Kombinatorická minimalizace
|
|
- Kristina Procházková
- před 6 lety
- Počet zobrazení:
Transkript
1 Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny body a vrací se zpět do výchozího bodu. Možností sice je velký počet, ale příliš mnoho na to, abychom je vyzkoušeli všechny. Například pokud musí obchodní cestující projet 0 měst, máme možností. Pro výpočet se používá Metropolisův algoritmus vygeneruje se počáteční cesta spojující města 0! počítá se minimum jisté funkce např. E= x i x i1 y i y i1 i=0, která může vyjadřovat třeba vzdálenost měst (nebo cenu jízdenek) generujeme náhodně nové konfigurace (cesty) a přijímáme je s jistou pravděpodobností většinou danou p=exp E /T, rychlost konvergence pak závisí na parametru T Náhodné změny konfigurací N Reverse i 1,i,i1,, j 1, j, j1 i 1, j, j 1,,i1,i, j1 Transport i 1,i,i1,, j 1, j, j1,, k 1, k, k 1 i 1, j1,, k 1, k,i,i1,, j 1, j, k1
2 Lineární programování (simplexová metoda) Nebudeme na cvičení dělat, materiály viz. slidy nebo Numerical Recipies. Numerické integrování b V 1D se jedná o úlohu výpočtu integrálu I= a f xdx. Tato úloha je ekvivalentní řešení počátečního problému pro obyčejnou diferenciální rovnici (ODE) počáteční podmínkou I a=0, přičemž se hledá hodnota I b. d I d x = f x s Metody řešení ODE obsahují adaptivní volba kroku, a proto převedení na úlohu ODE je vhodné u funkcí, které mají proměnné měřítko (např. integrace spektra s úzkými spektrálními čarami). Pro integraci v 1D se používají: integrace aproximace funkce (kubického splinu, Čebyševova polynomu,...) klasické kvadraturní vzorce, založené na integraci aproximace pomocí Lagrangeových polynomů, také Rombergova integrace Gaussovy kvadratury Pro integraci ve více dimenzích se používá: rozklad na opakované integrace v jedné proměnné (dimenzi) metoda Monte Carlo Klasické kvadraturní vzorce Klasické kvadraturní vzorce se dají odvodit z interpolace funkce f x na intervalu, x n Lagrangeovým polynomem a integrace tohoto polynomu. Pro jednoduchost uvažujme, že uvnitř intervalu, x n se nachází n ekvidistantně rozložených bodů s krokem h, tedy x i = i h, i=1,, n. V bodech,, x n známe funkční hodnoty funkce f x, f 1,, f n. Odvození vzorce pro integraci na dvou bodech tzv. Lichoběžníkové pravidlo :
3 x Funkce f x integrál I = f xdx=? Aproximace Lagrangeovým polynomem f x L 1 x= f 1 x x x f x x x x Označení délky intervalu h=x, x f x f 1 f h h x Integrace I = x f xdx L 1 xdx= 1 h f 1 I 1 h f 1 x x f x x x x dx f x dx x = 1 h x f 1 f = h f 1 f x = Tedy I h f f 1 a z chyby pro aproximaci Lagrangeovým interpolačním polynomem (nebo z Taylorova rozvoje) se dá vykoukat, že chyba integrace je řádu h 3, tedy I= h f 1 f Oh3. Odvození vzorce pro integraci na třech bodech tzv. Simpsonovo pravidlo : Funkce f x integrál I = x 3 f xdx=? Aproximace Lagrangeovým polynomem x x x x 3 f x L x= f 1 x x 3 f x x x 3 x x x 3 f x x x 3 x 3 x 3 x Označení délky intervalu h=x =x 3 x, x x x x 3 x x x 3 x x x f x f 1 f h f h 3 h x 3 Integrace I = x 3 f xdx L xdx Výsledný vzorec po integraci bude I h 3 f 1 4 f f 3 a chyba bude řádu h 5, tedy I= h 3 f 1 4 f f 3 Oh5. O výsledku integrace se můžete rychle přesvědčit v Maplu kfe/~klimo/nm/kvadr.mws.
