strukturní (součástmi buněčných struktur) metabolická (realizují b. metabolizmus) informační (jako signály či receptory signálů)
|
|
- Ludvík Ševčík
- před 9 lety
- Počet zobrazení:
Transkript
1 1 Bílkoviny - představují cca. ½ suché hmotnosti buňky - molekuly bílkovin se podílí na všech základních životních procesech - součástmi buněčných struktur (stavební f-ce) Funkce bílkovin: strukturní (součástmi buněčných struktur) metabolická (realizují b. metabolizmus) informační (jako signály či receptory signálů) vedle toho základní komponentou všech tří hlavních principů funkční organizace buňky (paměťového, membránového, cytoskeletárního) a) Primární struktura bílkovinné molekuly Stavební jednotkou (monomerem) bílkoviny (proteinu): - aminokyseliny (AK, AA) zastoupení jednotlivých druhů AK v molekule a jejich sled ozn. jako primární strukturu bílkovin
2 2 Příklad: -158-Cys-Glu-Val-Phe-Val-Met-Pro-Arg-Ala-169- (CEVFVMPRA) AMINOKYSELINY - odvozeny od organických kyselin, na α-uhlík je navázána aminová skupina (NH 2 ) α-uhlík (2. uhlík) AK skládající bílkoviny převážně - a- aminokyseliny a vždy z L- řady (jen ve stěnových peptidech někt. bakterií nalezeny i D-aminokyseliny)
3 3 STRUKTURA PEPTIDOVÉHO ŘETĚZCE AK v molekule bílkovin navzájem pospojovány peptidovou vazbou (spojuje se aminoskupina 2. uhlíku jedné AK s karboxylovou skupinou sousední AK a odštěpuje se molekula vody tj. polykondenzace) Pospojováním více AK (řetězením) vzniká peptidový řetězec
4 4 AMINOKYSELINOVÉ SLOŽENÍ BÍLKOVIN Zastoupení různých AK v molekule bílkoviny lze snadno zjistit po hydrolýze bílkoviny určením jejich počtu (obvykle %). Složení je charakteristické pro každý druh bílkoviny. O vlastnostech bílkoviny rozhoduje charakter postranních řetězců AK (z fyzikálně-chemického hlediska: kyselé, bazické, polární a nepolární). kyselé bílkoviny s hojným zastoupením dikarboxylových kyselin, např. Asp. Glu (-COOH skupina na postranních řetězcích) zásadité (bazické) bílkoviny - s četnými diaminokyselinami, např. Arg, Lys, His (-NH 2 skupina na postranních řetězcích)
5 Některé AK zakončené na postranních řetězcích hydrofobními skupinami, např. -CH3, jsou-li v převaze, určují hydrofobní charakter bílkovinné molekuly X Přítomnost AK s hydrofilními skupinami, např. COOH, -OH určují při převaze hydrofilní (polární) bílkovinné molekuly 5 Souhrn (ke složení): zastoupení různých AK určuje fyzikální vlastnosti bílkovinné molekuly, které jsou jedním z důležitých faktorů pro funkci bílkoviny v buňce.
