ÚSTAV ANALYTICKÉ CHEMIE
|
|
- Štefan Toman
- před 9 lety
- Počet zobrazení:
Transkript
1 ÚSTAV ANALYTICKÉ CHEMIE Gama spektroskopie pracovní text pro Podzemní výukové středisko JOSEF Jan Fähnrich, Kateřina Vídenská a Patrik Kania 2010
2 Obecné základy Gama spektroskopie je nedestruktivní analytická metoda, kdy zkoumaný vzorek není analýzou nikterak poškozen, a přesto poskytuje informaci o svém složení. Podstatou je studium energie gama záření emitovaného radionuklidy přítomnými ve zkoumaném vzorku, například ve vzorku geologickém. Označení radionuklid je používáno pro jádro atomu, jež má přemíru energie a je tedy energeticky nestabilní. Tato nestabilita se nejčastěji projevuje rozpadem původního atomu a vznikem nové atomové částice, kdy doprovodným jevem může být i emise gama záření. Typické energie gama záření různých radionuklidů se pohybují v rozmezí od 0,01 do 10 MeV (1eV = 1, J). Jde tedy o tvrdé elektromagnetické vlnění, tzn. s malou vlnovou délkou ( m). Závislost četnosti emitovaných fotonů na jejich energii je označována jako gama spektrum vzorku. Každý radionuklid je víceméně jednoznačně charakterizován energiemi vyzařovaného gama záření a jejich relativní intenzitou. Gama spektroskopii lze tedy využít pro kvalitativní i kvantitativní stanovení některých radionuklidů, jež se ve sledovaném systému nacházejí. Jako dodatečná charakteristika může v některých případech sloužit poločas rozpadu. To je doba, za kterou se rozpadne jedna polovina původně přítomných radionuklidů daného typu. Energie gama záření emitovaného jednotlivými radionuklidy je určena rozdílem energií stavů jádra, které jsou zanedbatelně ovlivňovány okolím jádra. Proto jsou spektrální čáry v ideálním gama spektru velice úzké. Jejich experimentální šířka v naměřeném spektru je určena rozlišovací schopností použitého spektrometru. Z vyvinutých typů detektorů (ionizační komory, proporcionální detektory, Geiger-Müllerovy, scintilační detektory) je dnes nejlepší rozlišení dosahováno polovodičovými detektory. Detektor tohoto typu je použit v této práci. Než gama foton emitovaný radionuklidem dorazí do detektoru, prochází vrstvami různých prostředí. Zde mohou probíhat sekundární interakce, které zeslabují tok gama fotonů a mění ideální tvar gama spektra. Comptonův rozptyl je srážka gama fotonu se slabě vázaným elektronem. Gama foton přitom změní svůj směr šíření a část své energie předá elektronu. Úbytek energie fotonu závisí na úhlu, pod kterým se foton a elektron po srážce pohybují. Comptonův jev proto vytváří ve spektru spojité pozadí. Při fotoelektrickém jevu gama foton vyrazí z látky silně vázané elektrony z vnitřních slupek. Při jejich zpětném zaplňování elektrony z vyšších hladin se uvolňuje rentgenovo záření. Je-li energie původního gama fotonu vyšší než 1022 kev může proběhnout tvorba páru, při níž vznikne elektron a positron. Po ztrátě své kinetické energie positron může anihilovat s jiným elektronem. Přitom vzniká dvojice gama fotonů o energii 511 kev, které se šíří přesně v navzájem opačném směru. Návod laboratorní práce: Terénní gama spektrometrické měření in situ Úkoly: 1. Ve štole Josef vyhledejte radiometrem DC-3E-98 místo s nízkou úrovní radiace 2. V tomto místě zahajte měření srovnávacího gama spektra 3. Radiometrem DC-3E-98 vyhledejte místo se zvýšenou úrovní radiace 4. V místě se zvýšenou úrovní radiace změřte gama spektrum 5. Zkopírujte naměřená spektra z jednotky digidart do počítače 6. Ve spektrech vyznačte v místech píků oblasti zájmu a jejich přehled uložte do textového souboru. 