4 Podobně integrace na čtyřech bodech 3/8 pravidlo I= 3h 8 f 1 3 f 3 f 3 f 4 Oh. Simpsonovy vzorce jsou přesné pro integraci polynomů do třetího stupně včetně, lichoběžníkové pravidlo je přesné pro polynomy do prvního stupně včetně. Těmto vzorcům se obecně nazývají Newton Cotesovy a vznikly Lagrangeovou interpolací na bodech,, x n a integrací s mezemi, x n. Říká se jim proto uzavřené, obsahují totiž i krajní body intervalu. Pokud bychom udělali interpolaci na bodech,, x n ale pak integrovali s mezemi x 0, x n1, dostali bychom tzv. otevřené Newton Cotesovy vzorce. Příkladem takové vzorce je x 5 I= f xdx= 5h x f f f 11 f Oh Někdy se při integraci využívá také extrapolace (hodí se na okrajích intervalu). Integrál se počítá pomocí funkčních hodnot v bodech, ležících na hranicích intervalu a mimo něj (tyto vzorce se opět dají získat integrací Lagrangeových polynomů). x x f xdx= h f Oh, f xdx= h 3 f 1 f 3 Oh. Nejjednodušší možností integrace je pak obdélníkové pravidlo, kdy celou funkci f x na intervalu, x nahradíme konstantou (rovnou funkční hodnotě v prostředku intervalu f 3 ) f xdx= hf 3 Oh 3. x Složené vzorce K výpočtu integrálu přes celý zadaný interval není při rovnoměrné (ekvidistantní) síťi vhodné použít jeden mnohabodový vzorec s vysokým řádem přesnosti (interpolace Lagrangeovým polynomem řádu většího než 7 se v praxi nepoužívá, protože může mezi uzly oscilovat). Je lepší interval rozdělit na více bodů a využít některého složeného pravidla. Uzavřené Newton Cotesovy vzorce a obdélníkové pravidlo se dají velmi dobře skládat a použít pro integraci na intervalu, obsahujícím mnohem více než 1,,3,4... body. Složené lichoběžníkové pravidlo
5 x N f xdx= h[ 1 f f f f N 1 N] f O 1 N Složené Simpsonovo pravidlo x N f xdx= h[ 1 3 f f 3 f f f 1 N 1 3 N] f O 1 N 4 Praktická implementace lichoběžníkového pravidla: Postupné zpřesňování při jednotlivých voláních odpovídá půlení podintervalů. Přitom se využívá znalosti předchozích bodů (hodnot v nich). Odhad chyby můžeme získat porovnáním výsledků dvou volání (tedy s délkami intervalů h a h/ ). Konečný výsledek možno zpřesnit z posledních dvou integrací jako I= 4 3 I 1 h 3 I h Oh4. Tento výsledek je identický se složeným Simpsonovým pravidlem. Rombergova integrace Výsledky numerické integrace například pomocí lichoběžníkového pravidla lze chápat jako funkci veličiny h!!! Protože s h 0 klesá chyba k 0, je hodnota integrálu v bodě h=0 přesná. Tu samozřejmě nemůžeme spočítat přímo, ale pokud zavedeme funkci f h =I h ( f h=i h ), můžeme funkci f po vypočtení několika jejích hodnot interpolovat a vzorec použít k extrapolaci v bodě h =0. Rombergova metoda tedy často výrazně sníží počet bodů, ve kterých musíme funkci počítat, abychom dosáhli zadané přesnosti. Např. pokud provedeme polynomiální extrapolaci na h =0 a použijeme pro výpočet integrálů složené lichoběžníkové pravidlo, které má přesnost. řádu, získáme extrapolací
6 ze výsledků metodu 4. řádu 3 výsledků metodu 6. řádu 4 výsledků metodu 8. řádu... Ze 7. integrací s různým h lze získat metodu 14. řádu, tedy velmi přesnou. Více integrací se již nepoužívá, protože pro výšší řády není polynomiální extrapolace vhodná. Příklady v PASCALU VYPINTM.PAS, QROMZKM.PAS, QROMINFM.PAS. Singularity : Integrály se singularitami na okraji má f x konečnou limitu, ale nelze tam přímo počítat, např. sin x v bodě 0 x krajní bod integrálu je nebo nebo oboje integrál je integrabilní, ale má singularitu na okraji integrál má integrabilní singularitu ve známém bodě uprostřed (uvnitř) intervalu integrál má integrabilní singularitu v neznámém bodě uprostřed (uvnitř) intervalu, řešíme vždy jako ODE Neexistující nebo nekonečný integrál se neřeší, je to nekorektní úloha. Konečná limita na kraji nelze přímo počítat Použije se složené obdélníkové pravidlo x N f xdx= h [ f 3 f 5 fn 1 ]. Pokud bychom interval půlili, nelze využít předchozí body. Proto se krok zmenšuje jako h/3. Pak je implementace obdobná jako u lichoběžníkového pravidla. I zde se dá využít Rombergova metoda. Nekonečné meze Integrál transformujeme na integrál s konečnými mezemi a na ten použijeme složené obdélníkové pravidlo. Např. z f xdx transformujeme substitucí t= 1 x na integrál 1 z 1 f 0 t 1 t dt. Tato substituce je samozřejmě možná pouze, pokud interval integrace neobsahoval 0. Jinak je třeba integrál rozdělit na více integrálů a integrovat zvlášť.