6 6 SEKVENCE AMINOKYSELIN Vlastnosti určité bílkoviny nejsou určeny pouze AK složením, ale i jejich pořadím, sekvencí, v peptidovém řetězci. Určování skutečných sekvencí AK v bílkovinách, tzv. sekvenování bylo dříve velmi obtížné (F. Sanger, 1953 struktura molekuly inzulínu). Dnes se primární struktura bílkovin odvozuje nepřímo podle sekvence nukleotidů DNA, které je kódují (sekvenování DNA je metodicky jednodušší). Známa úplná AK sekvence několik tisíc bílkovin databáze Souhrn (k prim. struktuře): Primární struktura bílkoviny určuje vlastnosti celé molekuly, tedy i její biologickou funkci. Primární struktura proto musí být velmi přesně určena (informace pro ni je v genetické paměti buňky). Ze srovnání sekvencí bílkovin je možno vyvozovat závěry i o evoluční příbuznosti různých bílkovin b) Sekundární a terciární struktura bílkovinné molekuly krátké polypetidové řetězce (několik desítek AK) peptidy nebo oligopeptidy (podle počtu AK: tri-, okta-, dekapeptidy..) Oligopeptidy mají důležité biologické funkce, zejména regulační (např. některé hormony) nebo součástí složitějších makromolekul (např. mureinu peptidoglykan, jež je součástí b. stěny bakterií
7 7 Bílkoviny (proteiny) sem řazeny látky s polypeptidovým řetězcem až z většího počtu AK (několika set). M.h (10-50 kilodaltonů - kd) (pro srovnání: průměrná m.h. 1 zbytku AK je asi 110 Daltonů ) polypeptidový řetězec je značně dlouhý až 3 µm Bílkoviny s ±nataženým polypeptidovým řetězcem, vytváří jakési vlákno - Fibrilární bílkoviny Většina buněčných bílkovin však vytváří molekuly, jejíchž tvar se blíží sférickým útvarům - Globulární bílkoviny Mnoho vazeb v dlouhém polypeptidovém řetězci umožňuje volnou rotaci atomů velká flexibilita tvaru. Tvar, který řetězec v prostoru zaujímá konformace proteinu
8 8 Konformace proteinu - není náhodná, je určována silami, které působí uvnitř molekul. Na druhé straně rozložení interakcí vyplývá ze sekvence AK, tj. primární struktura bílkovin určuje i konformaci molekuly. Jestliže tuto konformaci nějakými silami změníme (molekulu denaturujeme), po působení sil se vrátí do původního stavu V konformaci různých proteinů byly nalezeny určité strukturní pravidelnosti, které se označují jako α-helix a β-struktura a-helix řetězec vytváří šroubovicové uspořádání Stabilizováno vodíkovými můstky mezi nad sebou ležícími peptidovými vazbami. U globulárních proteinů zaujímají α- helikální uspořádání některé úseky polypeptidového řetězce. Některé fibrilární proteiny (např. keratin) jen tuto konformaci.
9 9 b-struktura (β-skládaný list) probíhají úseky řetězce paralelně vedle sebe. Struktura stabilizována H můstky mezi sousedícími ( přiloženými ) úseky. Pouze některé proteiny mají tuto strukturu (např. fibroin z přírodního hedvábí). X Běžná u globulárních bílkovin (většinou se však kombinuje s úseky s α-helikální strukturou Tato uspořádání polypeptidového řetězce ozn. jako sekundární struktura
10 10 Konečnou strukturu molekuly bílkoviny, tj. prostorové uspořádání celého řetězce, ozn. jako terciární strukturu. Evolučně příbuzné proteiny (tzv. rodiny proteinů) velkou podobnost v terciární struktuře. Např. serinové proteázy (proteolytické enzymy jako chymotrypsin, trypsin a elastáza) až ze 40 %. Srovnávací biochemie proteinů tak naznačuje jejich evoluční vývoj, a tím i jejich biologickou účelnost.
11 11 Nevratná změna - ozn. nevratná denaturace X reverzibilní denaturace (vratná), která je důležitým mechanizmem regulace biologické funkce proteinu. Většina funkcí bílkovin vyplývá přímo z jejich terciární konformace. c) Podjednotkové bílkoviny Některé bílkoviny složeny z většího počtu menších molekul (více polypeptidových řetězců podjednotek, protomer) navzájem vázány nekovalentními vazbami. Tyto proteiny ozn. podjednotkové (oligomerní) podle počtu podjednotek dimerní (2), tetramerní (4) Podjednotky buď zcela identické, nebo různé (např. homodimery, heterodimery). Vzájemné prostorové uspořádání podjednotek kvarterní struktura bílkovin Př. Transportní bílkoviny membrán - 2 subj., myoglobin - 4 subj., imunoglobuliny - 4 subj. a jejich násobky, některé dehydrogenázy tvořeny až 16 subjednotkami, kapsidy virů (desítky až stovky identických subjednotek) Shrnutí: Biologická aktivita polymerních bílkovin je determinována jejich kvarterní konformací. Regulovaná změna kvarterní struktury je tedy cestou k regulaci jejich aktivity.
