF UK Praha
Filtrace obrazu 21 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ 1 / 32 Histogram obrázku tabulka četností jednotlivých jasových (barevných) hodnot spojitý případ hustota pravděpodobnosti
Č ást 2 Kompozice v nepravých barvách Datové formáty Neřízená klasifikace. Program přednášky
DPZ Č ást Kompozice v nepravých barvách Datové formáty Neřízená klasifikace Program přednášky Popis využití pásem Landsat TM Vhodnost kombinací pásem TM Datové formáty Klasifikace obrazu Neřízená klasifikace
13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
Š E D O T Ó N O V Á A B A R E V N Á K A L I B R A C E
Š E D O T Ó N O V Á A B A R E V N Á K A L I B R A C E Z O B R A Z O V A C Í C H Z A Ř Í Z E NÍ CÍLE LABORATORNÍ ÚLOHY 1. Seznámení se s metodami šedotónové a barevné kalibrace fotoaparátů, kamer, snímků
Operace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013
Operace s obrazem Biofyzikální ústav LF MU Obraz definujeme jako zrakový vjem, který vzniká po dopadu světla na sítnici oka. Matematicky lze obraz chápat jako vícerozměrný signál (tzv. obrazová funkce)
Zpracování astronomických snímků (Část: Objekty sluneční soustavy) Obsah: I. Vliv atmosféry na pozorovaný obraz II. Základy pořizování snímků planet
Zpracování astronomických snímků (Část: Objekty sluneční soustavy) Obsah: I. Vliv atmosféry na pozorovaný obraz II. Základy pořizování snímků planet Zdeněk ŘEHOŘ III. Zpracování snímků planet IV. Příklady
Monochromatické zobrazování
Monochromatické zobrazování 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Mono 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 27 Vnímání šedých odstínů
DZDDPZ8 Fourierova t., spektrální zvýraznění. Doc. Dr. Ing. Jiří Horák - Ing. Tomáš Peňáz, Ph.D. Institut geoinformatiky VŠB-TU Ostrava
DZDDPZ8 Fourierova t., spektrální zvýraznění Doc. Dr. Ing. Jiří Horák - Ing. Tomáš Peňáz, Ph.D. Institut geoinformatiky VŠB-TU Ostrava Dobrovolný Dobrovolný Dobrovolný Dobrovolný Dobrovolný Dobrovolný
ELEKTROMAGNETICKÉ SPEKTRUM PRO POTŘEBY DPZ
ELEKTROMAGNETICKÉ SPEKTRUM PRO POTŘEBY DPZ Ultrafialové záření UV 0,1-0,4 μm Viditelné záření VIS 0,4-0,7 μm Infračervené blízké záření NIR 0,7-1,4 μm Infračervené střední záření MIR 1,4-3 μm Tepelné záření
Nekonvenční metody snímání zemského povrchu
Specifika nekonvenčních metod Nekonvenční metody snímání zemského povrchu Odlišná technika vytváření obrazu - obraz je vytvářen postupně po jednotlivých obrazových prvcích (pixelech) Velké spektrální rozlišení.
