Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
|
|
- Zdeňka Bartošová
- před 9 lety
- Počet zobrazení:
Transkript
1 Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D.
2 Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní soubor) je souhrn všech existujících prvků, které sledujeme při statistickém šetření (např. při volebních průzkumech je populace tvořena všemi občany ČR s právem volit). Ing. Michal Dorda, Ph.D. 2
3 Základní pojmy Jelikož je počet prvků populace zpravidla vysoký, je proto z časových, ekonomických a jiných důvodů provedení vyčerpávajícího šetření(tedy šetření celé populace) nereálné. Proto se zpravidla prování výběrové šetření, tj. šetření na vybrané části populace výběr. Možností, jak výběr z populace provést, je více. Ing. Michal Dorda, Ph.D. 3
4 Základní pojmy Zpravidla provádíme náhodný výběr (každý prvek populace má stejnou šanci být do výběru zařazen). Údajům, které u souboru pozorujeme, říkáme proměnné(např. věk apod., značí se zpravidla velkými písmeny), jednotlivým hodnotám, kterých proměnná nabývá (nebo může nabývat), říkáme varianty proměnné. Ing. Michal Dorda, Ph.D. 4
5 Základní pojmy Proměnné můžeme rozdělit na proměnné: ) Kvalitativní varianty proměnné jsou vyjádřeny slovně (např. pohlaví, národnost apod.). 2) Kvantitativní varianty proměnné jsou vyjádřeny číselně (např. věk, hmotnost apod.). Podle rozsahu výběru n zpravidla rozlišujeme: ) Výběr malého rozsahu n <30. 2) Výběr velkého rozsahu n 30. Ing. Michal Dorda, Ph.D. 5
6 Základní pojmy Při zpracování náhodného výběru zavádíme pojem četnosti, přičemž rozeznáváme: ) Absolutní četnosti n i, 2) Relativní četnosti p i, 3) Kumulativní četnosti m i, 4) Relativní kumulativní četnosti F i. Ing. Michal Dorda, Ph.D. 6
7 Základní pojmy Absolutní četnost n i vyjadřuje, kolikrát se konkrétní varianta proměnné v i v souboru objevila. Označíme-li kpočet variant proměnné, které se v souboru vyskytly, pak musí platit: k i= n i = n. Varianty proměnné v i seřazené podle velikosti a jejich absolutní četnosti tvoří variační řadu. Ing. Michal Dorda, Ph.D. 7
8 Základní pojmy Relativní četnost p i je definována jako podíl četnosti n i a rozsahu souboru n, tedy: p i = ni n. Je zřejmé, že dále musí platit: k i= p i =. Ing. Michal Dorda, Ph.D. 8
9 Základní pojmy Kumulativní četnost m i je definována jako součet absolutních četností variant proměnné menší nebo rovno variantě v i, tedy: m i = n i. v v i Je zřejmé, že dále musí platit: m k = n, kumulativní četnost nejvyšší varianty proměnné je tedy rovna rozsahu souboru. Ing. Michal Dorda, Ph.D. 9
10 Základní pojmy Relativní kumulativní četnost F i je definována jako podíl kumulativní četnosti m i a rozsahu souboru n, tedy: Fi = m i. Je zřejmé, že dále musí platit: F k n =. Ing. Michal Dorda, Ph.D. 0
11 Základní pojmy Grafické nebo tabulkové znázornění seřazených variant proměnné a jejich kumulativních četností se nazývá distribuční funkce kumulativní četnosti, příp. empirická distribuční funkce. Ing. Michal Dorda, Ph.D.