12 12 d) Funkce bílkovin v buňce Bílkoviny se podílí na všech základních životních procesech (funkce: strukturní, metabolické, informační). Mnohé bílkoviny bifunkční či polyfunkční Př. Některé proteiny jsou strukturálními komponentami biomembrány a současně mají enzymovou f-ci (membránové ATPázy) nebo f-ci transportní (transportní proteiny). Membránové imunoglobuliny imunocytů jsou stavební součástí membrány a současně plní f-ci signální - rozpoznávají své antigeny. Specifická f-ce bílkoviny vždy dána terciární (či kvarterní) strukturou. Každá interakce bílkoviny s jinou molekulou (procesy morfogenní, enzymové, informační) předpoklad na povrchu molekuly bílkoviny existuje specificky uspořádané vazebné či rekogniční místo, na něž se váže liganda (molekula vážící se na vazebné místo) vazebné místo fl liganda Specifita rozpoznávacího místa vůči ligandě - zpravidla dána prostorovou konformací několika či několika desítek AK (postranních řetězců). Specifická funkce bílkovin spočívá ve schopnosti rozeznat s jakou molekulou mají reagovat (primární struktura neomezené možnosti rozpoznání)
13 13 STAVEBNÍ BÍLKOVINY Součástí buněčných struktur (stavebními kameny) - prakticky všech b. struktur (př. komponenty cytoskeletu, bičíky tvořeny výlučně bílkovinami). Jinde spojeny s jinými biopolymery či jinými látkami: (např. v eukaryotických chromozomech a ribosomech agregace s NK, v biomembránach s fosfolipidy, v buněčných stěnách či extracelulární matrix s molekulami polysacharidů Vznik složitějších struktur z jednotlivých strukturních proteinů: pomocí vazebných míst 2 stejné molekuly (každá 1vazebné místo) dimer více molekul (každá 2 vazebná místa) řetězce
14 14 Nadmolekulární struktura vzniká samovolně! (nepotřebuje informaci a zpravidla ani energii) Tyto morfogenní procesy - autoorganizační (autoagregační) Informace pro specifické uspořádání podjednotek (strukturních monomerů) je obsažena již ve struktuře molekuly (vazebného místa)
15 15 Jiný příklad autoagregace bakteriálních bičíků (globulární bílkovina flagelin) Totéž i při tvorbě nadmolekulárních komplexů s jinými molekulami (reagregace ribosomů)
16 16
17 17 ENZYMOVÉ BÍLKOVINY Jednou z nejdůležitější funkcí proteinů je enzymová katalýza (téměř všechny reakce v buňce jsou enzymové!) Význam enzymové katalýzy: 1. enzymy urychlují průběh chemických reakcí (o několik řádů) 2. umožňují průběh i těch reakcí, které by za daných podmínek vůbec probíhat nemohly (př. v rozmezí biokinetických teplot) 3. specifita katalýzy určuje, které z možných chemických reakcí skutečně probíhat budou 4. reakce lze velmi přesně regulovat zásahem do katalytické aktivity enzymů (zpravidla reverzibilní změnou konformace molekuly enzymu) 5. díky tomu, že všechny enzymy jsou bílkoviny, umožněno řízení enzymového vybavení vnitřní pamětí buňky (genetickou informací) cestou transkripce a translace
18 18 K syntéze/rozkladu určité molekuly obvykle nestačí jedna enzymová reakce. Postupnou přeměnu substrátu v konečný produkt ozn. jako metabolickou dráhu V ní jsou za sebou spojeny různé enzymy, které katalyzují jednotlivé chemické reakce v přesném sledu (produkt první reakce se okamžitě stává substrátem pro druhý enzym, jeho produkt pro třetí enzym atd.). Z enzymové kinetiky celé této soustavy je velmi výhodné, jestliže všechny enzymy vytváří tzv. enzymový komplex. V něm jsou navzájem spojeny (např. zakotveny v daném sledu na pevnou strukturu nejčastěji biomembrány, např. enzymy dýchacího řetězce v mitochondriích). Pro energetické přenosy v buňce mají mimořádný význam enzymy, které štěpí makroergické fosfátové vazby (kovalentní s vysokým obsahem energie, ~ P) Makroergní fosfátové vazby ~ P Rozštěpením jedné makroergní vazby se uvolní energie kolem 30kJ. Nejčastějšími organickými fosfáty s makroerg. vazbou - nukleozidtrifosfáty. Z nich nejdůležitější je adenozintrifosfát (ATP).