DZDDPZ3 Digitální zpracování obrazových dat DPZ. Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava
DZDDPZ3 Digitální zpracování obrazových dat DPZ Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava Digitální zpracování obrazových dat DPZ Předzpracování (rektifikace a restaurace) Geometrické
Využití letecké fotogrammetrie pro sledování historického vývoje krajiny
Využití letecké fotogrammetrie pro sledování historického vývoje krajiny Jitka Elznicová Katedra informatiky a geoinformatiky Fakulta životního prostředí Univerzita J.E.Purkyně v Ústí nad Labem Letecké
Světlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h
Světlo Světlo Podstata světla Elektromagnetické záření Korpuskulární charakter Vlnění, foton Rychlost světla c = 1 079 252 848,8 km/h Vlnová délka Elektromagnetické spektrum Rádiové vlny Mikrovlny Infračervené
DPZ - Ib Interpretace snímků
DPZ - Ib Interpretace snímků Ing. Tomáš Dolanský 2007 Co je DPZ? Bezkontaktní metoda poznávání Zaměřuje se na tvar, velikost a vlastnosti objektů a jevů na zemském povrchu K poznávání využívá vlastností
Práce na počítači. Bc. Veronika Tomsová
Práce na počítači Bc. Veronika Tomsová Barvy Barvy v počítačové grafice I. nejčastější reprezentace barev: 1-bitová informace rozlišující černou a bílou barvu 0... bílá, 1... černá 8-bitové číslo určující
Spektrální charakteristiky
Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který
12 Metody snižování barevného prostoru
12 Metody snižování barevného prostoru Studijní cíl Tento blok je věnován základním metodám pro snižování barevného rozsahu pro rastrové obrázky. Postupně zde jsou vysvětleny důvody k použití těchto algoritmů
7. Tematická kartografie
7. Tematická kartografie Zabývá se tvorbou tematických map, které na topografickém podkladě přebíraném z vhodné podkladové mapy podrobně zobrazují zájmové přírodní, socioekonomické a technické objekty
zdroj světla). Z metod transformace obrázku uvedeme warping a morfing, které se
Kapitola 3 Úpravy obrazu V následující kapitole se seznámíme se základními typy úpravy obrazu. První z nich je transformace barev pro výstupní zařízení, dále práce s barvami a expozicí pomocí histogramu
Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem
Vnímání a měření barev světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem fyzikální charakteristika subjektivní vjem světelný tok subjektivní jas vlnová
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
Digitální model reliéfu (terénu) a analýzy modelů terénu
Digitální model reliéfu (terénu) a analýzy modelů terénu Digitální modely terénu jsou dnes v geoinformačních systémech hojně využívány pro různé účely. Naměřená terénní data jsou často zpracována do podoby
Rozšíření bakalářské práce
Rozšíření bakalářské práce Vojtěch Vlkovský 2011 1 Obsah Seznam obrázků... 3 1 Barevné modely... 4 1.1 RGB barevný model... 4 1.2 Barevný model CMY(K)... 4 1.3 Další barevné modely... 4 1.3.1 Model CIE
Editace obrazu úvod doc. Ing. Stanislav Horný, CSc. horny@vse.cz
Digitální fotografie Editace obrazu úvod doc. Ing. Stanislav Horný, CSc. horny@vse.cz http://gml.vse.cz Vysoká škola ekonomická fakulta Informatiky a statistiky katedra Systémové analýzy Workflow (co,
Zobrazování barev. 1995-2015 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/
Zobrazování barev 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ ColorRep 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 18 Barevné schopnosti HW True-color
Michal Dobeš ZPRACOVÁNÍ OBRAZU A ALGORITMY V C# Praha 2008 Michal Dobeš Zpracování obrazu a algoritmy v C# Bez pøedchozího písemného svolení nakladatelství nesmí být kterákoli èást kopírována nebo rozmnožována
Barvy a barevné modely. Počítačová grafika
Barvy a barevné modely Počítačová grafika Barvy Barva základní atribut pro definici obrazu u každého bodu, křivky či výplně se definuje barva v rastrové i vektorové grafice všechny barvy, se kterými počítač
OBRAZOVÁ ANALÝZA. Speciální technika a měření v oděvní výrobě
OBRAZOVÁ ANALÝZA Speciální technika a měření v oděvní výrobě Prostředky pro snímání obrazu Speciální technika a měření v oděvní výrobě 2 Princip zpracování obrazu matice polovodičových součástek, buňky
Interní norma č. 22-102-01/01 Průměr a chlupatost příze
Předmluva Text vnitřní normy byl vypracován v rámci Výzkumného centra Textil LN00B090 a schválen oponentním řízením dne 7.12.2004. Předmět normy Tato norma stanoví postup měření průměru příze a celkové
DPZ - IIa Radiometrické základy
DPZ - IIa Radiometrické základy Ing. Tomáš Dolanský Definice DPZ DPZ = dálkový průzkum Země Remote Sensing (Angl.) Fernerkundung (Něm.) Teledetection (Fr.) Informace o objektu získává bezkontaktním měřením
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící
DIGITÁLNÍ FOTOGRAFIE
DIGITÁLNÍ FOTOGRAFIE Petr Vaněček, katedra informatiky a výpočetní techniky Fakulta aplikovaných věd, Západočeská univerzita v Plzni 19. listopadu 2009 1888, Geroge Eastman You press the button, we do
Kartografické výstupy z GIS
1. Zásada jednoty Kartografické výstupy z GIS obsah celé mapy musí být zpracován se stejnou pozorností. OBECNÉ ZÁSADY Mapa má tří stránky: odbornou (obsah mapy podle účelu a tematického zaměření) technickou
Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.
Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,
ÚROVNĚ, KŘIVKY, ČERNOBÍLÁ FOTOGRAFIE
ÚROVNĚ, KŘIVKY, ČERNOBÍLÁ FOTOGRAFIE U057 Zoner Photo Studio editace fotografie 2 LS 2014 Ing. Martin Seko JAK NA ČERNOBÍLOU FOTOGRAFII DESATURACE Úrovně, křivky, černobílá fotografie 3 DESATURACE Úrovně,
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Úlohy nad rastrovými daty Daniela
Současné možnosti dálkového průzkumu pro hodnocení heterogenity půd a porostů na orné půdě
Současné možnosti dálkového průzkumu pro hodnocení heterogenity půd a porostů na orné půdě František Zemek, Miroslav Pikl Ústav výzkumu globální změny AV ČR, v. v. i., Brno CzechGlobe I. Sekce klimatických
Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
DPZ10 Radar, lidar. Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava
DPZ10 Radar, lidar Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava RADAR SRTM Shuttle Radar Topography Mission. Endeavour, 2000 Dobrovolný Hlavní anténa v nákladovém prostoru, 2. na stožáru
Základy interpretace digitálního obrazového záznamu ze systému LANDSAT
Základy interpretace digitálního obrazového záznamu ze systému LANDSAT Obrazová data, získaná digitální technologií v procesu dálkového průzkumu Země, nesou (již ze své podstaty) řadu atributů, které lze
Úpravy rastrového obrazu
Přednáška 11 Úpravy rastrového obrazu Geometrické trasformace Pro geometrické transformace rastrového obrazu se používá mapování dopředné prochází se pixely původního rastru a určuje se barva a poloha
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika
ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí
Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám
Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Číslo projektu: CZ.1.07/1.5.00/34.0883 Název projektu: Rozvoj vzdělanosti Číslo šablony: III/2 Datum vytvoření: 17. 12. 2012 Autor: MgA.
