Molekulární biofyzika
|
|
- Tereza Staňková
- před 8 lety
- Počet zobrazení:
Transkript
1 Molekulární biofyzika Molekuly v živých systémech - polymery Lipidy (mastné kyseliny, fosfolipidy, isoprenoidy, sfingolipidy ) proteiny (aminokyseliny) nukleové kyseliny (nukleotidy) polysacharidy (monosacharidy)
2 Proteiny - bílkoviny oprimární str. (aminokyseliny) osekundární str.(peptidová vazba, nevazebné interakce, sekundární struktury) oterciární str. (folding) okavarterní str. odruhy proteinů (struktura, funkce) oenzymy (mechanismus katalýzy, inhibice)
3 Primární struktura proteinů - AMINOKYSELINY -aminokyseliny: konfigurace (podle Fischera) COO - COO - D: H C NH 3 L: NH 3 C H R R Kódované aminokyseliny (20): -aminokyseliny (kromě prolinu NH 2 skupina zabudována do cyklu)
4 Hydrofobní aminokyseliny
5 Polární aminokyseliny
6 Kyselé aminokyseliny
7 Bazické aminokyseliny
8 Rozdělení podle chemické povahy postranních řetězců (v lit. se často liší) o Aromatic (phenylalanine, tyrosine, tryptophan) o aliphatic (leucine, isoleucine, alanine, methionine, valine) o Hydroxyl/Sulfhydryl (threonine, serine, tyrosine, cysteine) o Carboxyamide (glutamine, asparagine) o R-Acids (glutamic acid, aspartic acid) o R-Amines (lysine, histidine, arginine) o Odd (glycine, proline)
9 AA včetně označení hmotnosti v Tab jsou uváděny o 18 nižší, tedy takové jaké jsou v bílkovinném řetězci
10 Kódované aminokyseliny: Jednopísmenkové zkratky Proč jsou v tabulce vzorce s náboji? obojetné ionty = amfionty COO - H C H NH 3 celkový náboj amfiontu: součet všech nábojů (pro Gly v ph 7 = 2) volný náboj amfiontu: algebraický součet nábojů (pro Gly v ph 7 = 0)
11 kyselina: HA H A - Slabá kyselina - pufr: např. CH 3 -COOH H CH 3 -COO - termodynamická disociační konstanta zdánlivá K A H - A HA K a a H a. a HA A Henderson-Hasselbalch HAc <=> H Ac- ph = pka log ([Ac-]/[HAc]) pka = -Log Ka (stejně jako ph = -Log [H])
12 KYSELÉ DISOCIAČNÍ KONSTANTY pk A disociovatelných SKUPIN VYSKYTUJÍCÍCH SE V BÍLKOVINÁCH -COOH, -COOH imidazolium -SH -NH 3 fenol -NH 3 guanidinium 2,5 4,0 6,0 8,3 9,5 10,1 10,5 12,5
13 Hodnoty pk A disociovatelných skupin v aminokyselinách a bílkovinách (25 o C) Funkční Aminokyselin Hodnoty pk A nalezené Hodnoty pk A skupina a ve volných nalezené aminokyselinách v bílkovinách -karboxylová C-koncová 1,7-2,6 1,8-3,6, karboxylová Asp, Glu 3,86; 4,25 3,0-4,7 imidazolová His 6,0 5,6-7,0 -aminová N-koncová 8,8-10,7 7,9-10,6 -aminová Lys 10,53 9,4-11,0 sulfhydrylová Cys 8,33 8,3-8,6 fenolová Tyr 10,07 9,8-10,8 guanidylová Arg 12,48 11,6-12,6
14 Titrační křivka glycinu
15 COO - OO - H C CH 2 NH 3 CH 2 C COO - H C CH 2 NH 3 CH 2 CH 2 CH 2 NH 3 COO - NH CH H C CH 2 C NH NH 3 CH
16 ISOELEKTRICKÝ BOD DEFINICE: ph, při němž se amfiont nepohybuje ve stejnosměrném elektrickém poli (interakce s dalšími ionty, závisí na prostředí - pufr); označujeme pi
17 ISOELEKTRICKÝ BOD př.: Gly (titruji Gly.HCl) K COOH A1 COO - K A2 COO - H C H NH 3 H C H NH 3 H C H NH 2 Z = 1 (Gly 1 ) 0 (Gly ) -1 (Gly -1 ) ph pk A1 Gly ph pk Gly Gly log [ ] A2 Gly log [ ] 2 ph pk pk Gly log [ ] A1 A2 Gly Ale v ph = pi platí: [Gly 1 ] = [Gly -1 ] takže: pi ( pk pk ) / A1 A2 2
18 Více disociovatelných skupin: rozhodují ty, které "sousedí" s pi (nutno načrtnout titrační křivku) Pro polyionty (např. bílkoviny) tuto rovnici nelze použít (příliš mnoho pk A v okolí pi) Isoelektrické body kódovaných aminokyselin AK pi AK pi AK pi AK pi Gly 6,0 Ser 5,7 Phe 5,5 His 7,6 Ala 6,0 Thr 5,6 Tyr 5,7 Lys 9,6 Val 6,0 Cys 5,0 Trp 5,9 Arg 10,8 Leu 6,0 Met 5,7 Asn 5,4 Asp 3,0 Ile 6,0 Pro 6,4 Gln 5,6 Glu 3,2
19 absorbance OPTICKÉ VLASTNOSTI Absorpce UV záření: aromatické (především Tyr a Trp) u 280 nm Absorpční spektra 1: hovězího sérového albuminu (1 mg/ml), 2: lidského imunoglobulinu (1 mg/ml) a 3: DNA (0,1 mg/ml), optická délka kyvety 1 cm. Optická aktivita: konfigurace (nesouvisí přímo se smyslem rotace) 1,6 1,4 1, ,8 0,6 0,4 1 0, vlnová délka [nm]