19 19 ATP nukleotid složený z: adeninu ribózy tří zbytků kyseliny fosforečné adenin- ribóza-p~p~p Makroergní vazby jsou mezi 1. a 2. a mezi 2. a 3. zbytkem kyseliny fosforečné Analogicky: guanozintrifosfát (GTP) uridintrifosfát (UTP) Pro energetické přenosy v buňce je nejdůležitější hydrolýza trifosfátů na difosfáty nebo naopak vazba posledního zbytku kyseliny fosforečné ATP + H 2 O «ADP + H 3 PO 4 Štěpení ATP na ADP katalyzováno enzymem adenozintrifosfatázou (ATPázou). Bílkovin s ATPázovou aktivitou je v buňce velké množství (ATPázy, obdobně GTPázy).
20 20 Významnou roli v regulaci aktivity proteinů (nejenom enzymových) hraje kovalentní připojení fosfátové skupiny na některý z postranních řetězců molekuly fosforylace způsobí výraznou konformační změnu. Defosforylací se obnovuje původní stav. Fosforylaci uskutečňují proteinkinázy (PK), defosforylaci pak proteinfosfatázy. Shrnutí: Aktivita PK a proteinfosfatáz představuje klíčové nástroje vnitrobuněčné signalizace, jejichž důležitým článkem jsou i GTPázy
21 21 INFORMAČNÍ BÍLKOVINY Bílkoviny se účastní regulace buněčných procesů a mezibuněčných vztahů V těchto informačních procesech mají dvojí roli: 1. jako signály, které přenášejí informaci 2. jako receptory, které mohou signál přijímat (rozpoznat) a případně transformovat v jiný(é) signál(y) Molekula bílkoviny splňuje všechny předpoklady pro signální funkci: Informace může být snadno zakódována do primární struktury (sekvence AK), ta udává finální konformaci uplatňující se jako signál Stavebnicový princip skladby bílkovin umožňuje vznik neomezeného množství různých a velmi specifických signálů Omezená mobilita bílkovin (omezený průchod membránami či vazba na membrány) šíření může být vymezeno na určité kanály Bílkoviny lze snadno štěpit tj. lze snadno zrušit jejich signální funkci Mezi nejdůležitější bílkoviny s vysloveně signální f-cí patří: Bílkovinné hormony Imunoglobuliny Regulátory genové aktivity
22 22 Bílkoviny nesoucí morfogenní informaci (templáty) Bílkovinné hormony - např. hormony hypofýzy, příštítných tělísek, pankreatu atd. Lze k nim přiřadit i některé oligonukleotidy s funkcí v hormonálních regulacích Imunoglobuliny (Ig) - vysokomolekulární bílkoviny, specificky rozpoznávající strukturu antigenů. Základem všech typů Ig je tetrametr polypeptidových řetězců, které jsou navzájem vázány disulfidovými můstky Regulátory genové aktivity - proteiny s malou m.h., které se podílejí především na regulaci transkripce Receptory- struktury buňky se schopností přijímat (číst, rozpoznávat) signály přicházející z okolí buňky. Pro příjem informace nesené chemickými signály slouží většinou molekuly bílkovin. Většina receptorů, které čtou signály jak z okolí buňky, tak vnitrobuněčné signály vázána na biomembrány.