7. Opravte nesrovnalosti v přiřazení píků a určete, pro které radioisotopy je v místě se zvýšenou úrovní radiace zaznamenána zvýšená aktivita 8. Výsledky zpracujte do protokolu Detekce gama záření v polovodičovém detektoru Pro měření gama spekter je zde použit spektrometr SILENA s krystalem z čistého germania v koaxiálním uspořádání, který je umístěn v hliníkovém krytu. Schéma krystalu je na obr. 1. Krystal je chlazen měděnou tyčí ponořenou do kapalného dusíku v Dewarově nádobě (Obr. 2). Na krystal je přivedeno vysoké napětí (v této práci 1500 V). Při průchodu ionizujícího záření krystalem vznikají v polovodiči dvojice volného záporně nabitého elektronu a elektronové vakance (díry), která nese kladný náboj. Počet vzniklých párů je úměrný energii ionizujícího záření. Vložené napětí přivede elektrony a díry na opačné elektrody. Vzniklý proudový 2
3 puls se po zesílení změří a podle jeho velikosti se zvýší o jedničku hodnota v tom kanálu vícekanálového čítače, který odpovídá jeho velikosti. Výsledné gama spektrum je representováno závislostí četnosti pulsů v jednotlivých kanálech na jejich pořadí resp. na energii, která kanálům odpovídá. Obrázek 1: Schéma koaxiálního germaniového krystalu polovodičového detektoru Obrázek 2: Plnění Dewarovy nádoby spektrometru kapalným dusíkem Pro záznam dat je v této práci použit přenosný vícekanálový analyzátor ORTEC digidart Portable HPGe MCA (Multichannel Analyzer). Je napájen z baterií a zajišťuje napájení spektrometru, jeho ovládání, zpracování pulsů a jejich registraci až v kanálech. Je vybaven LC displejem a klávesnicí s 19 tlačítky. Energetická kalibrace, tj. přiřazení energie jednotlivým kanálů bylo provedeno předem na základě spekter radioisotopů 241 Am, 22 Na, 137 Cs a 60 Co. Při měření se postupuje následujícím postupem: 3
4 1. Jednotka digidart se propojí s modulem DIM (Detector Interface Module) připojeným k vychlazenému detektoru (kabely INHIBIT OUT a BIAS SHUTDOWN se nepoužívají a nepřipojují). V modulu DIM se podle požadavků jednotky digidart generuje vysoké napětí pro napájení detektoru a zpracovává se signál z detektoru. 2. Jednotka digidart se zapne tlačítkem ON/OFF. Opakovaným stiskem tlačítek se symbolem žárovky je možno zapínat a vypínat podsvícení dipleje. 3. Postupným stiskem tlačítek MENU/ENTER, 6, 1 a 4 se ověří nastavení parametrů měření podle tabulky: HV Status HV Target Bias HV Actual Bias HV Shutdown Type Overload Status HV Serial # Smart-1 Detector Recommend HV Live Det. Temp OFF 1500 V 0 V TTL GE-POS NO NO N/A V N/A Do výchozí nabídky, v níž jsou na displeji zobrazována spektrální data, se vrátíme čtyřnásobným stiskem tlačítka MENU/ENTER. (Pokud v položce HV SHUTDOWN je zobrazeno SMART, připojí se jednotka digidart přes USB rozhraní k počítači, spustí se program Computer\Local Disk (C:)\Program Files\Common Files\ORTEC Shared\UBBCI\Diag.exe. V jeho dialogovém okně se v první řádce vybere z nabídky připojená jednotka digidart označená jménem jako M02-GAMA-MCB 129. Vyplní se Command: SET_SHUT_TTL a odešle se (Send). Odezva digidartu ve spodní části dialogového by měla být Response: ErrMac=0, ErrMic=0) Tyto tři první kroky stejně jako nastavení ostatních parametrů měření budou provedeny asistentem ještě před začátkem práce. 4. Detektor se umístí do místa, ve kterém chceme provádět měření. 5. Stiskem tlačítek MENU/ENTER, 6, 1 a 1 (Enable HV) připojíme na krystal vysoké napětí. Opakovaným stiskem MENU/ENTER zobrazíme načítaná data. 6. Stiskneme tlačítko START. Tím se zahájí sběr dat. Je nastavena doba měření zhruba 30 minut, kterou je možno ověřit a změnit po stisku tlačítek MENU/ENTER, 6, 3 a 4. Návrat zpět se provede opakovaným stiskem MENU/ENTER. Sběr dat je také možno kdykoliv ukončit či přerušit stiskem tlačítka STOP. 7. Po ukončení měření stiskem tlačítek MENU/ENTER, 6, 1 a 1 (Disable HV) odpojíme vysoké napětí z krystalu. Opakovaným stiskem MENU/ENTER zobrazíme načtená data. 8. Naměřené spektrum se uloží do vyhrazené paměti