DPZ Dálkový Průzkum Země. Luděk Augusta Aug007, Vojtěch Lysoněk Lys034
DPZ Dálkový Průzkum Země 1 Obsah Úvod Historie DPZ Techniky DPZ Ukázky 2 DPZ znamená Dálkový průzkum Země nám dává informace o vlastnostech objektů na zemském povrchu s využitím informací získaných v globálním
Anotace předmětu. Dálkový průzkum Země. Odkazy. Literatura. Definice DPZ. Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava
Anotace předmětu Dálkový průzkum Země Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava Elektromagnetické záření, elektromagnetické spektrum. Radiometrické veličiny. Zdroje záření. Interakce
Kombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
Možnosti podpory plošné inventarizace kontaminovaných míst interpretací multi- a hyperspektrálního snímkování Jana Petruchová Lenka Jirásková
Možnosti podpory plošné inventarizace kontaminovaných míst interpretací multi- a hyperspektrálního snímkování Jana Petruchová Lenka Jirásková Praha 13.6.2012 Multispektrální data cíl ověření vhodnosti
Histogram a jeho zpracování
Histogram a jeho zpracování 3. přednáška předmětu Zpracování obrazů Martina Mudrová 24 Definice Co je to histogram? = vektor absolutních četností výskytu každé barvy v obrázku [H(1),H(2), H(c)] c m.n c
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Barvy. Radek Fiala. Podpořeno z projektu FRVŠ 584/2011
fialar@kma.zcu.cz Podpořeno z projektu FRVŠ 584/2011 Kde se berou barvy? Co je barva Světlo jako elmg. záření nemá barvu. Jednou z vlastností světla je tzv. spektrální rozdělení (Spectral Power Distribution,
Histogram a jeho zpracování
... 3.. 5.. 7.. 9 Histogram a jeho zpracování 3. přednáška předmětu Zpracování obrazů Martina Mudrová Definice Co je to histogram? = vektor absolutních četností výskytu každé barvy v obrázku [H(),H(),
KVALITA DAT POUŽITÁ APLIKACE. Správnost výsledku použití GIS ovlivňuje:
KVALITA DAT Správnost výsledku použití GIS ovlivňuje: POUŽITÁ APLIKACE Kvalita dat v databázi Kvalita modelu, tj. teoretického popisu krajinných objektů a jevů Způsob použití funkcí GIS při přepisu modelu
Dálkový průzkum Země. Ústav geoinformačních technologií Lesnická a dřevařská fakulta MENDELU
Dálkový průzkum Země Ústav geoinformačních technologií Lesnická a dřevařská fakulta MENDELU Analogová a digitální data Fotografický snímek vs. digitální obrazový záznam Elektromagnetické záření lze zaznamenat
Metodika měření a monitoringu územních změn Příloha 1 Pilotní studie
Metodika měření a monitoringu územních změn Příloha 1 Pilotní studie Vladimíra Šilhánková Jan Langr a kol. Civitas per Populi Hradec Králové 2015 Obsah Úvod... 2 A1 Použitá metodika... 2 A2 Výstupy pilotní
Problematika snímání skla a kvalifikace povrchové struktury
Problematika snímání skla a kvalifikace povrchové struktury Vlastimil Hotař, Katedra sklářských strojů a robotiky, Technická univerzita v Liberci Seminář moderní metody rozpoznávání a zpracování obrazových
SEMESTRÁLNÍ PRÁCE X. Aproximace křivek Numerické vyhlazování
KATEDRA ANALYTICKÉ CHEMIE FAKULTY CHEMICKO TECHNOLOGICKÉ UNIVERSITA PARDUBICE - Licenční studium chemometrie LS96/1 SEMESTRÁLNÍ PRÁCE X. Aproximace křivek Numerické vyhlazování Praha, leden 1999 0 Úloha
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
Fraktální analýza prahovaných a neprahovaných signálů (View+HT) HT 1D
Fraktální analýza prahovaných a neprahovaných signálů (View+HT) HT 1D Petra Bursáková Fakulta chemická, Vysoké učení technické vbrně Purkyňova 118, 612 00 Brno e-mail:t HUxcbursakova@fch.vutbr.czUH Podstatou
pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera
Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita
Kartogramy Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 17. 10. 2011 Definice Kartogram je
Analýza dat v GIS. Dotazy na databáze. Překrytí Overlay Mapová algebra Vzdálenostní funkce. Funkce souvislosti Interpolační funkce Topografické funkce
Analýza dat v GIS Dotazy na databáze Prostorové Atributové Překrytí Overlay Mapová algebra Vzdálenostní funkce Euklidovské vzdálenosti Oceněné vzdálenosti Funkce souvislosti Interpolační funkce Topografické
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Příklady použití tenkých vrstev Jaromír Křepelka