20 Peptidová vazba
21 >gi ref ZP_ putative Cerebroside-sulfatase [Escherichia coli TA143] MQKTLMASLIGLAVCTGNAFNPVVAAETKQPNLVIIMADDLGYGDLATYGHQIVKTPNIDRLAQEGVKFTDYYAPAPLSSPSRAGLLTGRMPF RTGIRSWIPTGKDVALGRNELTIANLLKAQGYDTAMMGKLHLNAGGDRTDQPQAKDMGFDYSLVNTAGFVTDATLDNAKERPRFGMVYPT GWLRNGQPTPRSDKMSGEYVSSEVVNWLDNKKDSKPFFLYVAFTEVHSPLASPKKYLDMYSQYMSDYQKQHPDLFYGDWADKPWRGTG EYYANISYLDAQVGKVLDKIKAMGEEDNTIVIFTSDNGPVTREARKVYELNLAGETDGLRGRKDNLWEGGIRVPAIIKYGKHLPKGMVSDTP VYGLDWMPTLANMMNFKLPTDRTFDGESLVPVLENKALKREKPLIFGIDMPFQDDPTDEWAIRDGDWKMIIDRNNKPKYLYNLKTDRFETI NQIGKNPDIEKQMYGKFLKYKADIDNDSLMKARGDK PEAVTWG Mutace!
22 Prim. Struktura - ZÁKONITOSTI: Primární struktura je zapsána v DNA (gen). Bílkoviny jeví druhovou specifitu (sekvenční homologie). Zákon isopolárních záměn. Polymorfismus bílkovin ("isobílkoviny").
23 Kovalentní struktura bílkovin (primární struktura posttranslační modifikace) 1. Propojení řetězců kovalentními vazbami 2. Odštěpení částí řetězců 3. Úpravy postranních řetězců aminokyselin 4. Připojení mastných kyselin 5. Glykosylace 6. Fosforylace (dočasné či trvalé) 7. Připojení dalších prosthetických skupin (kofaktory enzymů...) 8. Metaloproteiny (koordinační kovalentní vazby různé síly) 1-3: jednoduché bílkoviny 4-8: složené bílkoviny
24 Konformace peptidového řetězce OBECNÉ ZNAKY PROSTOROVÉHO USPOŘÁDÁNÍ "ORGANISOVANÝCH" BIOPOLYMERŮ: o Nativní struktuře odpovídá minimum Gibbsovy energie, dané výhodností nekovalentních interakcí. o Nativní struktura je zakódována v kovalentní struktuře. o Prostorové uspořádání závisí na mnohočetných interakcích s okolím. o Prostorové uspořádání je jistým způsobem hierarchické. o Nativní struktura je vždy do jisté míry pohyblivá (konformační dynamické systémy). o Nativní struktura je kooperativní (náhlý denaturační přechod).
25 Typy nekovalentních interakcí uplatňujících se v živých systémech * Střední hodnota energie vazby C - H v molekule methanu je 416 kj.mol -1. ** Pro prostředí s hodnotou relativní permitivity 4, přibližně odpovídající nepolárnímu prostředí uvnitř bílkovinné globule.
26 Hydrofobní interakce
27 Sekundární struktura
28 Ramachandran Plot
29 Pravotočivá šroubovice, stabilizovaná vodíkovými vazbami. 3,6 aminokyselinových zbytků na jednu otáčku, R aminokyselin jsou orientovány ven. Všechny C=O a N-H skupiny peptidových vazeb jsou uloženy rovnoběžně s podélnou osou a-helixu. Každá karbonylová (C=O) skupina peptidové vazby je vázána vodíkovou vazbou ke čtvrté N- H skupině. -helix Helikální strukturu mají převážně vláknité proteiny (keratiny), svalové proteiny aj. Výjimečný a-helix má kolagen. Tři levotočivé a- helixy se uspořádávají do pravotočivé trojité šroubovice superhelixu (dáno specifickým aminokyselinovým složením kolagenu 33% glycinu, 13% Pro a Hypro)
30
31 β struktura (struktura skládaného listu) Segmenty natažených polypeptidových řetězců. Dva segmenty (polypeptidové řetězce) jsou stabilizovány vodíkovými vazbami mezi C=O a N-H skupinami dvou sousedních peptidových vazeb. Sousední polypeptidové řetězce jsou uloženy antiparalelně nebo paralelně. Velký počet vodíkových vazeb udržuje strukturu v nataženém stavu
32
33 β - ohyb o Umožňuje otočení směru peptidového řetězce o Kyslík karbonylové skupiny jednoho residua je vázán H-vazbou na amidový proton o 3 residua dále o V těchto strukturách převažují prolin a glycin
34 Terciární struktura
35 hemoglobin
36
37
38 Stabilizace terciálrní str.
39
40 Kvarterní struktura
41 přílohy
42 Příklady bílkovin s kvarterní strukturou
43 Svinování (folding) - neprobíhá náhodným způsobem - probíhá postupně a) malé dočasné periodické struktury b) supersekundární struktury c) strukturní domény a "roztavená" glubule d) závěrečné úpravy za účasti enzymů (peptidylprolin-cis-trans-isomerasa, proteindisulfid-isomerasa) - Potřebují bílkoviny ke svinování pomocníky?
44 Svinování (folding)
45 Dělení bílkovin podle jejich funkce stavební a podpůrné kolageny, elastin, keratiny (fibrilární) bílkoviny cytoskeletu (tubulin, vimentin, též pohyb) nukleoproteiny (histony, ribosomální bílkoviny) transportní a skladovací hemoglobin a myoglobin (O 2 ) transferrin a ferritin (Fe) sérový albumin (mast. kyseliny, bilirubin, hem...) apolipoproteiny (lipidy, cholesterol) cytochrom c (elektrony) bílkoviny zajišťující membránový transport pohyb aktin a myosin (další) ochranné a obranné imunoglobuliny fibrinogen regulační hormony receptory (membránové a intracelulární) regulační bílkoviny proteosynthesy katalytická enzymy
46
47
48 přílohy
49 Kódované aminokyseliny: Polarita: N (nepolární), P (neutrální polární), K (kyselá) a Z (zásaditá). Esenciální: pro člověka Název / zkratka Vzorec Polarita Esenciální Glycin COO - Gly H C H N N Alanin NH 3 COO - Ala N N H C CH 3 NH 3 OO Valin C - CH 3 Val H C H C N E CH NH 3 3 Leucin COO - CH H 3 Leu H C CH 2 C N E CH 3 NH 3
50 Kódované aminokyseliny: Polarita: N (nepolární), P (neutrální polární), K (kyselá) a Z (zásaditá). Esenciální: pro člověka Název / zkratka Vzorec Polarita Esenciální Isoleucin Ile Prolin Pro Fenylalanin Phe H H COO - C HC NH 3 CH 3 COO - CH C 2 CH 2 CH 3 CH H 2 N 2 CH 2 COO - H C CH 2 NH 3 N N N E N E Tyrosin Tyr C COO- H CH 2 OH NH 3 P N Tryptofan Trp COO - H C CH 2 NH 3 N H N E
51 Kódované aminokyseliny: Polarita: N (nepolární), P (neutrální polární), K (kyselá) a Z (zásaditá). Esenciální: pro člověka Název / zkratka Vzorec Polarita Esenciální Histidin His Z N Serin COO - NH CH H C CH 2 C NH NH 3 CH COO - Ser H C CH 2 OH P N NH 3 Threonin CH 3 H C CH Thr P E COO - NH 3 COO - NH 3 COO - OH Cystein Cys H C CH 2 SH P N Methionin H C CH 2 CH S CH Met 2 3 N E NH 3
52 Kódované aminokyseliny: Polarita: N (nepolární), P (neutrální polární), K (kyselá) a Z (zásaditá). Esenciální: pro člověka Název / zkratka Vzorec Polarita Esenciální Lysin H C CH 2 CH 2 CH 2 CH 2 NH Lys 3 Z E COO - NH 3 COO - NH 3 Arginin NH 2 H C CH 2 CH 2 CH 2 HN C Arg Z N Asparagová kyselina Asp Glutamová kyselina Glu C NH 2 COO- H CH OO - 2 C NH 3 COO - H C CH 2 CH 2 COO - NH 3 Asparagin H C CH 2 CONH 2 Asn P N COO - NH 3 COO - NH 3 Glutamin H C CH 2 CH 2 CONH 2 Gln P N K K N N
Přírodní polymery proteiny
Přírodní polymery proteiny Funkční úloha bílkovin 1. Funkce dynamická transport kontrola metabolismu interakce (komunikace, kontrakce) katalýza chemických přeměn 2. Funkce strukturální architektura orgánů
VíceMolekulární biofyzika
Molekulární biofyzika Molecules of life Centrální dogma membrány Metody GI a MB Biofyzika buňky Biofyzika tkání proteiny, nukleové kyseliny struktura, funkce replikace, transkripce, translace struktura,
VíceBiologie buňky. systém schopný udržovat se a rozmnožovat
Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický
VíceBílkoviny - proteiny
Bílkoviny - proteiny Proteiny jsou složeny z 20 kódovaných aminokyselin L-enantiomery Chemická struktura aminokyselin R představuje jeden z 20 různých typů postranních řetězců R Hlavní řetězec je neměnný
VíceBiopolymery. struktura syntéza
Biopolymery struktura syntéza Nukleové kyseliny Proteiny Polysacharidy Polyisopreny Ligniny.. Homopolymery Kopolymery (stat, alt, block, graft) Lineární Větvené Síťované kombinace proteiny Funkční úloha
VícePřírodní polymery. struktura syntéza
Přírodní polymery struktura syntéza Nukleové kyseliny Proteiny Polysacharidy Polyisopreny Ligniny.. průmyslové využití (tradiční, obnovitelný zdroj) Sruktura komplikovanější Homopolymery Kopolymery (stat?,
VícePROTEINY. Biochemický ústav LF MU (H.P.)
PROTEINY Biochemický ústav LF MU 2013 - (H.P.) 1 proteiny peptidy aminokyseliny 2 Aminokyseliny 3 Charakteristika základní stavební jednotky proteinů geneticky kódované 20 základních aminokyselin 4 a-aminokyselina
VíceAMINOKYSELINY Substituční deriváty karboxylových kyselin ( -COOH, -NH 2 nebo -NH-) Prolin α-iminokyselina
Aminokyseliny - Základní stavební jednotky peptidů a proteinů - Proteinogenní (kódované) 20 AK - Odvozené chemické modifikace, metabolity - Esenciální AK AMINOKYSELINY Substituční deriváty karboxylových
VíceBiologie buňky. proteiny, nukleové kyseliny, procesy genom, architekura (membrána), funkce mitoza, buněčná smrt, kmenové buňky, diferenciace
Biologie buňky Molecules of life Struktura buňky Buněčný cyklus proteiny, nukleové kyseliny, procesy genom, architekura (membrána), funkce mitoza, buněčná smrt, kmenové buňky, diferenciace Biologie tkání
VíceBiologie buňky. proteiny, nukleové kyseliny, procesy genom, architekura,funkce, mitoza, buněčná smrt, kmenové buňky, diferenciace
Biologie buňky Molecules of life Struktura buňky, Buněčný cyklus proteiny, nukleové kyseliny, procesy genom, architekura,funkce, mitoza, buněčná smrt, kmenové buňky, diferenciace Buněčná membrána mezibuněčné
VíceInovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
VíceAMINOKYSELINY Substituční deriváty karboxylových kyselin ( -COOH, -NH 2 nebo -NH-) Prolin α-iminokyselina
Aminokyseliny - Základní stavební jednotky peptidů a proteinů - Proteinogenní (kódované) 20 AK - Odvozené chemické modifikace, metabolity - Esenciální AK AMINOKYSELINY Substituční deriváty karboxylových
VíceStruktura proteinů. - testík na procvičení. Vladimíra Kvasnicová
Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní
VíceAminokyseliny. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín. Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití
Aminokyseliny Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek proteiny 18.7.2012 3. ročník čtyřletého G Určování postranních řetězců aminokyselin
VíceBiochemie I. Aminokyseliny a peptidy
Biochemie I Aminokyseliny a peptidy Aminokyseliny a peptidy (vlastnosti, stanovení a reakce) AMINOKYSELINY Když se řekne AK ( -COOH, -NH 2 nebo -NH-) prostorový vztah aminoskupiny a karboxylové skupiny:
VíceAminokyseliny, peptidy a bílkoviny
Aminokyseliny, peptidy a bílkoviny Dělení aminokyselin Z hlediska obsahu v živé hmotě Z hlediska významu ve výživě Z chemického hlediska Z hlediska rozpustnosti Dělení aminokyselin Z hlediska obsahu v
VíceBílkoviny. Charakteristika a význam Aminokyseliny Peptidy Struktura bílkovin Významné bílkoviny
Bílkoviny harakteristika a význam Aminokyseliny Peptidy Struktura bílkovin Významné bílkoviny 1) harakteristika a význam Makromolekulární látky složené z velkého počtu aminokyselinových zbytků V tkáních
VíceAminokyseliny. Peptidy. Proteiny.
Aminokyseliny. Peptidy. Proteiny. Struktura a vlastnosti aminokyselin 1. Zakreslete obecný vzorec -aminokyseliny. Která z kodovaných aminokyselin se z tohoto vzorce vymyká? 2. Které aminokyseliny mají
VíceÚVOD DO BIOCHEMIE. Dělení : 1)Popisná = složení org., struktura a vlastnosti látek 2)Dynamická = energetické změny
BIOCHEMIE 1 ÚVOD DO BIOCHEMIE BCH zabývá se chemickými procesy v organismu a chemickým složením živých organismů Biologie: bios = život + logos = nauka Biochemie: bios = život + chemie Dělení : Chemie
VíceGymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto SUBSTITUČNÍ DERIVÁTY KARBOXYLOVÝCH O KYSELIN R C O X karboxylových kyselin - substituce na vedlejším uhlovodíkovém řetězci aminokyseliny - hydroxykyseliny
VíceObecná struktura a-aminokyselin
AMINOKYSELINY Obsah Obecná struktura Názvosloví, třídění a charakterizace Nestandardní aminokyseliny Reaktivita - peptidová vazba Biogenní aminy Funkce aminokyselin Acidobazické vlastnosti Optická aktivita
VíceMolekulární biofyzika
Molekulární biofyzika Molecules of life Centrální dogma membrány Metody GI a MB Interakce proteiny, nukleové kyseliny struktura, funkce replikace, transkripce, translace struktura, funkce analýza proteinů,
VíceProteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
VíceAminokyseliny, struktura a vlastnosti bílkovin. doc. Jana Novotná 2 LF UK Ústav lékařské chemie a klinické biochemie
Aminokyseliny, struktura a vlastnosti bílkovin doc. Jana Novotná 2 LF UK Ústav lékařské chemie a klinické biochemie 1. 20 aminokyselin, kódovány standardním genetickým kódem, proteinogenní, stavebními
VíceNázvosloví cukrů, tuků, bílkovin
Názvosloví cukrů, tuků, bílkovin SACARIDY CUKRY MNSACARIDY LIGSACARIDY PLYSACARIDY (z mnoha molekul monosacharidů) ALDSY KETSY -DISACARIDY - TRISACARIDY - TETRASACARIDY atd. -aldotriosy -aldotetrosy -aldopentosy
VíceVýukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_413 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
I V E S T I E D Z V J E V Z D Ě L Á V Á Í AMIKYSELIY PEPTIDY AMIKYSELIY = substituční/funkční deriváty karboxylových kyselin = základní jednotky proteinů (α-aminokyseliny) becný vzorec 2-aminokyselin (α-aminokyselin):
Víceaminokyseliny a proteiny
aminokyseliny a proteiny funkce proteinů : proteiny zastávají téměř všechny biologické funkce, s výjimkou přenosu informace stavební funkce buněk a tkání biokatalyzátory-urychlují biochemické reakce -
VíceStruktura, chemické a biologické vlastnosti aminokyselin, peptidů a proteinů
Struktura, chemické a biologické vlastnosti aminokyselin, peptidů a proteinů Aminokyseliny CH COOH obsahují karboxylovou skupinu a aminovou skupinu nebarevné sloučeniny (Trp, Tyr, Phe absorbce v UV) základní
VíceTestové úlohy aminokyseliny, proteiny. post test
Testové úlohy aminokyseliny, proteiny post test 1. Které aminokyseliny byste hledali na povrchu proteinů umístěných uvnitř fosfolipidových membrán a které na povrchu proteinů vyskytujících se ve vodném
VíceBÍLKOVINY = PROTEINY Polymery aminokyselin propojených peptidovou vazbou
BÍLKOVINY = PROTEINY Polymery aminokyselin propojených peptidovou vazbou 20 AK 20 18 variant pro peptid složený z 20 AK!!! Průměrná bílkovina 300 AK Relativní molekulová hmotnost (bezrozměrné číslo) Molární
VíceBiochemie I. Aminokyseliny a peptidy
Biochemie I Aminokyseliny a peptidy AMINOKYSELINY Když se řekne AK ( -COOH, -NH 2 nebo -NH-) prostorový vztah aminoskupiny a karboxylové skupiny: - (=2-), -(=3-)... -(= poslední) -alanin součástí koenzymu
VíceMetabolismus bílkovin. Václav Pelouch
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)
VíceAminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2014/2015 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu
VícePEPTIDY, BÍLKOVINY. Reg. č. projektu CZ.1.07/1.1.00/14.0143
PEPTIDY, BÍLKOVINY Definice: Bílkoviny (proteiny) jsou makromolekulární látky, které vznikají spojením sto a více molekul různých aminokyselin peptidickou vazbou. Obsahují atomy uhlíku (50 až 55%), vodíku
VíceV organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je
VíceAminokyseliny, struktura a vlastnosti bílkovin
Aminokyseliny, struktura a vlastnosti bílkovin doc. Jana Novotná Ústav lékařské chemie a klinické biochemie, 2. LF UK a FN Motol 2016 1. 20 aminokyselin, kódovány standardním genetickým kódem, proteinogenní,
VíceBÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím
VíceStruktura aminokyselin, peptidů a bílkovin.
Struktura aminokyselin, peptidů a bílkovin. Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol MUDr. Bc. Matej Kohutiar, Ph.D. matej.kohutiar@lfmotol.cuni.cz Praha 2018 I. Struktura aminokyselin
VíceBílkoviny (=proteiny) (vztah struktury a funkce) DNA RNA protein modifikovaný protein
Bílkoviny (=proteiny) (vztah struktury a funkce) DNA RNA protein modifikovaný protein Chemické složení Jednoduché Složené - polypeptidová + neproteinová část Složené: metaloproteiny fosfoproteiny glykoproteiny
VíceInovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz Z.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Funkční
VíceAminokyseliny, Peptidy, Proteiny
Aminokyseliny, Peptidy, Proteiny Proteiny jsou nejrozšířenější biologické makromolekuly Proteiny jsou tvořeny kombinací 20 α-aminokyselin Aminokyseliny sdílejí společné základní strukturní vlastnosti α-uhlík
VíceBiochemie I 2016/2017. Makromolekuly buňky. František Škanta
Biochemie I 2016/2017 Makromolekuly buňky František Škanta Makromolekuly buňky ukry Tuky Bílkoviny ukry Jsou sladké Přehled strukturních forem sacharidů Monosacharidy Disacharidy Polysacharidy Ketotriosa
VíceAminokyseliny a dlouhodobá parenterální výživa. Luboš Sobotka
Aminokyseliny a dlouhodobá parenterální výživa Luboš Sobotka Reakce na hladovění a stres jsou stejné asi 4000000 let Přežít hladovění a akutní stav Metody sledování kvality AK roztoků Vylučovací metoda
VíceAminokyseliny příručka pro učitele. Obecné informace: Téma otevírá kapitolu Bílkoviny, která svým rozsahem překračuje rámec jedné vyučovací hodiny.
Obecné informace: Aminokyseliny příručka pro učitele Téma otevírá kapitolu Bílkoviny, která svým rozsahem překračuje rámec jedné vyučovací hodiny. Navazující učivo Před probráním tématu Aminokyseliny probereme
VíceMetabolismus aminokyselin. Vladimíra Kvasnicová
Metabolismus aminokyselin Vladimíra Kvasnicová Aminokyseliny aminokyseliny přijímáme v potravě ve formě proteinů: důležitá forma organicky vázaného dusíku, který tak může být v těle využit k syntéze dalších
VíceMOLEKULOVÉ MODELOVÁNÍ - STRUKTURA. Monika Pěntáková Katedra Farmaceutické chemie
MOLEKULOVÉ MODELOVÁNÍ - STRUKTURA Monika Pěntáková Katedra Farmaceutické chemie Chemická struktura a geometrie KONFORMACE = můžeme změnit pouhým otočením kolem kovalentní vazby KONFIGURACE = při změně
VíceHemoglobin a jemu podobní... Studijní materiál. Jan Komárek
Hemoglobin a jemu podobní... Studijní materiál Jan Komárek Bioinformatika Bioinformatika je vědní disciplína, která se zabývá metodami pro shromážďování, analýzu a vizualizaci rozsáhlých souborů biologických
VíceMetabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová
Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová Vyberte esenciální aminokyseliny a) Asp, Glu b) Val, Leu, Ile c) Ala, Ser, Gly d) Phe, Trp Vyberte esenciální aminokyseliny a) Asp,
VíceEvropský sociální fond Praha & EU: Investujeme do vaší budoucnosti URČOVÁNÍ PRIMÁRNÍ STRUKTURY BÍLKOVIN
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti URČOVÁNÍ PRIMÁRNÍ STRUKTURY BÍLKOVIN Primární struktura primární struktura bílkoviny je dána pořadím AK jejích polypeptidových řetězců
VíceDUM č. 15 v sadě. 22. Ch-1 Biochemie
projekt GML Brno Docens DUM č. 15 v sadě 22. Ch-1 Biochemie Autor: Martin Krejčí Datum: 30.04.2014 Ročník: 6AF, 6BF Anotace DUMu: Rozdělení aminokyselin, chemické vzorce aminokyselin, amnokyseliny, významné
VíceSTRUKTURA PROTEINŮ
projekt GML Brno Docens DUM č. 17 v sadě 22. Ch-1 Biochemie Autor: Martin Krejčí Datum: 03.05.2014 Ročník: 6AF, 6BF Anotace DUMu: Struktura proteinů Materiály jsou určeny pro bezplatné používání pro potřeby
VíceUrčení molekulové hmotnosti: ESI a nanoesi
Cvičení Určení molekulové hmotnosti: ESI a nanoesi ) 1)( ( ) ( H m z H m z M k j j j m z z zh M Molekula o hmotnosti M se nabije z-krát protonem, pík iontu ve spektru je na m z : ) ( H m z M z Pro dva
VíceVzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu:
Vzdělávací materiál vytvořený v projektu P VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
VíceLodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání
Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání http://web.natur.cuni.cz/~zdenap/zdenateachingnf.html CHEMICKÉ SLOŽENÍ BUŇKY BUŇKA: 99 % C, H, N,
VíceBÍLKOVINY = PROTEINY Polymery aminokyselin propojených peptidovou vazbou
BÍLKOVINY = PROTEINY Polymery aminokyselin propojených peptidovou vazbou 20 AK 20 18 variant pro peptid složený z 20 AK!!! Průměrná bílkovina 300 AK Relativní molekulová hmotnost (bezrozměrné číslo) Molární
VíceGenetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.
Genetický kód Jakmile vznikne funkční, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím přenos z nukleotidové sekvence DNA do aminokyselinové
VíceStruktura nukleových kyselin Vlastnosti genetického materiálu
Struktura nukleových kyselin Vlastnosti genetického materiálu V předcházejících kapitolách bylo konstatováno, že geny jsou uloženy na chromozomech a kontrolují fenotypové vlastnosti a že chromozomy se
VícePrvní testový úkol aminokyseliny a jejich vlastnosti
První testový úkol aminokyseliny a jejich vlastnosti Vysvětlete co znamená pojem α-aminokyselina Jaký je rozdíl mezi D a L řadou aminokyselin Kolik je základních stavebních aminokyselin a z čeho jsou odvozeny
VíceMetabolizmus aminokyselin II
Metabolizmus aminokyselin II Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol MUDr. Bc. Matej Kohutiar, Ph.D. matej.kohutiar@lfmotol.cuni.cz Praha 2018 Degradace uhlíkové kostry aminokyselin
VíceBílkoviny a nukleové kyseliny
Na www.studijni-svet.cz zaslal(a): Nemám - Samanta - BÍLKOVINY: Bílkoviny a nukleové kyseliny - Bílkoviny, odborně proteiny, patří mezi biopolymery. Jedná se o vysokomolekulární přírodní látky složené
VíceStruktura proteinů a funkce enzymů
Struktura proteinů a funkce enzymů RNDr. Tomáš Obšil, PhD. Katedra fyzikální a makromolekulární chemie Přírodovědecká fakulta UK v Praze HTobsil@natur.cuni.czTH 1. Struktura proteinů Proteiny se skládají
VíceBiológia. Prednášky - zimný semester Ročník - Magisterské štúdium
Biológia Prednášky - zimný semester 2015 1. Ročník - Magisterské štúdium 28. september 2015 3. Prednáška 3. Chemické zloženie živej hmoty chemický základ života. Atómy, molekuly, organické látky cukry,
VíceBÍLKOVINY R 2. sféroproteiny (globulární bílkoviny): - rozpustné ve vodě, globulární struktura - odlišné funkce (zásobní, protilátky, enzymy,...