stiskem tlačítka STORE. Tím se otevře nabídka, v níž zvolíme název, pod kterým má být spektrum uloženo (maximálně 8 znaků). Alfabetické znaky se volí tlačítky 1 až 9 s následným opakovaným stiskem šipky nahoru nebo šipky dolů. Po stisku tlačítka CLEAR se vymaže spektrum na displeji a spektrometr je připraven pro měření dalšího spektra postupem od bodu 4. Zpracování výsledků a protokol Naměřená data je sice možné prohlížet přímo jednotkou digidart, ale pohodlnější a úplnější vyhodnocení se provede na počítači specializovaným softwarem. Na přenosném počítači je k tomu nainstalován program MAESTRO-32 (Obr. 3), kterým je možno také ovládat jednotku digidart a nastavovat její parametry (Nabídka Acquire/MCB properties). (Po zapnutí počítače a propojení USB kabelem se deaktivuje ovládání digidartu z jeho klávesnice.) 4
5 Obrázek 3: Obrazovka programu MAESTRO-32 Ve spuštěném programu MAESTRO se příkazem Acquire/Download uloží spektra z digidartu (je-li aktivní, tj. jeho data se zobrazují v aktivní části obrazovky) na harddisk. Typ ukládaných souborů je zvolen v nabídce File/File Settings/General, doporučený typ je Integer.Spc). Po otevření souboru se spektrum zobrazí na obrazovce. Při jeho zpracování se obvykle určují tzv. oblasti zájmu ROI (Region Of Interest), které vymezují ve spektru pík s blízkým okolím. Toto okolí určuje, jak má být vedena základní linie při integraci. Výsledkem integrace je celkový počet pulzů v ROI a celkový počet pulzů snížený o počet pulzů připadající na spektrální pozadí uvnitř ROI, tedy čistý (net) počet pulzů. Současně se vyhodnotí, jakému kanálu odpovídá těžiště korigovaného píku a, je-li dostupná energetická kalibrace, přepočte se na odpovídající energii gama záření. V knihovně isotopů se také vyhledá isotop, který nejlépe odpovídá dané energii a spočte se odpovídající aktivita tohoto isotopu přepočtem na podíl vyslaných gama fotonů ku celkovému počtu radioaktivních přeměn isotopu (tzv. branching factor). K vymezení ROI je možno použít pohyb kursoru ve spolupráci s nabídkou ROI, nebo se zvolí posun kursoru doprava nebo doleva na nejbližší rozpoznaný pík (ikony v pravé části oprazovky) a k označení se pak použije klávesa Insert. Po označení všech píků se může vypsat jejich přehled příkazem File/ROI Report, kde je vhodné nejprve zvolit volbu Print to display. Na obrazovce je pak možno zkontrolovat, zda položky v tabulce odpovídají předpokladům. V konečné podobě se volba změní na Print to File a vytvoří se textový soubor obsahující výslednou tabulku. Textové soubory se načtou do Excelu, v němž budou výsledky porovnány a zeditovány do výsledných tabulek. Kontrola výsledků Automatické přiřazení čar v gama spektru nemusí být vždy správné, např. v důsledku nepřesné kalibrace. Ve výsledné tabulce proto zkontrolujeme, zda nalezené isotopy odpovídají očekávání pro daný typ vzorku. V oblastech nekontaminovaných z jiných zdrojů je možno kromě přirozeného isotopu draslíku 40 K s emisí gama 1460,75 kev a s poločasem rozpadu 1, roku očekávat radioaktivní záření spojené s výskytem uranu a thoria. V přírodním uranu v rovnováze je relativní rychlost rozpadu 1.0 Bq pro 238 U a 234 U a 0,045 Bq pro 235 U. Rozpadové řady 238 U, 235 U a 232 Th jsou znázorněny v tabulce 1 uvádějící poločasy rozpadu radionuklidů ve dnech. Isotopy, jejichž gama emisi je možno ve spektru očekávat, jsou vyznačeny rámečkem. 5