Úvod do molekulární biologie
1 Úvod do molekulární biologie Slavomír Rakouský JU ZSF Tyto texty jsou určeny pouze pro studijní účely (přednášek kurzu Úvod do molekulární biologie) studentů 1. ročníku JU ZSF. Jejich další šíření, publikování
Přírodní polymery proteiny
Přírodní polymery proteiny Funkční úloha bílkovin 1. Funkce dynamická transport kontrola metabolismu interakce (komunikace, kontrakce) katalýza chemických přeměn 2. Funkce strukturální architektura orgánů
BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím
Typy molekul, látek a jejich vazeb v organismech
Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,
Testové úlohy aminokyseliny, proteiny. post test
Testové úlohy aminokyseliny, proteiny post test 1. Které aminokyseliny byste hledali na povrchu proteinů umístěných uvnitř fosfolipidových membrán a které na povrchu proteinů vyskytujících se ve vodném
V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je
Biologie buňky. systém schopný udržovat se a rozmnožovat
Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický
Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová
Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní
CHEMIE. Pracovní list č. 10 - žákovská verze Téma: Bílkoviny. Mgr. Lenka Horutová
www.projektsako.cz CHEMIE Pracovní list č. 10 - žákovská verze Téma: Bílkoviny Lektor: Mgr. Lenka Horutová Projekt: Student a konkurenceschopnost Reg. číslo: CZ.1.07/1.1.07/03.0075 Teorie: Název proteiny
VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ
FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů
Bílkoviny - proteiny
Bílkoviny - proteiny Proteiny jsou složeny z 20 kódovaných aminokyselin L-enantiomery Chemická struktura aminokyselin R představuje jeden z 20 různých typů postranních řetězců R Hlavní řetězec je neměnný
a) Primární struktura NK NUKLEOTIDY Monomerem NK jsou nukleotidy
1 Nukleové kyseliny Nukleové kyseliny (NK) sice tvoří malé procento hmotnosti buňky ale významem v kódování genetické informace a její expresí zcela nezbytným typem biopolymeru všech živých soustav a)
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
Metabolismus bílkovin. Václav Pelouch
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)
PROTEINY. Biochemický ústav LF MU (H.P.)
PROTEINY Biochemický ústav LF MU 2013 - (H.P.) 1 proteiny peptidy aminokyseliny 2 Aminokyseliny 3 Charakteristika základní stavební jednotky proteinů geneticky kódované 20 základních aminokyselin 4 a-aminokyselina
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_413 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání
Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání http://web.natur.cuni.cz/~zdenap/zdenateachingnf.html CHEMICKÉ SLOŽENÍ BUŇKY BUŇKA: 99 % C, H, N,
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto SUBSTITUČNÍ DERIVÁTY KARBOXYLOVÝCH O KYSELIN R C O X karboxylových kyselin - substituce na vedlejším uhlovodíkovém řetězci aminokyseliny - hydroxykyseliny
Biopolymery. struktura syntéza
Biopolymery struktura syntéza Nukleové kyseliny Proteiny Polysacharidy Polyisopreny Ligniny.. Homopolymery Kopolymery (stat, alt, block, graft) Lineární Větvené Síťované kombinace proteiny Funkční úloha
Aminokyseliny, proteiny, enzymologie
Aminokyseliny, proteiny, enzymologie Aminokyseliny Co to je? Organické látky karboxylové kyseliny, které mají na sousedním uhlíku navázanou aminoskupinu Jak to vypadá? K čemu je to dobré? AK jsou stavební
Struktura a funkce biomakromolekul KBC/BPOL
Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je
jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu
Translace a genetický kód Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny jedné aminokyseliny v molekule jednoho
Redoxní děj v neživých a živých soustavách
Enzymy Enzymy Katalyzují chemické reakce, kdy se mění substrát na produkt Katalytickým působením se snižuje aktivační energie reagujících molekul substrátu, tím se reakce urychlí Za přítomnosti enzymu
Struktura a funkce biomakromolekul KBC/BPOL
Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Bílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
Bílkoviny. Bílkoviny. Bílkoviny Jsou
Bílkoviny Bílkoviny Úkol: Vyberte zdroje bílkovin: Citróny Tvrdý sýr Tvaroh Jablka Hovězí maso Luštěniny Med Obilí Vepřové sádlo Hroznové víno Bramborové hlízy Řepa cukrovka Bílkoviny Základními stavebními
Genomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc.