7 Gaussovy kvadratury Pokud chceme vypočítat integrál s minimálním počtem vyčíslení funkce, hodí se Gaussovy kvadratury. Volí se optimální poloha bodů a jejich váhy tak, že Gaussova metoda pro N bodů dává přesný výsledek až pro polynomy řádu N 1, tedy téměř dvojnásobek přesnosti integrace s ekvidistantními body. Polohy bodů a váhy lze nalézt např. další informace v Numerical Recipies a na slidech. Příklady v PASCALU GAULEG.PAS, QGAUS.PAS. Integrace ve více dimenzích Počet bodů vyčíslení funkce roste s počtem dimenzí mocnině, tedy v N dimenzích je třeba n N vyčíslení funkce. Pro 30 bodů ve třech dimenzích je tedy třeba výpočet funkce ve 7000 bodech. Hranice integrálu je N 1 dimenzionální nadplocha, proto přechod k 1D integrálům může být obtížný. Pro hledání mezí může být třeba řešit nelineární rovnice. Metody: snížení počtu dimenzí ze symetrie úlohy např. integrace sféricky symetrické funkce přes kouli posloupnost opakovaných 1D integrací oblast přes kterou integrujeme musí mít jednoduchou hranici a funkce musí být hladká, můžeme získat poměrně dobrou přesnost, pokud má funkce v oblasti ostrá maxima, je třeba je najít a počítat v nich integrál přesněji, jinak je výpočet integrálu beznadějný Příklad v PASCALU QUAD3D.PAS. Metoda Monte Carlo Při integraci uzavřeme oblast integrace V do co nejmenší oblasti se známým objemem V ', ve které umíme snadno generovat náhodné body. Zavedeme funkci definovanou na oblasti V '. Generujeme N náhodných bodů v oblasti V ' a
8 integrál vypočteme jako Přesnost metody je řádu 1 N, kde N je počet bodů v MC metodě.
Integrace. Numerické metody 7. května FJFI ČVUT v Praze
Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál
VíceNumerická integrace (kvadratura)
Numeriká integrae (kvadratura) Úvod V jedné dimenzi jde o numeriký výpočet integrálu I = b a f(x) dx Tato úloha je ekvivalentní řešení počátečního problému pro obyčejnou difereniální rovnii (ODE) di dx
VíceFaculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 21 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 21 Řešíme následující úlohu: differencovatelnou funkci f : R R známe jen v konečném počtu bodů x 0,
VíceAproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.
Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace
VíceAproximace funkcí. Numerické metody 6. května FJFI ČVUT v Praze
Aproximace funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Dělení Interpolace 1D Více dimenzí Minimalizace Důvody 1 Dělení Dělení - Získané data zadané data 2 Dělení - Získané data Obecně
VíceČebyševovy aproximace
Čebyševovy aproximace Čebyševova aproximace je tzv hledání nejlepší stejnoměrné aproximace funkce v daném intervalu Hledáme funkci h x, která v intervalu a,b minimalizuje maximální absolutní hodnotu rozdílu
VíceNumerická matematika Písemky
Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva
VíceNumerické řešení diferenciálních rovnic
Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních
Víceúloh pro ODR jednokrokové metody
Numerické metody pro řešení počátečních úloh pro ODR jednokrokové metody Formulace: Hledáme řešení y = y() rovnice () s počáteční podmínkou () y () = f(, y()) () y( ) = y. () Smysl: Analyticky lze spočítat
VíceObyčejné diferenciální rovnice (ODE)
Obyčejné diferenciální rovnice (ODE) Obyčejné diferenciální rovnice N tého řádu převádíme na soustavy N diferenciálních rovnic prvního řádu. V rovnici f x, y, y ', y '',, y N =gx se substituují y '=z 1,
Více4 Numerické derivování a integrace
Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 7, strany 85-94. Jedná se o úlohu výpočtu (první či druhé) derivace či o výpočet určitého integrálu jinými metodami,
VíceInterpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
VíceNumerické metody a statistika
Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 016-017 ( ) Numerické metody a statistika 016-017 1 / Numerické integrování ( ) Numerické metody a statistika 016-017 / Geometrický význam integrálu
VíceHledání extrémů funkcí
Hledání extrémů funkcí Budeme se zabývat téměř výhradně hledáním minima. Přes nost nalezeného extrému Obecně není hledání extrému tak přesné jako řešení rovnic. Demonstrovat to můžeme na příkladu hledání
VíceInterpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
VícePseudospektrální metody
Pseudospektrální metody Obecně: založeny na rozvoji do bázových funkcí s globálním nosičem řešení diferenciální rovnice aproximuje sumou kde jsou např. Čebyševovy polynomy nebo trigonometrické funkce tyto
VíceVYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt
VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující
VíceTypy příkladů na písemnou část zkoušky 2NU a vzorová řešení (doc. Martišek 2017)
Typy příkladů na písemnou část zkoušky NU a vzorová řešení (doc. Martišek 07). Vhodnou iterační metodou (tj. metodou se zaručenou konvergencí) řešte soustavu: x +x +4x 3 = 3.5 x 3x +x 3 =.5 x +x +x 3 =.5
VíceMATLAB a numerické metody
MATLAB a numerické metod MATLAB je velmi vhodný nástroj pro numerické výpočt mnoho problémů je již vřešeno (knihovní funkce nebo Toolbo), jiné si můžeme naprogramovat sami. Budeme se zabývat některými
VíceFP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
VíceI. 7. Diferenciál funkce a Taylorova věta
I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace
Víceřešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky
řešeny numericky řešeny numericky Břetislav Fajmon, UMAT FEKT, VUT Brno Na minulé přednášce jsme viděli některé klasické metody a přístupy pro řešení diferenciálních rovnic: stručně řečeno, rovnice obsahující
Více- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady
Vzorové řešení domácího úkolu na 6. 1. 1. Integrály 1 1 x2 dx, ex2 dx spočítejte přibližně následují metodou - funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte.
VíceNumerické integrace některých nediferencovatelných funkcí
Numerické integrace některých nediferencovatelných funkcí Ústav matematiky a biomatematiky Přírodovědecká fakulta Jihočeské univerzity v Českých Budějovicích 2. prosince 2014 Školitel: doc. Dr. rer. nat.
VíceNumerické metody a programování. Lekce 7
Numerické metody a programování Lekce 7 Řešení nelineárních rovnic hledáme řešení x problému f x = 0 strategie: odhad řešení iterační proces postupného zpřesňování řešení výpočet skončen pokud je splněno
VíceHledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Problém hledání kořenů rovnice f(x) = 0 jeden ze základních problémů numerické matematiky zároveň i jeden
VíceStátní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
VíceNumerické metody 6. května FJFI ČVUT v Praze
Extrémy funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Více dimenzí Kombinatorika Lineární programování Programy 1 Úvod Úvod - Úloha Snažíme se najít extrém funkce, at už jedné
VíceIntegrace funkcí více proměnných, numerické metody
Matematika III 6. přednáška Integrace funkcí více proměnných, numerické metody Michal Bulant Masarykova univerzita Fakulta informatiky 27. 10. 2010 Obsah přednášky 1 Literatura 2 Integrální počet více
VíceNumerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou
Numerická matematika Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Václav Bubník, xbubni01, sk. 60 FIT VUT v Brně, 2004 Obsah Numerická matematika...1 1. Teorie... 3 1.1 Diferenciální
VíceŘešení diferenciálních rovnic
Projekt M3 Řešení diferenciálních rovnic 1. Zadání A. Stanovte řešení dané diferenciální rovnice popřípadě soustavy rovnic. i) Pro úlohy M3.1 až M3.12: uveďte matematický popis použité metody sestavte
VíceNumerická integrace a derivace
co byste měli umět po dnešní lekci: integrovat funkce různými metodami (lichoběžníkové pravidlo, Simpson,..) počítat vícenásobné integrály počítat integrály podél křivky a integrály komplexních funkcí
VíceMarkov Chain Monte Carlo. Jan Kracík.
Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),
VíceŘešení nelineárních rovnic
Řešení nelineárních rovnic Metody sečen (sekantová a regula falsi) Máme dva body x 1 a x mezi nimiž se nachází kořen Nový bod x 3 volíme v průsečíku spojnice bodů x 1, f x 1 a x, f x (sečny) s osou x ERRBISPAS
VíceVYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
VíceČeské vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM
OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic
VícePříklady pro předmět Aplikovaná matematika (AMA) část 1
Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1
VíceNumerická matematika 1
Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................
VíceLibovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.
A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin
VícePříklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0
Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +
VíceODR metody Runge-Kutta
ODR metody Runge-Kutta Teorie (velmi stručný výběr z přednášek) Úloha s počátečními podmínkami (Cauchyova) 1 řádu Hledáme aprox řešení Y(x) soustavy obyčejných diferenciálních rovnic 1 řádu kde Y(x) =
VíceBayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A
VíceMonte Carlo. Simulační metoda založená na užití stochastických procesů a generace náhodných čísel.
Monte Carlo Simulační metoda založená na užití stochastických procesů a generace náhodných čísel. Typy MC simulací a) MC integrace b) Geometrické MC c) Termodynamické MC d) Modelování vývoje na strukturální
VícePožadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
VícePolynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení
Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná
VíceInterpolace Lagrangeovy polynomy. 29. října 2012
Interpolace Lagrangeovy polynomy Michal Čihák 29. října 2012 Problematika interpolace V praxi máme často k dispozici údaje z různých měření tzv. data. Data mohou mít například podobu n uspořádaných dvojic
Vícemetody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit.
7. ODR počáteční úlohy Průvodce studiem Jen velmi málo diferenciálních rovnic, které se vyskytují při popisu praktických úloh, se dářešit exaktně, a i když dokážeme najít vzorce popisující analytickéřešení,
VíceInterpolace, aproximace
11 Interpolace, aproximace Metoda nejmenších čtverců 11.1 Interpolace Mějme body [x i,y i ], i =0, 1,...,n 1. Cílem interpolace je najít funkci f(x), jejíž graf prochází všemi těmito body, tj. f(x i )=y
VíceNumerické řešení diferenciálních rovnic
Numerické řešení diferenciálníc rovnic Mirko Navara ttp://cmp.felk.cvut.cz/ navara/ Centrum strojovéo vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a ttp://mat.feld.cvut.cz/nemecek/nummet.tml
VíceSemestrální písemka BMA3 - termín varianta A13 vzorové řešení
Semestrální písemka BMA3 - termín 6.1.9 - varianta A13 vzorové řešení Každý příklad je hodnocen maximálně 18 body, z toho část a) 1 body a část b) body. Mezivýsledky při výpočtech zaokrouhlujte alespoň
VíceInterpolace pomocí splajnu
Interpolace pomocí splajnu Interpolace pomocí splajnu Připomenutí U interpolace požadujeme, aby graf aproximující funkce procházel všemi uzlovými body. Interpolační polynom aproximující funkce je polynom
VícePopis metod CLIDATA-GIS. Martin Stříž
Popis metod CLIDATA-GIS Martin Stříž Říjen 2008 Obsah 1CLIDATA-SIMPLE...3 2CLIDATA-DEM...3 2.1Metodika výpočtu...3 2.1.1Výpočet regresních koeficientů...3 2.1.2 nalezených koeficientu...5 2.1.3Výpočet
VíceAproximace a interpolace
Aproximace a interpolace Aproximace dat = náhrada nearitmetické veličiny (resp. složité funkce) pomocí aritmetických veličin. Nejčastěji jde o náhradu hodnot složité funkce g(x) nebo funkce zadané pouze
VíceNumerické metody a programování. Lekce 8
Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:
VíceNUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí.
NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí. RNDr. Radovan Potůček, Ph.D., K-15, FVT UO, KŠ 5B/11, Radovan.Potucek@unob.cz, tel. 443056 -----
VíceFaculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
VíceCo je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
VíceDiferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
VíceÚvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
VíceBézierovy křivky Bohumír Bastl KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26
Bézierovy křivky Bohumír Bastl (bastl@kma.zcu.cz) KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26 Opakování Spline křivky opakování Bézierovy křivky GPM 2 / 26 Opakování Interpolace
VíceDnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
VíceAproximace posuvů [ N ],[G] Pro každý prvek se musí nalézt vztahy
Aproimace posuvů Pro každý prvek se musí nalézt vztahy kde jsou prozatím neznámé transformační matice. Neznámé funkce posuvů se obvykle aproimují ve formě mnohočlenů kartézských souřadnic. Například 1.
VíceAproximace funkcí. Polynom Φ m (x) = c 0 + c 1 x + c 2 x c m x m. Φ m (x) = c 0 g 0 (x) + c 1 g 1 (x) + c 2 g 2 (x) +...
Aproximace funkcí 1 Úvod Aproximace funkce - výpočet funkčních hodnot nejbližší (v nějakém smyslu) funkce v určité třídě funkcí (funkce s nějakými neznámými parametry) Příklady funkcí používaných pro aproximaci
VíceOPTIMALIZAČNÍ ÚLOHY. Modelový příklad problém obchodního cestujícího:
OPTIMALIZAČNÍ ÚLOHY Problém optimalizace v různých oblastech: - minimalizace času, materiálu, - maximalizace výkonu, zisku, - optimalizace umístění komponent, propojení,... Modelový příklad problém obchodního
VíceMATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
VíceObyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
VíceUNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
VíceNumerické metody optimalizace - úvod
Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu
VíceCo jsme udělali: Au = f, u D(A)
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
VíceMKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.
MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární
VíceŘešení diferenciálních rovnic v MATLABu
Řešení diferenciálních rovnic v MATLABu Základy algoritmizace a programování Přednáška 23. listopadu 2011 Co řešíme Obyčejné diferenciální rovnice prvního řádu: separovatelné lineární exaktní druhého řádu,
VíceNelineární rovnice. Numerické metody 6. května FJFI ČVUT v Praze
Nelineární rovnice Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Ohraničení kořene Hledání kořene Soustava Programy 1 Úvod Úvod - Úloha Hledáme bod x, ve kterém je splněno pro zadanou funkci
VíceVzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová
1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,
Vícef (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.
8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce
VíceObsah Obyčejné diferenciální rovnice
Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................
VícePřijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 2018 Řešení příkladů pečlivě odůvodněte. Příklad 1 (2 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný
VíceINTERPOLAČNÍ POLYNOM. F (x)... hledaná funkce (polynom nebo funkce vytvořená z polynomů), pro kterou platí
8 Řešení Lagrangeovy a Hermiteovy úlohy interpolace Kateřina Konečná/1 INTERPOLAČNÍ POLYNOM aproximace zadaných hodnot nebo hledané funkce f funkcí F (x) (polynomem) F musí být k f co nejblíže značení:
Více1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Vícea vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.
Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační
VíceDobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
VíceNMAF063 Matematika pro fyziky III Zápočtová písemná práce B Termín pro odevzdání 4. ledna 2019
Jméno: Příklad 2 3 4 5 Celkem bodů Bodů 20 20 20 20 20 00 Získáno Zápočtová písemná práce určená k domácímu vypracování. Nutnou podmínkou pro získání zápočtu je zisk více jak 50 bodů. Pravidla jsou následující:.
VíceArnoldiho a Lanczosova metoda
Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat
VíceKatedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
VíceZákladní spádové metody
Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)
VíceNumerické řešení nelineárních rovnic
Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
VíceZkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, minut. Součet Koeficient Body. 4. [10 bodů] Integrální počet. 5.
Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, 6.2.204 60 minut 2 3 4 5 6 Jméno:................................... Součet Koeficient Body. [2 bodů] V následující tabulce do každého z šesti
VíceSPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 5 Aproximační techniky 2012 Spolehlivost
VíceBudeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1
ODR - okrajová úloha Teorie (velmi stručný výběr z přednášek) Okrajová úloha 2. řádu Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu
Více1. Chyby vstupních dat metody převedení úlohy na numerickou (řád použité metody) zaokrouhlovací reprezentace čísel v počítači
1. Chyby vstupních dat metody převedení úlohy na numerickou (řád použité metody) zaokrouhlovací reprezentace čísel v počítači 2. Reprezentace čísel v Pascalu celá čísla Typ Rozsah Formát shortint 128..127
Více1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
VícePodobnostní transformace
Schurova věta 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci tak, aby se řešení úlohy
VíceDvojné a trojné integrály příklad 3. x 2 y dx dy,
Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je
VíceZkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body
Zkouška ze Základů vyšší matematiky ZVTA (LDF, 8.2.202) 60 minut 2 3 4 5 6 7 Jméno:................................. Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit,
VíceVzorová písemka č. 1 (rok 2015/2016) - řešení
Vzorová písemka č. rok /6 - řešení Pavla Pecherková. května 6 VARIANTA A. Náhodná veličina X je určena hustotou pravděpodobností: máme hustotu { pravděpodobnosti C x pro x ; na intervalu f x jinde jedná
VíceDiferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
VíceŘešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
VíceHledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky
6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme
Více9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1
9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom
VíceObsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Více7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Více