6 Tabulka 1: Poločasy rozpadu (ve dnech) pro radioisotopy přírodních rozpadových řad Z Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu A Thallium Olovo Bismut Polonium Astat Radon Francium Radium Aktinium Thorium Proaktinium Uran Neptunium Plutonium E E E E E E E E E E E E E E E stabilní stabilní 206 stabilni Vhodnou pomůckou pro kontrolu přiřazení čar v gama spektru radioisotopům je graf vynášející rozdíl naměřené hodnoty energie a tabelované hodnoty proti hodnotě energie. Výraznější odchylky od společné křivky mohou být působeny nesprávným přiřazením. V protokolu uveďte v tabulce přehled radioisotopů identifikovaných v místech s nízkou a vysokou úrovní radiace. V závěru diskutujte rozdíly v aktivitách jednotlivých radioisotopů. Zvláštní pozornost věnujte případným radioisotopům, které nepatří do přírodních rozpadových řad, a význačným signálům, které se nepodařilo identifikovat. 6
ÚSTAV ANALYTICKÉ CHEMIE
ÚSTAV ANALYTICKÉ CHEMIE Gama spektroskopie pracovní text pro Podzemní výukové středisko JOSEF Jan Fähnrich, Kateřina Videnská, Patrik Kania a Karel Volka 2011 Obecné základy Gama spektroskopie je nedestruktivní
Spektrometrie záření gama
Spektrometrie záření gama M. Kroupa, Gymnázium Děčín, trellac@centrum.cz B. Dvorský, Gymnázium Šternberk, bohuslav.dvorsky@seznam.cz Abstrakt Tento článek pojednává o spektroskopii záření gama. Bylo měřeno
RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření
KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO
1. STANOVENÍ RADIONUKLIDŮ - ZÁŘIČŮ GAMA - VE VZORCÍCH ŽIVOTNÍHO PROSTŘEDÍ
1. STANOVENÍ RADIONUKLIDŮ - ZÁŘIČŮ GAMA - VE VZORCÍCH ŽIVOTNÍHO PROSTŘEDÍ Jedná se o úlohu, demonstrující principy stanovení umělých i přirozených radionuklidů v objemových vzorcích životního prostředí
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium
Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové
Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)
Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o
Měření absorbce záření gama
Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.
Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem
1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am.
1 Pracovní úkoly 1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am. 2. Určete materiál několika vzorků. 3. Stanovte závislost účinnosti výtěžku rentgenového záření na atomovém
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 7: Spektrum záření gama. Rentgenová fluorescenční spektroskopie. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15. 3. 21 Úloha 7: Spektrum záření gama Rentgenová fluorescenční spektroskopie Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek: 2. ročník, 1.
K MOŽNOSTEM STANOVENÍ OLOVA
K MOŽNOSTEM STANOVENÍ OLOVA 210 Jaroslav Vlček Státní ústav radiační ochrany, Bartoškova 1450/28, 140 00 Praha 4 Radionuklid 210 Pb v přírodě vzniká postupnou přeměnou 28 U (obr. 1) a dále se mění přes
Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika
Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí
Elektronová mikroanalýz Instrumentace. Metody charakterizace nanomateriálů II
Elektronová mikroanalýz ýza 1 Instrumentace Metody charakterizace nanomateriálů II RNDr. Věra V Vodičkov ková,, PhD. Elektronová mikroanalýza relativně nedestruktivní rentgenová spektroskopická metoda
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
Senzory ionizujícího záření
Senzory ionizujícího záření Senzory ionizujícího záření dozimetrie α = β = He e 2+, e + γ, n X... elmag aktivita [Bq] (Becquerel) A = A e 0 λt λ...rozpadová konstanta dávka [Gy] (Gray) = [J/kg] A = 0.5
Úloha 7: Spektrum záření gama; rentgenová fluorescenční spektroskopie
Úloha 7: Spektrum záření gama; rentgenová fluorescenční spektroskopie FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8.3.21 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník,
Měření přirozené radioaktivity na Vyšehradě
Měření přirozené radioaktivity na Vyšehradě P. Guhlová Gymnázium Na Vítězné pláni Praha M. Slavík Gymnázium Jana Masaryka Jihlava mellkori@seznam.cz R. Žlebčík Gymnázium Christiána Dopplera V. Arťušenko
Radioaktivita,radioaktivní rozpad