12 Základní pojmy Nechť je v min minimální varianta proměnné, v max maximální varianta proměnné. Potom interval v min ;v max bývá označován jako variační obor proměnné. Rozdíl maximální a minimální varianty proměnné bývá označován jako variační rozpětí R: R = v max v min. Ing. Michal Dorda, Ph.D. 2
13 Výběrové charakteristiky Datový soubor získaný náhodným výběrem lze znázornit pomocí číselných charakteristik, které nazýváme výběrové charakteristiky, které zpravidla dělíme na: ) Míry polohy určují typické rozložení hodnot souboru. 2) Míry variability určují variabilitu (rozptyl) hodnot kolem své typické hodnoty. Ing. Michal Dorda, Ph.D. 3
14 Míry polohy Mezi základní míry polohy se řadí: ) Výběrový průměr x, 2) Modus Mod, 3) Výběrové kvantilyx p především mediánx 0,5. Ing. Michal Dorda, Ph.D. 4
15 Míry polohy Mějme náhodný výběr x, x 2,, x n. Výběrový průměr se nejčastěji stanovuje jako aritmetický průměr všech pozorování, tedy: x = n n i= x i. Pro aritmetický průměr platí: n ( x i x) = 0, i= součet všech odchylek pozorovaných hodnot od jejich aritmetického průměru je roven 0. Ing. Michal Dorda, Ph.D. 5
16 Míry polohy Ne vždy je ale vhodné použít aritmetický průměr. V případech, kdy pracujeme s proměnnou vyjadřující relativní změny, používáme geometrický průměr: x n = g x i i= n. Ing. Michal Dorda, Ph.D. 6
17 Míry polohy V případech, kdy pracujeme s proměnnou mající charakter části z celku, potom používáme harmonický průměr: x h = n i= n x i. Ing. Michal Dorda, Ph.D. 7
18 Míry polohy Modus je definován jako varianta proměnné s největší četností. Na rozdíl od průměru, který je pouze jeden, může mít statistický soubor více modů. Proměnnou s jedním modem nazýváme unimodální, proměnnou s dvěma mody bimodální. Ing. Michal Dorda, Ph.D. 8
19 Míry polohy Výběrový kvantil je obecně definován jako hodnota rozdělující výběrový soubor na dvě části první část obsahuje hodnoty, které jsou menší než daný kvantil, a druhá část obsahuje hodnoty které jsou rovny nebo větší než hodnota daného kvantilu. Kvantil x p nazýváme 00 p%-ní kvantil. Ing. Michal Dorda, Ph.D. 9
20 Míry polohy Rozeznáváme následují kvantily: ) Percentily x 0,0, x 0,02,, x 0,99. 2) Decily x 0,, x 0,2,, x 0,9. 3) Kvartily dolní kvartil x 0,25, medián x 0,5, horní kvartilx 0,75. Ing. Michal Dorda, Ph.D. 20
21 Míry polohy Postup při určování kvantilů: ) Datový soubor uspořádáme vzestupně podle velikosti. 2) Seřazeným pozorováním přiřadíme pořadí od do n. 3) 00 p%-ní kvantil je potom roven pozorování s pořadím z p, kde: z p = n p + 0,5. Není-li z p celé číslo, potom je příslušný kvantil roven aritmetickému průměru pozorování s pořadím [z p ] a [z p ] +, kde [z p ] označuje celou část čísla z p. Ing. Michal Dorda, Ph.D. 2
22 Míry variability Mezi základní míry variability se řadí: ) Výběrový rozptyl s 2. 2) Výběrová směrodatná odchylka s. 3) Variační koeficient V x. 4) Variační rozpětí R. 5) Interkvartilové rozpětí IQR. 6) Medián absolutních odchylek od mediánu MAD. Ing. Michal Dorda, Ph.D. 22
23 Míry variability Výběrový rozptyl je definován vztahem: s 2 = n n i= 2 ( x i x). Nevýhodou rozptylu je, že jeho jednotka je druhou mocninou jednotky proměnné. Proto zavádíme výběrovou směrodatnou odchylku definovanou vztahem: s = s 2 = n n i= 2 ( x i x). Ing. Michal Dorda, Ph.D. 23
24 Míry variability Chceme-li porovnat variabilitu proměnných vyjádřených v různých jednotkách, použijeme k tomu variační koeficient definovaný: V x = s. x Variační koeficient je bezrozměrný a vyjadřuje relativní míru variability proměnné. Variační rozpětí jsme již definovali jako: R = v max v min. Ing. Michal Dorda, Ph.D. 24
25 Míry variability Interkvartilové rozpětí je definováno jako rozdíl horního a dolního kvartilu: IQR = x 0 x,75 0,25. Medián absolutních odchylek od mediánu stanovíme následujícím postupem: ) Stanovíme absolutní odchylky jednotlivých pozorování od mediánu, tedy x i x 0,5. 2) Absolutní odchylky seřadíme vzestupně podle velikosti. 3) Známým způsobem nalezneme medián absolutních odchylek, čili MAD. Ing. Michal Dorda, Ph.D. 25
26 Identifikace odlehlých pozorování Odlehlým pozorováním rozumíme pozorování, které se mimořádně liší od ostatních hodnot a tím ovlivňují reprezentativnost výběru. Nyní se tedy zaměříme na způsoby, jak odlehlá pozorování identifikovat. Nejčastěji se uvádí tři způsoby: ) Pomocí tzv. vnitřních hradeb. 2) Pomocí z-souřadnice. 3) Pomocí x 0,5 -souřadnice (mediánová souřadnice). Ing. Michal Dorda, Ph.D. 26
27 Identifikace odlehlých pozorování ad ) Za odlehlé pozorování lze považovat hodnotu x i, která je od dolního, resp. od horního kvartilu vzdálena o více než,5 násobek interkvartilového rozpětí. Odlehlá pozorování tedy leží v intervalu: ( x,5 IQR) ( x +,5 IQR; ). ; 0,25 0, 75 Ing. Michal Dorda, Ph.D. 27
28 Identifikace odlehlých pozorování ad 2) Za odlehlé pozorování lze považovat hodnotu x i, jejíž absolutní hodnota z- souřadnice je větší než 3, přičemž z- souřadnice je definována: z souř. i = x i x s, z-souřadnice tedy udává, kolikrát je pozorování x i vzdáleno o hodnotu směrodatné odchylky od výběrového průměru. Ing. Michal Dorda, Ph.D. 28
29 Identifikace odlehlých pozorování ad 3) Za odlehlé pozorování lze považovat takovou hodnotu x i, jejíž absolutní hodnota x 0,5 -souřadnice je větší než 3, přičemž x 0,5 -souřadnice je definována: x 0,5 souř. i xi x0,5 =.,483 MAD Ing. Michal Dorda, Ph.D. 29
30 Zpracování rozsáhlého statistického souboru V případě, že máme rozsáhlý statistický soubor, sdružujeme jednotlivá pozorování do tříd. Zpravidla se volí konstantní šířka třídy (vyjma krajních tříd). Doporučuje se volit počet tříd v rozmezí Každé pozorování musí být jednoznačně přiřazeno pouze do jedné třídy! Ing. Michal Dorda, Ph.D. 30
31 Zpracování rozsáhlého statistického souboru Pro stanovení počtu tříd existuje více pravidel, nejčastěji se setkáváme se Sturgesovým pravidlem, kterým stanovíme počet tříd k podle vztahu: k + 3,3 log n. Šířku třídy h potom stanovíme podle vztahu: R h, k kde R je variační rozpětí. Ing. Michal Dorda, Ph.D. 3
32 Zpracování rozsáhlého statistického souboru Všechna pozorování zahrnuta v třídě ijsou potom reprezentována jednou zástupnou hodnotou třídním znakemz i, který je aritmetickým průměrem dolní a horní hranice třídy, tvoří tedy střed třídy. Ing. Michal Dorda, Ph.D. 32
33 Zpracování rozsáhlého statistického souboru Máme-li statistický soubor zadán pouze pomocí tříd ia jejich třídními četnostmi n i, musíme pro výpočet základních výběrových charakteristik použít vztahy ve vážené formě: charakteristik použít vztahy ve vážené formě: Ing. Michal Dorda, Ph.D. 33 ( ) ( ).,, = = = = = = k i i i k i i i k i i i x z n n s x z n n s z n n x
34 Grafické znázornění statistického souboru Základní typy grafů, které se používají: ) Koláčový (výsečový) graf. 2) Histogram. Koláčový graf prezentuje relativní četnosti jednotlivých variant proměnné. Používá se pro menší počet variant proměnné. Ing. Michal Dorda, Ph.D. 34
35 Grafické znázornění statistického souboru Histogram je sloupcový graf, kde na vodorovnou osu vynášíme jednotlivé varianty proměnné, resp. třídy v případě souboru rozděleného na třídy, jednotlivé četnosti (absolutní nebo relativní) jsou potom zobrazovány jako sloupce. Ing. Michal Dorda, Ph.D. 35
36 Grafické znázornění statistického souboru 8 Histogram frequency Doba obsluhy Ing. Michal Dorda, Ph.D. 36
37 Grafické znázornění statistického souboru Krabicový graf je graf, který slouží k zakreslení základních výběrových charakteristik kvantitativní proměnné. x Odlehlé pozorování x max x min X 0,25 X 0,75 X 0, Doba obsluhy Ing. Michal Dorda, Ph.D. 37
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Př. : Stanovte jednotlivé četnosti a číselné charakteristiky zadaného statistického souboru a nakreslete krabicový graf:, 8, 7, 43, 9, 47, 4, 34, 34, 4, 35. Statistický soubor seřadíme vzestupně podle
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
Mnohorozměrná statistická data
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém
Matematika III. 29. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 29. října 2018 Statistika Statistika Statistika je jako bikini. Co odhaluje, je zajímavé, co skrývá, je podstatné. Aaron Levenstein Statistika Statistika
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
Popisná statistika. Jaroslav MAREK. Univerzita Palackého
Popisná statistika Jaroslav MAREK Univerzita Palackého Přírodovědecká fakulta Katedra matematické analýzy a aplikací matematiky Tomkova 40, 779 00 Olomouc Hejčín tel. 585634606 marek@inf.upol.cz pondělí
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM 2016 Jak získat data? Primární zdroje dat Vlastní měření (fyzika, biologie,
Metodologie pro ISK II
Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech
Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy
Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
Renáta Bednárová STATISTIKA PRO EKONOMY
Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
mezi studenty. Dále bychom rádi posoudili, zda dobrý výsledek v prvním testu bývá doprovázen dobrým výsledkem i v druhém testu.
Popisná statistika Slovní popis problému Naším cílem v této úloze bude stručně a přehledně charakterizovat rozsáhlý soubor dat - v našem případě počty bodů z prvního a druhého zápočtového testu z matematiky.
Jevy a náhodná veličina
Jevy a náhodná veličina Výsledky některých jevů jsou vyjádřeny číselně -na hrací kostce padne číslo 1, 4, 6.., jiným jevům můžeme čísla přiřadit (stupeň školního vzdělání: ZŠ, SŠ, VŠ) Data jsme rozdělili
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT
EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku
Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v
EXPLORATORNÍ ANALÝZA DAT. 7. cvičení
EXPLORATORNÍ ANALÝZA DAT 7. cvičení Teorie pravděpodobnosti x Statistika Teorie pravděpodobnosti popisuje zákonitosti týkající se náhodných jevů, používá se k modelování náhodností a neurčitostí, které
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
Pojem a úkoly statistiky
Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
Základní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy
Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných
Nejčastější chyby v explorační analýze
Nejčastější chyby v explorační analýze Obecně doporučuju přečíst přednášku 5: Výběrová šetření, Exploratorní analýza http://homel.vsb.cz/~lit40/sta1/materialy/io.pptx Použití nesprávných charakteristik
přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.
3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých
STATISTICKÉ CHARAKTERISTIKY
STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
Základní statistické pojmy
POPISNÁ STATISTIKA Základní statistické pojmy Jev hromadný Hromadná pozorování výsledek hromadný jev soustředění se na určitou vlastnost(i) ukáže po více pokusech Zjistit souvislosti v prostoru a čase
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Statistické metody. Martin Schindler KAP, tel , budova G. naposledy upraveno: 9.
Statistické metody Matematika pro přírodní vědy přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 9. ledna 2015,
3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1
3. charakteristiky charakteristiky 1 charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme charakteristiky 2 charakteristiky Dva hlavní
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
2. Bodové a intervalové rozložení četností
. Bodové a intervalové rozložení četností (Jak získat informace z datového souboru?) Po prostudování této kapitoly budete umět: konstruovat diagramy znázorňující rozložení četností vytvářet tabulky četností
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí
Statistika pro gymnázia
Statistika pro gymnázia Pracovní verze učebního textu ZÁKLADNÍ POJMY Statistika zkoumá jevy (společenské, přírodní, technické) ve velkých statistických souborech. Prvky statistických souborů se nazývají
Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? teoretická disciplína, která se zabývá metodami sběru a analýzy dat Jak získat data?
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy
Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných
Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.
Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální
Aplikovaná statistika v R
Aplikovaná statistika v R Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 15.5.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 15.5.2014 1 / 15 Co bude náplní našich
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Úvod do kurzu. Moodle kurz. (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost
Úvod do kurzu Moodle kurz (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost Výpočty online: www.statisticsonweb.tf.czu.cz Začátek výuky posunut
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
VADÍ - NEVADÍ ANEB STATISTIKA KOLEM NÁS
VADÍ - NEVADÍ ANEB STATISTIKA KOLEM NÁS Martina Litschmannová Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky, Katedra aplikované matematiky ŠKOMAM 19 29. 1. 2019
Informační technologie a statistika 1
Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek
Obecné momenty prosté tvary
Obecné momenty prosté tvary První obecný moment: (Σy i )/n, i=1 n aritmetický průměr, těžiště dat y Druhý obecný moment: (Σy i2 )/n, i=1 n y 2 Obecné momenty prosté tvary Příklad 1 pokračování: y = (3+4+2+3+2+3+3+3)/8
Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)
Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky
1.1 Dva základní typy statistiky Popisná statistika (descriptive statistics) Inferenční statistika (inferential statistics)
1. PODSTATA STATISTIKY Původní význam - pouhé sbírání čísel (název z latinského status = stát, použití k označení vědy zabývající se sběrem informací o státu - o počtu obyvatel, ekonomice,...) Dnešní pojetí
Popisná statistika v praxi aneb Je statistika nuda? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Popisná statistika v praxi aneb Je statistika nuda? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? Google 196.10 6 odkazů (čeština), 2,88.10 9 odkazů (angličtina)
STATISTIKA 1. RNDr. K. Hrach, Ph.D. Zápočet: odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců)
STATISTIKA 1 RNDr. K. Hrach, Ph.D. Zápočet: odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců) STATISTIKA Činnost vedoucí k získávání dat Instituce zajišťující tuto činnost
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 8 Statistický soubor s jedním argumentem Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola
Kontingenční tabulky v Excelu. Představení programu Statistica
ASTAc/01 Biostatistika 2. cvičení Kontingenční tabulky v Excelu Základní popisné statistiky Představení programu Statistica Import a základní popis dat ve Statistice, M. Cvanová I. Kontingenční tabulky
UKAZATELÉ VARIABILITY
UKAZATELÉ VARIABILITY VÝZNAM Porovnejte známky dvou studentek ze stejného předmětu: Studentka A: Studentka B: Oba soubory mají stejný rozsah hodnoty, ale liší se známky studentky A jsou vyrovnanější, jsou
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
STATISTIKA S EXCELEM. Martina Litschmannová MODAM,
STATISTIKA S EXCELEM Martina Litschmannová MODAM, 8. 4. 216 Obsah Motivace aneb Máme data a co dál? Základní terminologie Analýza kvalitativního znaku rozdělení četnosti, vizualizace Analýza kvantitativního
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
Třídění statistických dat
2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Pravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz CO SE SKRÝVÁ V DATECH data sbíráme proto, abychom porozuměli
Základy popisné statistiky
Základy popisné statistiky V této kapitole se seznámíme se základy popisné statistiky, představíme si základní pojmy a budeme si je ilustrovat na praktických příkladech. Kapitola je psána formou volného
Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce
Seminarni prace Popisná statistika, data nesmí být časovou řadou Zkoumat můžeme třeba mzdy, obraty atd. (takže možná QA?) Formát pdf, poslat nejpozději den před zkouškou. Podrobnější informace jsou na
Ekonomická statistika
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Ekonomická statistika RNDr. Radmila Sousedíková, Ph.D. Tento projekt
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní
Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013
Cvičení ze statistiky Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Pondělí 16:40, C328 http://www.ms.mff.cuni.cz/~dechf7am Praktické zaměření Proč potřebuji statistiku, když chci dělat (doplň)?
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
Základní pojmy a cíle statistiky 1
Základní pojmy a cíle statistiky 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Předmět zkoumání Statistiky Definice statistiky Statistika zasahuje do mnoha oblastí našeho moderního
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
Neparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta ANALÝZA VÝSLEDKŮ DOTAZNÍKOVÉHO ŠETŘENÍ (FAKULTNÍ DOTAZNÍK) semestrální práce z předmětu STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ Jan Kubiš, Kateřina
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
Předmět studia: Ekonomická statistika a analytické metody I, II
Předmět studia: Ekonomická statistika a analytické metody I, II Typ a zařazení předmětu: povinný předmět bakalářského studia, 1. ročník Rozsah předmětu: 2 semestry, celkem 24/0 hodin v kombinované formě
Škály podle informace v datech:
Škály podle informace v datech: Různé typy dat znamenají různou informaci, resp. různé množství informace Data nominální Rovná se? x 1 = x 2 Data ordinální Větší, menší? x 1 < x 2 Data intervalová O kolik?
MÁME DATA A CO DÁL? Martina Litschmannová
MÁME DATA A CO DÁL? Martina Litschmannová Obsah Část 1 Analýza dat Základní pojmy Popisná statistika kvalitativního znaku Tabulky četnosti, vizualizace Jak to vypadá v praxi Část 2 Popisná statistika kvantitativního
7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA
7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA Oblasti využití statistiky v medicíně Zvládání variability Variabilita: biologická, podmínek, měřících přístrojů - hodnocení variability, variabilita náhodná x nenáhodná
Statistická analýza dat v psychologii
PSY117 2016 Statistická analýza dat v psychologii Přednáška 2 MÍRY CENTRÁLNÍ TENDENCE A VARIABILITY He uses statistics as a drunken man uses lampposts for support rather than illumination. Andrew Lang
Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
Příloha podrobný výklad vybraných pojmů
Příloha podrobný výklad vybraných pojmů 1.1 Parametry (popisné charakteristiky) základního souboru 1.1.1 Míry polohy (střední hodnoty) Aritmetický průměr představuje pravděpodobně nejznámější střední hodnotou,