Příklady použití tenkých vrstev Jaromír Křepelka Příklad 01 Spočtěte odrazivost prostého rozhraní dvou izotropních homogenních materiálů s indexy lomu n 0 = 1 a n 1 = 1,52 v závislosti na úhlu dopadu pro
Kde se používá počítačová grafika
POČÍTAČOVÁ GRAFIKA Kde se používá počítačová grafika Tiskoviny Reklama Média, televize, film Multimédia Internetové stránky 3D grafika Virtuální realita CAD / CAM projektování Hry Základní pojmy Rastrová
ZPRACOVÁNÍ OBRAZU přednáška 4
ZPRACOVÁNÍ OBRAZU přednáška 4 Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
Transformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
Úvod do počítačové grafiky
Úvod do počítačové grafiky elmag. záření s určitou vlnovou délkou dopadající na sítnici našeho oka vnímáme jako barvu v rámci viditelné části spektra je člověk schopen rozlišit přibližně 10 milionů barev
Matematická morfologie
/ 35 Matematická morfologie Karel Horák Rozvrh přednášky:. Úvod. 2. Dilatace. 3. Eroze. 4. Uzavření. 5. Otevření. 6. Skelet. 7. Tref či miň. 8. Ztenčování. 9. Zesilování..Golayova abeceda. 2 / 35 Matematická
0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí
Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox
Vizuální interpretace leteckých a družicových snímků u dospívajících
Vizuální interpretace leteckých a družicových snímků u dospívajících Hana Svatoňová, PdF MU Brno 23. mezinárodní geografická konference Brno 2015 Interpretace leteckých a satelitních snímků 2013 výzkumné
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2014/2015 tm-ch-spec. 1.p 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a
Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc
Světlo a barvy v počítačové grafice Počítačová grafika Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc EM spektrum λ = c f, E = h f c... rychlost světla (300000 km/h) h... Planckova konstanta
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Projekt Brána do vesmíru
Projekt Brána do vesmíru Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Praktikum: Základy (ne)vědecké astronomické fotografie (zpracování obrazu) 1. Základní principy 2. Zpracování obrázků
Stanovení nejistot při výpočtu kontaminace zasaženého území
Stanovení nejistot při výpočtu kontaminace zasaženého území Michal Balatka Abstrakt Hodnocení ekologického rizika kontaminovaných území představuje komplexní úlohu, která vyžaduje celou řadu vstupních
Grafické systémy. Obrázek 1. Znázornění elektromagnetického spektra.
1. 1.5 Světlo a vnímání barev Pro vnímání barev je nezbytné světlo. Viditelné světlo je elektromagnetické záření o vlnové délce 400 750 nm. Různé frekvence světla vidíme jako barvy, od červeného světla
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.
Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu
Termovizní měření. 1 Teoretický úvod. Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery
Termovizní měření Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery 1 Teoretický úvod Termovizní měření Termovizní kamera je přístroj pro bezkontaktní měření teplotních polí na
Analýza obrazu II. Jan Macháček Ústav skla a keramiky VŠCHT Praha
Analýza obrazu II Jan Macháček Ústav skla a keramiky VŠCHT Praha +4- - 44-45 Reference další doporučená literatura Microscopical Examination and Interpretation of Portland Cement and Clinker, Donald H.
Viditelné elektromagnetické záření
Aj to bude masakr 1 Viditelné elektromagnetické záření Vlnová délka 1 až 1 000 000 000 nm Světlo se chová jako vlnění nebo proud fotonů (záleží na okolnostech) 2 Optické záření 1645 Korpuskulární teorie
Geometrické transformace obrazu
Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v
ANALÝZA SNÍMKŮ Z CELOOBLOHOVÉ KAMERY
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ Katedra telekomunikační techniky ANALÝZA SNÍMKŮ Z CELOOBLOHOVÉ KAMERY SEMESTRÁLNÍ PRÁCE Autor práce: Vedoucí práce: Ladislav Chmela Ing. Jaroslav
Systémy dálkového průzkumu Země
Lucie Kupková, Přemysl Štych Katedra aplikované geoinformatiky a kartografie PřF UK v Praze E-mail: lucie.kupkova@gmail.com, stych@natur.cuni.cz Systémy dálkového průzkumu Země O čem bude přednáška Co