Radioaktivita,radioaktivní rozpad = samovolná přeměna jader nestabilních nuklidů na jiná jádra, za současného vyzáření neviditelného radioaktivního záření Výskyt v přírodě v přírodě se vyskytuje 264 stabilních
Dosah γ záření ve vzduchu
Dosah γ záření ve vzduchu Intenzita bodového zdroje γ záření se mění podobně jako intenzita bodového zdroje světla. Ve dvojnásobné vzdálenosti, paprsek pokrývá dvakrát větší oblast povrchu, což znamená,
Vybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace
Letní škola 2008 RADIOAKTIVNÍ LÁTKY a možnosti detoxikace 1 Periodická tabulka prvků 2 Radioaktivita radioaktivita je schopnost některých atomových jader odštěpovat částice, neboli vysílat záření jádro
1. Zadání Pracovní úkol Pomůcky
1. 1. Pracovní úkol 1. Zadání 1. Ověřte měřením, že směry výletu anihilačních fotonů vznikajících po β + rozpadu jader 22 Na svírají úhel 180. 2. Určete pološířku úhlového rozdělení. 3. Vysvětlete tvar
Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika
Fotonásobič vstupní okno fotokatoda E h fokusační elektrononová optika systém dynod anoda e zesílení G N typicky: - koeficient sekundární emise = 3 4 - počet dynod N = 10 12 - zisk: G = 10 5-10 7 Fotonásobič
ZADÁNÍ LABORATORNÍHO CVIČENÍ
ZADÁNÍ LABORATORNÍHO CVIČENÍ TÉMA Určení voltampérových charakteristik spotřebičů ÚKOLY Proměřte závislost proudu na napětí u žárovky a třech technických rezistorů a termistoru. Sestrojte jejich voltampérové
Dodatek k uživatelském manuálu Adash 4202 Revize 040528MK
Vyvažovací analyzátory Adash 4200 Dodatek k uživatelském manuálu Adash 4202 Revize 040528MK Email: info@adash.cz Obsah: Popis základních funkcí... 3 On Line Měření... 3 On Line Metr... 3 Časový záznam...
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 7: Gama spektrometr Datum měření: 15. 4. 2016 Doba vypracovávání: 15 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Pomocí
Radiační monitorovací síť ČR metody stanovení a vybrané výsledky monitorování
Radiační monitorovací síť ČR metody stanovení a vybrané výsledky monitorování Miroslav Hýža a kol., SÚRO v.v.i., miroslav.hyza@suro.cz Otázky dopadu jaderné havárie do zemědělství a připravenost ČR Praha,
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka
Identifikace typu záření
Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity
Bezdrátové měření světelných veličin a jejich základní analýza (Světlená technika - MSVT)
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Bezdrátové měření světelných veličin a jejich základní analýza (Světlená technika - MSVT) Autor textu: Ing. Tomáš Pavelka
Úloha 15: Studium polovodičového GaAs/GaAlAs laseru
Petra Suková, 2.ročník, F-14 1 Úloha 15: Studium polovodičového GaAs/GaAlAs laseru 1 Zadání 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřenézávislostizpracujtegraficky.Stanovteprahovýproud
A4300BDL. Ref: JC
# Uživatelský manuál A4300BDL Aplikace :! Jednoduchý program umožňující přenos souboru s pochůzkou k měření z programu DDS 2000 do přístroje řady Adash 4300! Jednoduchý program umožňující přenos naměřených
Technické podmínky a návod na obsluhu
Technické podmínky a návod na obsluhu Přístroj pro stanovení elektrostatických vlastností Ochranných oděvů Metoda zkoušení pro měření snížení náboje 1 č.v.1703 Triboelektrické nabíjení dle ČSN EN 1149-3
3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC)
3. Radioaktivita >2000 nuklidů; 266 stabilních radioaktivita samovolná přeměna na jiný nuklid (neplatí pro deexcitaci jádra) pro Z 20 N / Z 1, poté postupně až 1,52 pro 209 Bi, přebytek neutronů zmenšuje
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů
Spektrální charakteristiky
Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který
1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.