Genomické databáze Shlukování proteinových sekvencí Ivana Rudolfová školitel: doc. Ing. Jaroslav Zendulka, CSc. Obsah Proteiny Zdroje dat Predikce struktury proteinů Cíle disertační práce Vstupní data
aminokyseliny a proteiny
aminokyseliny a proteiny funkce proteinů : proteiny zastávají téměř všechny biologické funkce, s výjimkou přenosu informace stavební funkce buněk a tkání biokatalyzátory-urychlují biochemické reakce -
Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno:
Bruno Sopko Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno: Z předchozí rovnice vyplývá: Pokud katalýza při 25
Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2014/2015 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu
STRUKTURA PROTEINŮ
projekt GML Brno Docens DUM č. 17 v sadě 22. Ch-1 Biochemie Autor: Martin Krejčí Datum: 03.05.2014 Ročník: 6AF, 6BF Anotace DUMu: Struktura proteinů Materiály jsou určeny pro bezplatné používání pro potřeby
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 3. Enzymy a proteinové motory Ivo Frébort Enzymová katalýza Mechanismy enzymové katalýzy o Ztráta entropie při tvorbě komplexu ES odestabilizace komplexu ES
Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie
Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny
TRANSLACE - SYNTÉZA BÍLKOVIN
TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy
Vazebné interakce protein s DNA
Vazebné interakce protein s DNA Vazebné možnosti vn jší vazba atmosféra + iont kolem nabité DNA vazba ve žlábku van der Waalsovský kontakt s lé ivem ve žlábku interkalace vmeze ení planárního aromat.
Bílkoviny. Charakteristika a význam Aminokyseliny Peptidy Struktura bílkovin Významné bílkoviny
Bílkoviny harakteristika a význam Aminokyseliny Peptidy Struktura bílkovin Významné bílkoviny 1) harakteristika a význam Makromolekulární látky složené z velkého počtu aminokyselinových zbytků V tkáních
pátek, 24. července 15 BUŇKA
BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné
Biologie buňky. proteiny, nukleové kyseliny, procesy genom, architekura,funkce, mitoza, buněčná smrt, kmenové buňky, diferenciace
Biologie buňky Molecules of life Struktura buňky, Buněčný cyklus proteiny, nukleové kyseliny, procesy genom, architekura,funkce, mitoza, buněčná smrt, kmenové buňky, diferenciace Buněčná membrána mezibuněčné
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:
BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,
Metabolismus proteinů a aminokyselin
Metabolismus proteinů a aminokyselin Proteiny jsou nejdůležitější složkou potravy všech živočichů, nelze je nahradit ani cukry, ani lipidy. Je to proto, že organismus živočichů nedokáže ve svých metabolických
Projekt SIPVZ č.0636p2006 Buňka interaktivní výuková aplikace
Nukleové kyseliny Úvod Makromolekulární látky, které uchovávají a přenášejí informaci. Jsou to makromolekulární látky uspořádané do dlouhých. Řadí se mezi tzv.. Jsou přítomny ve buňkách a virech. Poprvé
Přírodní polymery. struktura syntéza
Přírodní polymery struktura syntéza Nukleové kyseliny Proteiny Polysacharidy Polyisopreny Ligniny.. průmyslové využití (tradiční, obnovitelný zdroj) Sruktura komplikovanější Homopolymery Kopolymery (stat?,
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
6. Nukleové kyseliny
6. ukleové kyseliny ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné buňky. ukleové kyseliny
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