BÍLKVIY - látky peptidické povahy tvořené více než 100 aminokyselinami - aminokyseliny jsou poutány...: R 1 2 + R 2 R 1 R 2 2 2. Dělení bílkovin - vznikají proteosyntézou Struktura bílkovin primární sekundární
VíceGenomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc.
Genomické databáze Shlukování proteinových sekvencí Ivana Rudolfová školitel: doc. Ing. Jaroslav Zendulka, CSc. Obsah Proteiny Zdroje dat Predikce struktury proteinů Cíle disertační práce Vstupní data
VíceBílkoviny. Bílkoviny. Bílkoviny Jsou
Bílkoviny Bílkoviny Úkol: Vyberte zdroje bílkovin: Citróny Tvrdý sýr Tvaroh Jablka Hovězí maso Luštěniny Med Obilí Vepřové sádlo Hroznové víno Bramborové hlízy Řepa cukrovka Bílkoviny Základními stavebními
VíceTypy molekul, látek a jejich vazeb v organismech
Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,
VíceFigure 3-23 Molecular Biology of the Cell ( Garland Science 2008)
Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008) Lidský genom 20 tis. Genů (genom) stovky tisíc proteinů (proteom) Dělení bílkovin podle jejich funkce stavební a podpůrné kolageny, elastin,
VíceTranslace (druhý krok genové exprese)
Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace
VíceAminokyseliny. Aminokyseliny. Peptidy & proteiny Enzymy Lipidy COOH H 2 N. Aminokyseliny. Aminokyseliny. Postranní řetězec
optická aktivita Peptidy & proteiny Enzymy Lipidy α-uhlík je asymetrický pouze L-aminokyseliny 2 α R rozdělení dle polarity podle počtu karboxylových skupin podle počtu bazických skupin podle polarity
VíceBiochemie dusíkatých látek při výrobě vína
Biochemie dusíkatých látek při výrobě vína Ing. Michal Kumšta www.zf.mendelu.cz Ústav vinohradnictví a vinařství kumsta@mendelu.cz Vzdělávací aktivita je součástí projektu CZ.1.07/2.4.00/31.0089 Projekt
VíceProteiny: obecná charakteristika. Proteiny: trocha historie. Proteiny: trocha historie
Proteiny: obecná charakteristika Stojí na počátku vzniku života, jsou podstatou všech živých organizmů; zastávají životně důležité funkce, bez kterých by život nemohl existovat Kvantitativně (50-80% sušiny)
VíceUSPOŘÁDEJTE HESLA PODLE PRAVDIVOSTI DO ŘÁDKŮ
Proteiny funkce Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek proteiny 22.7.2012 3. ročník čtyřletého G Procvičování struktury a funkcí proteinů
VíceAutorem přednášky je Mgr. Lucie Mandelová, Ph.D. Přednáška se prochází klikáním nebo klávesou Enter.
Bílkoviny Tato přednáška pochází z informačního systému Masarykovy univerzity v Brně, kde byla zveřejněna jako studijní materiál pro studenty předmětu Výživa ve sportu. Autorem přednášky je Mgr. Lucie
Více5. Proteiny. Peptidy. Struktura proteinů. Primární struktura proteinů. Sekundární struktura proteinů
5. Proteiny Peptidy Peptidy jsou látky, které vznikají spojením aminokyselin peptidovými vazbami do řetězce. Peptidy rozdělujeme podle délky řetězce: ligopeptidy obsahují dvě až deset aminokyselin. Můžeme
VíceProteiny. Markéta Vojtová VOŠZ a SZŠ Hradec Králové
Proteiny Markéta Vojtová VOŠZ a SZŠ Hradec Králové Proteiny 1 = hlavní, energetická živina = základní stavební složka orgánů a tkání těla, = jejich energetickou hodnotu tělo využívá jen v některých metabolických
VíceL-aminokyselina chirální (asymetrický) uhlík
PEPTIDY A BÍLKOVIY (PROTEIY) (proteos = ec. prvotní) pítomny ve všech bukách základní stavební jednotkou jsou -L-aminokyseliny (AK) spojené tzv. peptidovými vazbami podle potu spojených AK zbytk (Mr):
VíceProteiny ve sportu Diplomová práce
MASARYKOVA UNIVERZITA Fakulta sportovních studií Katedra podpory zdraví Proteiny ve sportu Diplomová práce Vedoucí diplomové práce: Ing. Iva Hrnčiříková, Ph.D. Vypracoval: Bc. Michal Kreutzer Učitelství
VíceVazebné interakce protein s DNA
Vazebné interakce protein s DNA Vazebné možnosti vn jší vazba atmosféra + iont kolem nabité DNA vazba ve žlábku van der Waalsovský kontakt s lé ivem ve žlábku interkalace vmeze ení planárního aromat.
VíceSložky výživy - proteiny. Mgr.Markéta Vojtová VOŠZ a SZŠ Hradec Králové
Složky výživy - proteiny Mgr.Markéta Vojtová VOŠZ a SZŠ Hradec Králové Proteiny 1 = jedna z hlavních živin, energetická živina = základní stavební složka orgánů a tkání těla, součást všech buněk, musí
VíceMetabolizmus aminokyselin II
Metabolizmus aminokyselin II Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol dr. Matej Kohutiar, doc. Jana Novotná matej.kohutiar@lfmotol.cuni.cz Praha 2017 Degradace uhlíkové kostry aminokyselin
VícePROTEINY ( = BÍLKOVINY) DNA RNA protein modifikovaný protein
PROTEINY ( = BÍLKOVINY) DNA RNA protein modifikovaný protein - více než 50 % buněčné sušiny organismů -chemicky se jedná o biopolymery složené z jednoho nebo více lineárních polypeptidových řetězců, obsahujících
VíceObecný metabolismus.
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 becný metabolismus. Mechanismy enzymové katalýzy (7). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie Přírodovědecká
VíceProteiny globulární a vláknité a jejich funkce. Metabolismus aminokyselin
Proteiny globulární a vláknité a jejich funkce Metabolismus aminokyselin Funkce globulárních proteinů Skladování iontů a molekul myoglobin, ferritin Transport iontů a molekul hemoglobin, serotoninový transporter
VíceEsenciální Isoleucin Leucin Lysin Methionin Phenylalanin Threonin Tryptofan Valin
Metabolismus Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2013/2014 Ing. Jarmila Krotká základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu
Vícenepolární polární kyselý bazický
opticky aktivní rozdělení α-uhlík je asymetrický pouze L-aminokyseliny (D-aminokyseliny: bakterie, antibiotika, ) 2 α R podle počtu karboxylových skupin podle počtu aminoskupin podle polarity postranního
VíceMetabolismus mikroorganismů
Metabolismus mikroorganismů Metabolismus organismů Souvisí s metabolismem polysacharidů, bílkovin, nukleových kyselin a lipidů Cytoplazma, mitochondrie (matrix, membrána) H 3 PO 4 Polysacharidy Pentózový
VíceAminokyseliny, proteiny, enzymy
Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2013/2014 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu
Vícestrukturní (součástmi buněčných struktur) metabolická (realizují b. metabolizmus) informační (jako signály či receptory signálů)
1 Bílkoviny - představují cca. ½ suché hmotnosti buňky - molekuly bílkovin se podílí na všech základních životních procesech - součástmi buněčných struktur (stavební f-ce) Funkce bílkovin: strukturní (součástmi
VíceVÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ
FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů
VíceChemická reaktivita NK.
Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově
VícePolysacharidy. monosacharidy disacharidy stravitelné PS nestravitelné PS (vláknina) neškrobové PS resistentní škroby Potravinové zdroje
Klasifikace a potravinové zdroje sacharidů Dělení Jednoduché sacharidy Polysacharidy (PS) monosacharidy disacharidy stravitelné PS nestravitelné PS (vláknina) Zástupci glukóza fruktóza galaktóza maltóza
Více2.2. Aminokyseliny a bílkoviny Aminokyseliny aminoskupina karboxyskupina R-CH(NH2)-COOH in yl
2.2. Aminokyseliny a bílkoviny Aminokyseliny (AA - Amino Acids) AA jsou pro lidský organismus velmi významné. Představují základní stavební složky bílkovin a mají i své vlastní funkce. V přírodě se vyskytuje
VíceAminokyseliny (AA) Bílkoviny
Aminokyseliny (AA) Bílkoviny RNDr. Bohuslava Trnková ÚKBLD 1.LF UK ls 1 přírodní AK L α AA skelet R-CH-COOH R - postranní řetězec NH 2 koncovky jmen in, zbytky yl, zkratky Asymetrický C*- opticky aktivní
VíceTomáš Oberhuber. Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Buňka buňka je základní stavební prvek všech živých organismů byla objevena Robertem Hookem roku 1665 jednodušší
VíceCHEMIE. Pracovní list č. 10 - žákovská verze Téma: Bílkoviny. Mgr. Lenka Horutová
www.projektsako.cz CHEMIE Pracovní list č. 10 - žákovská verze Téma: Bílkoviny Lektor: Mgr. Lenka Horutová Projekt: Student a konkurenceschopnost Reg. číslo: CZ.1.07/1.1.07/03.0075 Teorie: Název proteiny
VíceRegulace translace REGULACE TRANSLACE BÍLKOVINY A JEJICH POSTTRANSLAČNÍ MODIFIKACE. Bílkoviny - aminokyseliny. 1. Translační aparát. 2.
Regulace translace Bílkoviny - aminokyseliny 1. Translační aparát 2. Translace 3. Bílkoviny a jejich posttranslační modifikace 4. Lokalizace bílkovin v buňce a jejich degradace 5. Translace v mitochondriích
Více3 Acidobazické reakce
3 Acidobazické reakce Brønstedova teorie 1. Uveďte explicitní definice podle Brønstedovy teorie. Kyselina je... Báze je... Konjugovaný pár je... 2. Doplňte tabulku a pojmenujte všechny sloučeniny. Kyselina
VíceAminokyseliny R CH COO. R = postranní etzec
Aminokyseliny Z biologických systém bylo izolováno nkolik stovek aminokyselin. které jsou rozšíené obecn, jiné jsou jen v uritých druzích nebo dokonce jen v jednom organismu. ejdležitjších z nich je 20,
Více