1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci
Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření ionizujícího záření a bezpečnostní náležitosti Autor: Doc. Ing. Josef Formánek, Ph.D. Tvorba grafické
Spektrometrie záření gama
Spektrometrie záření gama K. Procházková Gymnázium Písek, karlaprochazkova@seznam.cz J. Grepl VOŠ a SPŠ stavební, Náchod, kuba.grepl@seznam.cz J. Michelfeit Gymnázium Brno, tř. Kpt. Jaroše, jmichelf@seznam.cz
Aplikace jaderné fyziky (několik příkladů)
Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané
Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.
Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.
Modulace a šum signálu
Modulace a šum signálu PATRIK KANIA a ŠTĚPÁN URBAN Nejlepší laboratoř molekulové spektroskopie vysokého rozlišení Ústav analytické chemie, VŠCHT Praha kaniap@vscht.cz a urbans@vscht.cz http://www.vscht.cz/anl/lmsvr
2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru
Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé
Ovládání MZK Terminalu je jednoduché a intuitivní. Terminal se ovládá pěti tlačítky.
MZK terminal MZK terminal byl vyvinut nejen jako terminál k online zobrazování a ukládání telemetrických dat z modulu Twin k pozdější analýze, ale především jako víceúčelové zařízení, jehož funkce a možnosti
Měření spektra světelných zdrojů LED Osvětlovací soustavy - MOSV
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Měření spektra světelných zdrojů LED Osvětlovací soustavy - MOSV Autoři textu: Ing. Tomáš Pavelka Ing. Jan Škoda, Ph.D.
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Měření optických vlastností materiálů
E Měření optických vlastností materiálů Úkoly : 1. Určete spektrální propustnost vybraných materiálů různých typů stavebních skel a optických filtrů pomocí spektrofotometru 2. Určete spektrální odrazivost
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
UniLog-D. v1.01 návod k obsluze software. Strana 1
UniLog-D v1.01 návod k obsluze software Strana 1 UniLog-D je PC program, který slouží k přípravě karty pro záznam událostí aplikací přístroje M-BOX, dále pak k prohlížení, vyhodnocení a exportům zaznamenaných
Úloha 5: Spektrometrie záření α
Petra Suková, 3.ročník 1 Úloha 5: Spektrometrie záření α 1 Zadání 1. Proveďte energetickou kalibraci α-spektrometru a určete jeho rozlišení. 2. Určeteabsolutníaktivitukalibračníhoradioizotopu 241 Am. 3.
4. Z modové struktury emisního spektra laseru určete délku aktivní oblasti rezonátoru. Diskutujte,
1 Pracovní úkol 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřené závislosti zpracujte graficky. Stanovte prahový proud i 0. 2. Pomocí Hg výbojky okalibrujte
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2017
Střední průmyslová škola sdělovací techniky Panská Praha 1 Jaroslav Reichl, 017 určená studentům 4. ročníku technického lycea jako doplněk ke studiu fyziky Jaroslav Reichl Obsah 1. SPECIÁLNÍ TEORIE RELATIVITY....
Měření šířky zakázaného pásu polovodičů
Měření šířky zakázaného pásu polovodičů Úkol : 1. Určete šířku zakázaného pásu ze spektrální citlivosti fotorezistoru pro šterbinu 1,5 mm. Na monochromátoru nastavujte vlnovou délku od 200 nm po 50 nm
MĚŘENÍ PLANCKOVY KONSTANTY
Úloha č. 14a MĚŘENÍ PLANCKOVY KONSTANTY ÚKOL MĚŘENÍ: 1. Změřte napětí U min, při kterém se právě rozsvítí červená, žlutá, zelená a modrá LED. Napětí na LED regulujte potenciometrem. 2. Nakreslete graf
Pozitron teoretická předpověď
Pozitron teoretická předpověď Diracova rovnice: αp c mc x, t snaha popsat relativisticky pohyb elektronu x, t ˆ i t řešení s negativní energií vakuum je Diracovo moře elektronů pozitrony díry ve vaku Paul
nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální
Logické řízení výšky hladiny v nádržích
Popis úlohy: Spojené nádrže tvoří dohromady regulovanou soustavu. Přívod vody do nádrží je zajišťován čerpady P1a, P1b a P3 ovládaných pomocí veličin u 1a, u 1b a u 3, snímání výšky hladiny je prováděno
Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky
Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky Problémová situace První jaderný reaktor spustil 2. prosince 942 na univerzitě v Chicagu italský fyzik Enrico Fermi se svými spolupracovníky.
Prostředky automatického řízení Úloha č.5 Zapojení PLC do hvězdy
VŠB-TU OSTRAVA 2005/2006 Prostředky automatického řízení Úloha č.5 Zapojení PLC do hvězdy Jiří Gürtler SN 7 Zadání:. Seznamte se s laboratorní úlohou využívající PLC k reálnému řízení a aplikaci systému
Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní
Molekulová spektroskopie 1. Chemická vazba, UV/VIS
Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
UniLog-L. v0.81 návod k obsluze software. Strana 1
UniLog-L v0.81 návod k obsluze software Strana 1 UniLog-L je PC program, který slouží k přípravě karty pro záznam logických průběhů aplikací přístroje M-BOX, dále pak k prohlížení a vyhodnocení. Popis
Digitální luxmetr Sonel LXP-1. Návod k obsluze
Digitální luxmetr Sonel LXP-1 Návod k obsluze Přístroj je určen k měření osvětlení ve vnitřních a venkovních prostorách. Naměřené hodnoty osvětlení lze odečítat v jednotkách osvětlení lux nebo fotokandela.
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony
Měření parametrů světelných zdrojů a osvětlení
FP 4 Měření parametrů světelných zdrojů a osvětlení Úkoly : 1. Určete a porovnejte normované prostorové vyzařovací charakteristiky určených světelných zdrojů (žárovky, LD dioda) pomocí fotogoniometru 2.
1. GPIB komunikace s přístroji M1T330, M1T380 a BM595
1. GPIB komunikace s přístroji M1T330, M1T380 a BM595 Přístroje se programují a ovládají tak, že se do nich z řídícího počítače pošle řetězec, který obsahuje příslušné pokyny. Ke každému programovatelnému
Bezdrátová váha s paměťovou funkcí AF 201-W. Návod k použití
Bezdrátová váha s paměťovou funkcí AF 201-W Návod k použití Vlastnosti: 1. Kapacita: 150KG/330LB/23ST, Rozdělení: 0.1KG/0.2LB 2. Jednotka: KG, LB, ST 3. Rozmezí tělesného tuku: 0~80% 4. Odchylka v měření
12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM
12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM Při práci se zdroji záření spočívá v zeslabení dávky záření na hodnotu, při níž je riziko ozáření sníženo na zanedbatelnou hodnotu: udržování patřičné vzdálenosti od
Práce se spektrometrem SpectroVis Plus Vernier
informace pro učitele Práce se spektrometrem SpectroVis Plus Vernier Aleš Mareček Kvinta úloha Měřené veličiny Přístroj SpectroVis Plus umožní studovat viditelnou část spektra a část blízké infračervené
RADIOAKTIVITA TEORIE. Škola: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL Člověk a příroda Fyzika Jaderná fyzika Radioaktivita RADIOAKTIVITA
Aplikace GoGEN Smart Center
Aplikace GoGEN Smart Center Návod na použití aplikace Úvod Aplikace GoGEN Smart Center pro maximální využití Smart TV GoGEN, spojuje vyspělou technologii a zábavu v pohodlí domova. SMART ovládání ovládání
Frekvenční charakteristika soustavy tří nádrží
Popis úlohy: Spojené nádrže tvoří dohromady regulovanou soustavu. Přívod vody do nádrží je zajišťován čerpady P1a, P1b a P3 ovládaných pomocí veličin u 1a, u 1b a u 3, snímání výšky hladiny je prováděno
Rentgenfluorescenční analýza, pomocník nejen při studiu památek
Rentgenfluorescenční analýza, pomocník nejen při studiu památek Ondřej Vrba (vrba.ondrej@gmail.com) Do Hoang Diep - Danka(dohodda@gmail.com) Verča Chadimová (verusyk@email.cz) Metoda využívající RTG záření
12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM
12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM Při práci se zdroji záření spočívá v zeslabení dávky záření na hodnotu, při níž je riziko ozáření sníženo na zanedbatelnou hodnotu: udržování patřičné vzdálenosti od
Detektory. požadovaná informace o částici / záření. proudový puls p(t) energie. čas příletu. výstupní signál detektoru. poloha.
Detektory požadovaná informace o částici / záření energie čas příletu poloha typ citlivost detektoru výstupní signál detektoru proudový puls p(t) E Q p t dt účinný průřez objem vnitřní šum vstupní okno
Stručný postup k použití programu PL7 Junior (programování TSX Micro)
Stručný postup k použití programu PL7 Junior (programování TSX Micro) 1. Připojení PLC TSX Micro k počítači Kabel, trvale zapojený ke konektoru TER PLC, je nutné zapojit na sériový port PC. 2. Spuštění
Identifikace typu záření
Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity
CBR Test dimenzač ní čh parametrů vozovek
CBR Test dimenzač ní čh parametrů vozovek Verze: 1.0.0.6 (14. 5. 2012) (c) Copyright 2012. VIKTORIN Computers Tento program podléhá autorským zákonům. Všechna práva vyhrazena! Vývoj aplikace: Jiří Viktorin
Uživatelský manuál. A4000 Download
Uživatelský manuál Aplikace: Jednoduchý program pro přenášení dat z přístrojů řady A4000 Export měřených dat do souboru Zobrazení grafů naměřených dat Tisk grafů naměřených dat Vlastnosti: Hardwarové požadavky:
SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů
NITON XL3t GOLDD+ Nový analyzátor
Nový analyzátor NITON XL3t GOLDD+ Ruční rentgenový analyzátor NITON XL3t GOLDD+ je nejnovější model od Thermo Fisher Scientific. Navazuje na úspěšný model NITON XL3t GOLDD. Díky špičkovým technologiím
Modul GPS přijímače ublox LEA6-T
Modul GPS přijímače ublox LEA6-T Vlastnosti přijímače LEA6-T GPS přijímač LEA6-T do firmy ublox je určený primárně na aplikace s přesným časem. Tomu jsou také přizpůsobeny jeho vstupy a výstupy. Celý přijímač
1. Základní popis programu Nová zkouška Záložka měření Záložka vtisky Záložka report Nastavení 7
Systém Microness pro vyhodnocování tvrdosti Návod k obsluze Systém Microness se skládá z vlastního programu Microness, digitální kamery a montážního příslušenství kamery. Použitá kamera se připojuje přes
2 Nd:YAG laser buzený laserovou diodou
2 Nd:YAG laser buzený laserovou diodou 15. května 2011 Základní praktikum laserové techniky Zpracoval: Vojtěch Horný Datum měření: 12. května 2011 Pracovní skupina: 1 Ročník: 3. Naměřili: Vojtěch Horný,
POPIS VYNALEZU 155088
ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A POPIS VYNALEZU 155088 K AUTORSKÉMU OSVĚDČENÍ MPT G 011 1/18 ( l É Š Přihlášeno 19. XII. 1972 (PV 8749-72] PT 21 g 18/01 Zveřejněno 17. IX. 1973 ÚRAD PRO VYNÁLEZY
TW15 KONCOVÝ PRVEK MSKP. Popis výrobku Technická data Návod k obsluze. Technologie 2000 s.r.o., Jablonec nad Nisou
TW15 KONCOVÝ PRVEK MSKP Popis výrobku Technická data Návod k obsluze Technologie 2000 s.r.o., Jablonec nad Nisou Obsah: 1. CHARAKTERISTIKA... 3 2. TECHNICKÉ PARAMETRY... 4 2.1 VÝROBCE:... 4 3. POPIS TW15ADAM...
Elektronový obal atomu
Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h
1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge.
V1. Hallův jev Úkoly měření: 1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. Použité přístroje a pomůcky:
Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava
Scintilační gama spektrometrie
1 Scintilační gama pektrometrie Úkolem cintilační pektrometrie záření γ může být - tanovení energií fotonů interagujících e cintilačním detektorem a - analýzou energetického pektra určení radionuklidů
8.STAVBA ATOMU ELEKTRONOVÝ OBAL
8.STAVBA ATOMU ELEKTRONOVÝ OBAL 1) Popiš Daltonovu atomovou teorii postuláty. (urči, které platí dodnes) 2) Popiš Rutherfordův planetární model atomu a jeho přínos. 3) Bohrův model atomu vysvětli kvantování