I V E S T I E D Z V J E V Z D Ě L Á V Á Í AMIKYSELIY PEPTIDY AMIKYSELIY = substituční/funkční deriváty karboxylových kyselin = základní jednotky proteinů (α-aminokyseliny) becný vzorec 2-aminokyselin (α-aminokyselin):
DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 11 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 30.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Princip genové exprese, intenzita překladu
Obecná charakteristika živých soustav
Obecná charakteristika živých soustav Vypracoval: RNDr. Milan Zimpl, Ph.D. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Kategorie živých soustav Existují
Nukleové kyseliny. obecný přehled
Nukleové kyseliny obecný přehled Nukleové kyseliny objeveny r.1868, izolovány koncem 19.stol., 1953 objasněno jejich složení Watsonem a Crickem (1962 Nobelova cena) biopolymery nositelky genetické informace
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Aminokyseliny, peptidy a bílkoviny
Aminokyseliny, peptidy a bílkoviny Dělení aminokyselin Z hlediska obsahu v živé hmotě Z hlediska významu ve výživě Z chemického hlediska Z hlediska rozpustnosti Dělení aminokyselin Z hlediska obsahu v
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2011 - podobor genetiky (genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann Gregor
NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:
NUKLEOVÉ KYSELINY Deoxyribonukleová kyselina (DNA, odvozeno z anglického názvu deoxyribonucleic acid) Ribonukleová kyselina (RNA, odvozeno z anglického názvu ribonucleic acid) Definice a zařazení: Nukleové
Translace (druhý krok genové exprese)
Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace
Intermediární metabolismus. Vladimíra Kvasnicová
Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,
Aminokyseliny. Peptidy. Proteiny.
Aminokyseliny. Peptidy. Proteiny. Struktura a vlastnosti aminokyselin 1. Zakreslete obecný vzorec -aminokyseliny. Která z kodovaných aminokyselin se z tohoto vzorce vymyká? 2. Které aminokyseliny mají
Předmět: KBB/BB1P; KBB/BUBIO
Předmět: KBB/BB1P; KBB/BUBIO Chemické složení buňky Cíl přednášky: seznámit posluchače se složením buňky po chemické stránce Klíčová slova: biogenní prvky, chemické vazby a interakce, uhlíkaté sloučeniny,
Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav
Buněčná teorie: Počátky formování: 1840 a dále, Jan E. Purkyně myšlenka o analogie rostlinného a živočišného těla (buňky zrníčka) Schwann T. Virchow R. nové buňky vznikají pouze dělením buněk již existujících
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti
TUKY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2013. Ročník: devátý
TUKY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 15. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí s lipidy. V rámci tohoto
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových
ÚVOD DO BIOCHEMIE. Dělení : 1)Popisná = složení org., struktura a vlastnosti látek 2)Dynamická = energetické změny
BIOCHEMIE 1 ÚVOD DO BIOCHEMIE BCH zabývá se chemickými procesy v organismu a chemickým složením živých organismů Biologie: bios = život + logos = nauka Biochemie: bios = život + chemie Dělení : Chemie
BIOLOGICKÉ ÚVOD ZÁKLADY MOLEKULÁRN RNÍ BIOLOGIE
BIOLOGICKÉ VĚDY ÚVOD ZÁKLADY MOLEKULÁRN RNÍ BIOLOGIE DOPORUČEN ENÁ LITERATURA Jan Šmarda BIOLOGIE PRO PSYCOLOGY A PEDAGOGY Jan Šmarda ZÁKLADY BIOLOGIE A ANATOMIE PRO STUDUJÍCÍ PSYCOLOGIE Zdeněk Wilhelm
POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.
POLYPEPTIDY Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. Hormony = katalyzátory v živočišných organismech (jsou
Inovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Chemie nukleotidů a nukleových kyselin. Centrální dogma molekulární biologie (existují vyjímky)
Chemie nukleotidů a nukleových kyselin Centrální dogma molekulární biologie (existují vyjímky) NH 2 N N báze O N N -O P O - O H 2 C H H O H H cukr OH OH nukleosid nukleotid Nukleosidy vznikají buď syntézou
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ
BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce
Obecná biologie - přednášky
Obecná biologie - přednášky 1) Biogenní prvky H, C, N, O, P, S jsou základem látek nezbytných pro život H, C, O (N) jsou obsaženy v sacharidech H, C, O, (P) jsou obsaženy v lipidech H, C, N, O, S vytvářejí
Struktura, chemické a biologické vlastnosti aminokyselin, peptidů a proteinů
Struktura, chemické a biologické vlastnosti aminokyselin, peptidů a proteinů Aminokyseliny CH COOH obsahují karboxylovou skupinu a aminovou skupinu nebarevné sloučeniny (Trp, Tyr, Phe absorbce v UV) základní
8. Polysacharidy, glykoproteiny a proteoglykany
Struktura a funkce biomakromolekul KBC/BPOL 8. Polysacharidy, glykoproteiny a proteoglykany Ivo Frébort Polysacharidy Funkce: uchovávání energie, struktura, rozpoznání a signalizace Homopolysacharidy a
Nukleové kyseliny příručka pro učitele. Obecné informace:
Obecné informace: Nukleové kyseliny příručka pro učitele Téma Nukleové kyseliny je završením základních kapitol z popisné chemie a je tedy zařazeno až na její závěr. Probírá se v rámci jedné, eventuálně
Hemoglobin a jemu podobní... Studijní materiál. Jan Komárek
Hemoglobin a jemu podobní... Studijní materiál Jan Komárek Bioinformatika Bioinformatika je vědní disciplína, která se zabývá metodami pro shromážďování, analýzu a vizualizaci rozsáhlých souborů biologických
Energetický metabolizmus buňky
Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie
Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost
BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Enzymy charakteristika a katalytický účinek
Enzymy charakteristika a katalytický účinek Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek enzymy 28.7.2012 3. ročník čtyřletého G Charakteristika
METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI
METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie
Nukleové kyseliny Milan Haminger BiGy Brno 2017
ukleové kyseliny Milan aminger BiGy Brno 2017 ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné
Bp1252 Biochemie. #11 Biochemie svalů
Bp1252 Biochemie #11 Biochemie svalů Úvod Charakteristickou funkční vlastností svalu je schopnost kontrakce a relaxace Kontrakce následuje po excitaci vzrušivé buněčné membrány je přímou přeměnou chemické
Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie
Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje
BÍLKOVINY = PROTEINY Polymery aminokyselin propojených peptidovou vazbou
BÍLKOVINY = PROTEINY Polymery aminokyselin propojených peptidovou vazbou 20 AK 20 18 variant pro peptid složený z 20 AK!!! Průměrná bílkovina 300 AK Relativní molekulová hmotnost (bezrozměrné číslo) Molární
Opakování
Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony
USPOŘÁDEJTE HESLA PODLE PRAVDIVOSTI DO ŘÁDKŮ
Proteiny funkce Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek proteiny 22.7.2012 3. ročník čtyřletého G Procvičování struktury a funkcí proteinů
Molekulární biofyzika
Molekulární biofyzika Molekuly v živých systémech - polymery Lipidy (mastné kyseliny, fosfolipidy, isoprenoidy, sfingolipidy ) proteiny (aminokyseliny) nukleové kyseliny (nukleotidy) polysacharidy (monosacharidy)
Struktura nukleových kyselin Vlastnosti genetického materiálu
Struktura nukleových kyselin Vlastnosti genetického materiálu V předcházejících kapitolách bylo konstatováno, že geny jsou uloženy na chromozomech a kontrolují fenotypové vlastnosti a že chromozomy se
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2010 Mendel - podobor Genetiky (Genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann