pak celou úlohu. ani Jako obvykle je static int M, N; [] key, L, R; NIL = -1; cost; roota, rootb; throws IOExceptio // tree roots on { static void
|
|
- Kateřina Zemanová
- před 6 lety
- Počet zobrazení:
Transkript
1 Úloha nevžaduje žádnou zvláštníí manipulacii se stromy nebo jejich uzly, kroměě jediné neustále opakované operace Insert, proto bude vhodné volitt reprezentaci pokud možno úsporně. Nejprve ukáže me řešení pro redukovanou úlohu, kdybychom měli měřit pouze obyčejný BVS. Přechod k AVL pak bude jednoduchým (byť uvážlivým) rozšířením. Obr. 1. Příklad jednoduché reprezentace BVS.. ALG-BVS a AVL stromy - komentář a řešení Dopředuu víme, kolik bude uzlů, a proto si je očíslujeme 0,1, 0..., M+N 1. Hodnoty klíčů můžeme uložit do jednorozměrného pole key indexovaného právě čísly uzlů. Protože samotné uzly jako takové (jako objekty) vůbec nebudeme potřebovat, může celý uzel představovat p t jediná položka pole key. Reference na n pravéhoo a levého potomka uzlu můžeme pakk opět uložit do dalších dvou 1D polí L a R, které budou indexovány stejně a budou obsahovat indexy levého a pravého potomka každého uzlu. S těmito datovými strukturami jsme již vybaveni pro celou úlohu. Vkládání nového uzluu do stromu provedeme funkcí Insert, jež je rekurzivní, kódd je kratší a riziko přeplnění zásobníku nevelké. Přesun všech uzlů ze stromu B do A zařídí kratičká rovněž rekurzivní funkce, jiným způsobem ji ani nemá cenu psát. S další funkcí pro vybudování stromů opakovaným voláním funkcee Insert a funkcí pro načtení a inicializaci dat a datových struktur jsme prakticky hotovi, uvedený kód snad nepotřebuje další zdlouhavá vysvětlení. Jako obvykle je nejdelší funkce načítající data. M, N; [] key, L, R; NIL = -1; cost; roota, rootb; // node keys Left and Rightt children // null pointer // to be calculated // tree roots public static void main(string[] args) readandinitall(); makebsttrees(); transfertree(rootb); System.out.printf( ("%d\n", cost); throws IOExceptio on { static void makebsttrees(){ L[rootA] = R[rootA] = L[rootB] = R[rootB] = NIL; cost = 2; // cost of the roots for(int inode = 1; inode < M; inode+ ++) Insert(rootA, inode); for(int inode = M+ +1; inode < M+N; inode++) Insert(rootB, inode); static void transfertree(int if (inode == NIL) return ; transfertree(l[inode]); transfertree(r[inode]); Insert(rootA, inode); inode) {
2 Insert(int iparent, int inode){ int [] nextbranch = (key[inode] < key[iparent] )? L : R; if (nextbranch[iparent]!= NIL) return Insert(nextBranch[iParent], inode) ; nextbranch[iparent] = inode; L[iNode] = R[iNode] = NIL; return inode; static void readandinitall() throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); M = Integer.valueOf(st.nextToken()); N = Integer.valueOf(st.nextToken()); // initialize all structures roota = 0; rootb = M; L = new int [M+N]; R = new int [M+N]; for(int i = 0; i < M+N; i++) L[i] = R[i] = NIL; key = new int [M+N]; key[0] = ; for(int i = 1; i < key.length; i++) key[i] = (int) (( *(long) key[i-1] ) % ); Při přechodu k AVL stromu zachováme strukturu předchozího programu, pouze operaci Insert je nutno vhodně rozšířit o postup zpět z vloženého uzlu ke kořeni a případnou rotaci. U rotace je nutno dát pozor, může proběhnout i v kořeni a pak se změní kořen celého stromu. Rotace v AVL stromu jsou teoreticky čtyři: L, R, LR a RL. Každá ze dvojitých rotací RL a LR se skládá ze dvou jednoduchých rotací, takže dvojité rotace nemusíme explicitně programovat. Rotace R je ale strukturně zcela totožná s rotací L, až na to, že je jejím zrcadlovým obrazem. Kdybychom si nakreslili strom na skleněné dveře, tak by nám stačilo umět provádět jen např. levou rotaci, protože při potřebě pravé rotace bychom jen obešli dveře z druhé strany a z tohoto nového pohledu bychom udělali levou rotaci. V rotacích nehrají roli klíče uzlů, tedy ani pořadí klíčů ve stromu, a proto tento náš malý trik je bude strom upravovat korektně. V implementaci podobného efektu dosáhneme ještě snáze. Stačí soustavně prohodit ukazatele (reference) na levé a pravé potomky uzlů a spolu s nimi ukazatele (reference) na výšky levých a pravých podstromů registrované v AVL. Dejme tomu, že naprogramujeme pouze rotaci L. Abychom ji mohli snadno používat, budeme předpokládat, že postupujeme stromem nahoru stále zprava doleva. Tak zajistíme, že i do rozváženého uzlu příjdeme vždy zprava zdola, a tím bude i dáno, že jediné rotace, které nás mohou čekat, budou vždy jednoduchá L rotace nebo dvojitá RL rotace. I neustálý postup zprava doleva nahoru je snadné zařídit, prostě vždy při přechodu z uzlu do jeho rodiče zjistíme, zda je uzel levým nebo pravým potomkem tohoto rodiče. Pokud je pravým potomkem, postoupíme rovnou vzhůru (zprava doleva), a pokud je levým potomkem, obejdeme pomyslné dveře, resp. prohodíme reference na pravé a levé potomky a opět postoupíme zprava doleva nahoru. Funkce pro rotaci a funkce pro postup vzhůru stromem ovšem musí pracovat s kopiemi (jsou to formální pole Lptr, Rptr, LHptr, RHptr v implementaci) původních ukazatelů (referencí) na skutečná data, protože původní ukazatele (reference) nesmí být ovlivněny, pomocí nich je nutno přistupovat k dané struktuře stromu i v jiných okamžicích než při postupu vzhůru nebo při rotacích.
3 M, N; [] key; [] L, R, P; [] LH, RH; [] Lptr, Rptr; [] LHptr, RHptr; [] nextbranch; [] tmp; NIL = -1; roota; rootb; currroot; cost; // each node contains a single key // Left & Right children, Parent // Left and Right heights // pointers to L, R in flipped tree // pointers to LH, RH in flipped tree // auxiliary reference, array not allocated // auxiliary reference, array not allocated // determines the current tree // to be calculated public static void main(string[] args) throws IOException { readandinitall(); // perform actions for simple BST tree roota = 0; rootb = M; maketreesbstoravl(false); transfersubtreebstoravl(rootb, false); // false == not AVL System.out.printf("%d", cost); // BST cost // perform actions for AVL tree cost = 0; maketreesbstoravl(true); transfersubtreebstoravl(rootb, true); System.out.printf(" %d\n", cost); // true == is AVL // AVL cost static void maketreesbstoravl(boolean isavl ){ L[rootA] = R[rootA] = L[rootB] = R[rootB]; // init if (isavl) P[rootA] = LH[rootA] = RH[rootA] = P[rootB] = LH[rootB] = RH[rootB] = NIL; cost = 2; // cost of the roots, which are not inserted if (isavl) cost += 2; // insert all other nodes one by one for(int inode = 1; inode < M; inode++) InsertBSTorAVL(rootA, inode, isavl); for(int inode = M+1; inode < M+N; inode++) InsertBSTorAVL(rootB, inode, isavl); static void transfersubtreebstoravl(int inode, boolean isavl) { // standard postorder if (inode == NIL) return ; transfersubtreebstoravl(l[inode], isavl); transfersubtreebstoravl(r[inode], isavl); InsertBSTorAVL(rootA, inode, isavl); static void InsertBSTorAVL(int iroot, int inode, boolean isavl) { inode = InsertBST(iRoot, inode); if (!isavl ) return; // all done for usual BST currroot = iroot; LH[iNode] = RH[iNode] = -1; // AVL rotation might change the root, so remember it
4 // go up the tree Lptr = L; Rptr = R; LHptr = LH; RHptr = RH; // set ptrs which can flip the tree int iparent = P[iNode]; cost += 1; // cost of the leaf on the way up if (inode == L[iParent]) swaplrptrs(); // make sure inode is right child of parent goupleftinavl(inode, iparent); // to ascend up and to the left InsertBST(int iroot, int inode){ nextbranch = (key[inode] < key[iroot] )? L : R; // count nodes during descent if (nextbranch[iroot]!= NIL) return InsertBST(nextBranch[iRoot], inode) ; nextbranch[iroot] = inode; L[iNode] = R[iNode] = NIL; P[iNode] = iroot; // unnecessary in bare BST :-) // count the leaf too return inode; static void goupleftinavl(int inode, int iparent) { // recursively node by node // count nodes during ascent RHptr[iParent] = 1+ Math.max(LHptr[iNode], RHptr[iNode]); // recalc balance if (LHptr[iParent]+1 >= RHptr[iParent] ) { // no rotation required, go up inode = iparent; iparent = P[iParent]; if (iparent == NIL) return; // root reached if (inode == Lptr[iParent]) swaplrptrs(); // make sure inode is right child of parent goupleftinavl(inode, iparent); // to ascend up and to the left else // else must rotate and stop if (LHptr[iNode] < RHptr[iNode]) Lrot(iParent, inode); else { swaplrptrs(); Lrot(iNode, Rptr[iNode]); // flip tree to get R rotation swaplrptrs(); Lrot(iParent, Rptr[iParent]); // flip it back to get L rotation // and stop ascent static void swaplrptrs(){ // flips the tree effectively: left <-> right tmp = Lptr; Lptr = Rptr; Rptr = tmp; tmp = LHptr; LHptr = RHptr; RHptr = tmp; static void Lrot(int inode, int ilchild) { // right rotation never used int origparent = P[iNode]; //move right subtree of the Child to the oposite side Rptr[iNode] = Lptr[iLchild]; if (Lptr[iLchild]!= NIL) P[Lptr[iLchild]] = inode; // ichild becomes subtree root Lptr[iLchild] = inode; P[iNode] = ilchild;
5 // link the new subtree root with the parent if (origparent == NIL) { if (currroot == roota) roota = currroot = ilchild; else rootb = currroot = ilchild; else { if (Lptr[origParent] == inode) Lptr[origParent] = ilchild; else Rptr[origParent] = ilchild; P[iLchild] = origparent; // recalc depths; RHptr[iNode] = LHptr[iLchild]; LHptr[iLchild] = 1+Math.max(RHptr[iNode], LHptr[iNode]); static void readandinitall() throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); M = Integer.valueOf(st.nextToken()); N = Integer.valueOf(st.nextToken()); // initialize all structures L = new int [M+N]; R = new int [M+N]; P = new int [M+N]; LH = new int [M+N]; RH = new int [M+N]; for(int i = 0; i < M+N; i++) L[i] = R[i] = P[i] = LH[i] = RH[i] = NIL; key = new int [M+N]; key[0] = ; for(int i = 1; i < key.length; i++) key[i] = (int) (( *(long) key[i-1] ) % );
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel
Stromy. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.
Stromy Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2018, B6B36DSA 01/2018, Lekce 9 https://cw.fel.cvut.cz/wiki/courses/b6b36dsa/start
BINARY SEARCH TREE
---------------------------------------- BINARY SEARCH TREE --------------------------------------------------- Je dán BVS s n uzly. Máme za úkol spočítat hodnotu součtu všech klíčů v tomto stromě. Když
BINARY SEARCH TREE
Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný
1. Téma 12 - Textové soubory a výjimky
1. Téma 12 - Textové soubory a výjimky Cíl látky Procvičit práci se soubory s využitím výjimek. 1.1. Úvod Program, aby byl programem, my mít nějaké výstupy a vstupy. Velmi častým případem je to, že se
R zné algoritmy mají r znou složitost
/ / zné algoritmy mají r znou složitost Dynamické programování / / Definice funkce Otázka Program f(x,y) = (x = ) (y = ) f(x, y-) + f(x-,y) (x > ) && (y > ) f(,) =? int f(int x, int y) { if ( (x == ) (y
Dynamické programování. Optimální binární vyhledávací strom
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamické programování Optimální binární vyhledávací strom Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The
5 Rekurze a zásobník. Rekurzivní volání metody
5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení
Dynamické datové struktury III.
Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované
Stromy. Příklady. Rekurzivní datové struktury. Základní pojmy
Základní pojmy Stromy doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Graf uzly hrany orientované / neorientované Souvislý
Dynamic programming. Optimal binary search tree
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamic programming Optimal binary search tree Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The complexity
Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat.
Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat. 1. Odkrokujte následující program a s použitím notace z přednášky sledujte stav paměti
IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)
IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná
Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat.
Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat. 1. Odkrokujte následující program a s použitím notace z přednášky sledujte stav paměti
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Radek Mařík
2012-03-20 Radek Mařík 1. Pravá rotace v uzlu U a) v podstromu s kořenem U přemístí pravého syna U.R uzlu U do kořene. Přitom se uzel U stane levým synem uzlu U.R a levý podstrom uzlu U.R se stane pravým
Spojové struktury. Spojová struktura (linked structure):
Spojová struktura (linked structure): Spojové struktury množina objektů propojených pomocí spojů (odkazů, referencí, ukazatelů) Spoj často vyjadřuje vztah předchůdce následník Lineární spojové struktury
Datové struktury obsah přednášky 1. Úvod 2. Třídy Type-wrapper (obalový typ) pro primitivní typy automatické převody 3. Automatické převody mezi
OOPR_11 1 Datové struktury obsah přednášky 1. Úvod 2. Třídy Type-wrapper (obalový typ) pro primitivní typy automatické převody 3. Automatické převody mezi primitivními a obalovými typy 4. Třídy odkazující
Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39
Základy algoritmizace Michal Krátký 1, Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Základy algoritmizace, 2006/2007 Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39
Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy
Volné stromy Úvod do programování Souvislý, acyklický, neorientovaný graf nazýváme volným stromem (free tree). Často vynecháváme adjektivum volný, a říkáme jen, že daný graf je strom. Michal Krátký 1,Jiří
Programování v C++ 1, 16. cvičení
Programování v C++ 1, 16. cvičení binární vyhledávací strom 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 Shrnutí minule procvičené
Dynamické datové struktury IV.
Dynamické datové struktury IV. Prioritní fronta. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra
Algoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
AVL stromy. pro každý uzel u stromu platí, že rozdíl mezi výškou jeho levého a pravého podstromu je nejvýše 1 stromy jsou samovyvažující
Stromy 2 AVL AVL stromy jména tvůrců stromů: dva Rusové Adelson-Velskii, Landis vyvážené binární stromy pro každý uzel u stromu platí, že rozdíl mezi výškou jeho levého a pravého podstromu je nejvýše 1
Datové struktury. alg12 1
Datové struktury Jedna z klasických knih o programování (autor prof. Wirth) má název Algorithms + Data structures = Programs Datová struktura je množina dat (prvků, složek, datových objektů), pro kterou
1 2 3 4 5 6 součet cvičení celkem. známka. Úloha č.: max. bodů: skut. bodů:
Úloha č.: max. bodů: skut. bodů: 1 2 3 4 5 6 součet cvičení celkem 20 12 20 20 14 14 100 známka UPOZORNĚNÍ : a) Písemná zkouška obsahuje 6 úloh, jejichž řešení musí být vepsáno do připraveného formuláře.
Čipové karty Lekařská informatika
Čipové karty Lekařská informatika Následující kód je jednoduchou aplikací pro čipové karty, která po překladu vytváří prostor na kartě, nad kterým jsou prováděny jednotlivé operace a do kterého jsou ukládány
Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat.
Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat. 1. Odkrokujte následující program a s použitím notace z přednášky popište stav paměti
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS PŘÍPRAVA DOMÁCÍCH
Seznamy a iterátory. Kolekce obecně. Rozhraní kolekce. Procházení kolekcí
Kolekce obecně Seznamy a iterátory doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Kolekce ::= homogenní sada prvků
Stromy. Jan Kybic.
Stromy Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 1 / 44 Stromy Binární vyhledávací stromy Množiny a mapy 2 / 44 Strom (Tree) Strom skládá se s uzlů (nodes) spojených hranami (edges).
Datové struktury obsah přednášky 1. Úvod 2. Třídy Type-wrapper (obalový typ) pro primitivní typy automatické převody 3. Automatické převody mezi
Datové struktury obsah přednášky 1. Úvod 2. Třídy Type-wrapper (obalový typ) pro primitivní typy automatické převody 3. Automatické převody mezi primitivními a obalovými typy 4. Třídy odkazující sama na
14.4.1. Typický prvek kolekce pro české řazení
14.4. Co všechno by měl mít typický prvek kolekce 177 Poznámka: Třídy BigInteger, BigDecimal a Date budou vysvětleny v částech [15./183, [16./185 a [18.1./204. 14.4.1. Typický prvek kolekce pro české řazení
Abstraktní datové typy
Karel Müller, Josef Vogel (ČVUT FIT) Abstraktní datové typy BI-PA2, 2011, Přednáška 10 1/27 Abstraktní datové typy Ing. Josef Vogel, CSc Katedra softwarového inženýrství Katedra teoretické informatiky,
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz
Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz (2 + 5) * (13-4) * + - 2 5 13 4 - listy stromu obsahují operandy (čísla) - vnitřní uzly obsahují operátory (znaménka)
prohled av an ı graf u Karel Hor ak, Petr Ryˇsav y 16. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT
prohledávání grafů Karel Horák, Petr Ryšavý 16. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Nad frontou (queue) byly provedeny následující operace: push(1) push(2) print(poll()) print(peek()) print(peek())
Fronta (Queue) Úvod do programování. Fronta implementace. Fronta implementace pomocí pole 1/4. Fronta implementace pomocí pole 3/4
Fronta (Queue) Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Fronta uplatňuje mechanismus přístupu FIFO first
Generické programování
Generické programování Od C# verze 2.0 = vytváření kódu s obecným datovým typem Příklad generická metoda, zamění dva parametry: static void Swap(ref T p1, ref T p2) T temp; temp = p1; p1 = p2; p2 =
Datové typy v Javě. Tomáš Pitner, upravil Marek Šabo
Datové typy v Javě Tomáš Pitner, upravil Marek Šabo Úvod k datovým typům v Javě Existují dvě základní kategorie datových typů: primitivní a objektové Primitivní v proměnné je uložena přímo hodnota např.
Hledání k-tého nejmenšího prvku
ALG 14 Hledání k-tého nejmenšího prvku Randomized select CLRS varianta Partition v Quicksortu 0 Hledání k-tého nejmenšího prvku 1. 2. 3. Seřaď seznam/pole a vyber k-tý nejmenší, složitost (N*log(N)). Nevýhodou
Stromy. Jan Hnilica Počítačové modelování 14
Stromy Jan Hnilica Počítačové modelování 14 1 Základní pojmy strom = dynamická datová struktura, složená z vrcholů (uzlů, prvků) propojených hranami hrany chápeme jako orientované, tzn. vedou z uzlu A
Rekurzivní algoritmy
Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS
Úvod do programovacích jazyků (Java)
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2007/2008 c 2006 2008 Michal Krátký Úvod do programovacích
Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce)
13. Metody vyhledávání. Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce). Asociativní vyhledávání (sekvenční, binárním půlením, interpolační, binární vyhledávací
Abstraktní datové typy: zásobník
Abstraktní datové typy: zásobník doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Abstraktní datové typy omezené rozhraní
Red Black strom (Red Black Tree) Úvod do programování. Rotace. Red Black strom. Rotace. Rotace
Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Red Black strom je binární strom s jedním dvouhodnotovým příznakem
Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti.
Intervalové stromy Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme průběžně provádět tyto dvě operace: 1. Změna jednoho čísla v posloupnosti. 2. Zjištění součtu čísel
Rekurze a zásobník. Jak se vypočítá rekurzivní program? volání metody. vyšší adresy. main(){... fa(); //push ret1... } ret1
Rekurze a zásobník Jak se vypočítá rekurzivní program? volání metody vyšší adresy ret1 main(){... fa(); //push ret1... PC ret2 void fa(){... fb(); //push ret2... return //pop void fb(){... return //pop
A4B33ALG 2010/05 ALG 07. Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated. Quicksort.
A4B33ALG 2010/05 ALG 07 Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated Quicksort Stabilita řazení 1 Selection sort Neseřazeno Seřazeno Start T O U B J R M A K D Z E min
2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu.
Informatika 10. 9. 2013 Jméno a příjmení Rodné číslo 1) Napište algoritmus pro rychlé třídění (quicksort). 2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus
Datové struktury. Obsah přednášky: Definice pojmů. Abstraktní datové typy a jejich implementace. Algoritmizace (Y36ALG), Šumperk - 12.
Obsah přednášky: Definice pojmů o datový typ, o abstraktní datový typ Datové struktury Abstraktní datové typy a jejich implementace o Fronta (Queue) o Zásobník (Stack) o Množina (Set) Algoritmizace (Y36ALG),
Práce s textem. Třída Character. Třída Character. Třída Character. reprezentuje objekty zapouzdřující hodnotu typu char (boxing / unboxing)
Třída Character Práce s textem doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz reprezentuje objekty zapouzdřující hodnotu
Programování v Javě I. Leden 2008
Seminář Java Programování v Javě I Radek Kočí Fakulta informačních technologií VUT Leden 2008 Radek Kočí Seminář Java Programování v Javě (1) 1/ 45 Téma přednášky Datové typy Deklarace třídy Modifikátory
Tabulka symbolů. Vazba (binding) Vazba - příklad. Deklarace a definice. Miroslav Beneš Dušan Kolář
Vazba (binding) Tabulka symbolů Miroslav Beneš Dušan Kolář vazba = spojení mezi entitou a vlastností okamžik vazby (binding time) při návrhu jazyka při implementaci jazyka během překladu/spojování/zavádění
Více o konstruktorech a destruktorech
Více o konstruktorech a destruktorech Více o konstruktorech a o přiřazení... inicializovat objekt lze i pomocí jiného objektu lze provést přiřazení mezi objekty v původním C nebylo možné provést přiřazení
Část 1 Spojové struktury (stromy) Dynamické struktury a Abstraktní Datový Typy (ADT) Část 2 Abstraktní datový typ. Část 3 Příklad ADT Prioritní fronta
Část 1 Spojové struktury (stromy) Dynamické struktury a Abstraktní Datový Typy (ADT) Stromy Jan Faigl Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Přednáška 11 A0B36PR1
OOPR_05. Případové studie
OOPR_05 Případové studie 1 Přehled probírané látky příklad skládání objektů - čára příklad skládání objektů kompozice a agregace přetížené konstruktory pole jako datový atribut 2 Grafický objekt - čára
Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2006/2007 c 2006 Michal Krátký Úvod do programovacích jazyků
Rozklad problému na podproblémy
Rozklad problému na podproblémy Postupný návrh programu rozkladem problému na podproblémy zadaný problém rozložíme na podproblémy pro řešení podproblémů zavedeme abstraktní příkazy s pomocí abstraktních
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová
PŘETĚŽOVÁNÍ OPERÁTORŮ
PŘETĚŽOVÁNÍ OPERÁTORŮ Jazyk C# podobně jako jazyk C++ umožňuje přetěžovat operátory, tj. rozšířit definice některých standardních operátorů na uživatelem definované typy (třídy a struktury). Stejně jako
Dynamické datové struktury II.
Dynamické datové struktury II. Stromy. Binární vyhledávací strom. DFS. BFS. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Dynamicky vázané metody. Pozdní vazba, virtuální metody
Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:
Vyvažování a rotace v BVS, všude se předpokládá AVL strom
Vyvažování a rotace v BVS, všude se předpokládá AVL strom 1. Jednoduchá levá rotace v uzlu u má operační složitost a) závislou na výšce levého podstromu uzlu u b) mezi O(1) a Θ(n) c) závislou na hloubce
IAJCE Přednáška č. 8. double tprumer = (t1 + t2 + t3 + t4 + t5 + t6 + t7) / 7; Console.Write("\nPrumerna teplota je {0}", tprumer);
Pole (array) Motivace Častá úloha práce s větším množstvím dat stejného typu o Př.: průměrná teplota za týden a odchylka od průměru v jednotlivých dnech Console.Write("Zadej T pro.den: "); double t = Double.Parse(Console.ReadLine());
Spojová implementace lineárních datových struktur
Spojová implementace lineárních datových struktur doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB
Dynamické struktury a Abstraktní Datový Typy (ADT)
Dynamické struktury a Abstraktní Datový Typy (ADT) Jan Faigl Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Přednáška 11 A0B36PR1 Programování 1 Jan Faigl, 2015 A0B36PR1
Programování 3. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015
Programování 3. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Implementace zásobníku a fronty pomocí
20. Projekt Domácí mediotéka
Projekt Domácí mediotéka strana 211 20. Projekt Domácí mediotéka 20.1. Základní popis, zadání úkolu V projektu Domácí mediotéka (Dome) se jednoduchým způsobem evidují CD a videa. Projekt je velmi jednoduchý
TGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 5. dubna 2017 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
Principy objektově orientovaného programování
Principy objektově orientovaného programování Třídy a objekty doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz C E T
Programování v Javě I. Únor 2009
Seminář Java Programování v Javě I Radek Kočí Fakulta informačních technologií VUT Únor 2009 Radek Kočí Seminář Java Programování v Javě (1) 1/ 44 Téma přednášky Datové typy Deklarace třídy Modifikátory
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky
Semin aˇr Java V yjimky Radek Ko ˇc ı Fakulta informaˇcn ıch technologi ı VUT Unor 2008 Radek Koˇc ı Semin aˇr Java V yjimky 1/ 25
Seminář Java Výjimky Radek Kočí Fakulta informačních technologií VUT Únor 2008 Radek Kočí Seminář Java Výjimky 1/ 25 Výjimky Co a k čemu jsou výjimky výjimka je mechanizmus umožňující psát robustní, spolehlivé
Class loader. každá třída (java.lang.class) obsahuje referenci na svůj class loader. Implementace class loaderu
Seminář Java Zavádění tříd Radek Kočí Fakulta informačních technologií VUT Duben 2008 Radek Kočí Seminář Java Zavádění tříd 1/ 16 JVM zavádí třídy dynamicky Class loader objekt schopný zavádět třídy abstraktní
Java Výjimky Java, zimní semestr
Java Výjimky 1 Výjimky (exceptions) hlášení a ošetření chyb výjimka signalizuje nějaký chybový stav výjimka = instance třídy java.lang.throwable dvě podtřídy java.lang.error a java.lang.exception konkrétní
ALG 04. Zásobník Fronta Operace Enqueue, Dequeue, Front, Empty... Cyklická implementace fronty. Průchod stromem do šířky
LG 04 Zásobník Fronta Operace nqueue, equeue, Front, mpty... yklická implementace fronty Průchod stromem do šířky Grafy průchod grafem do šířky průchod grafem do hloubky Ořezávání a heuristiky 1 Zásobník
Bubble sort. příklad. Shaker sort
Bubble sort pseudokód function bubblesort(array a) for i in 1 -> a.length - 1 do for j in 1 -> a.length - i - 1 do if a[j] < a[j+1] prohoď(a[j], a[j+1]); //razeni od nejvyssiho function bubblesort(int[]
Kolekce, cyklus foreach
Kolekce, cyklus foreach Jen informativně Kolekce = seskupení prvků (objektů) Jednu již známe pole (Array) Kolekce v C# = třída, která implementuje IEnumerable (ICollection) Cyklus foreach ArrayList pro
Dynamické programování
ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,
STACK
Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný
bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT
binární vyhledávání a bst Karel Horák, Petr Ryšavý 23. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Naimplementujte binární vyhledávání. Upravte metodu BinarySearch::binarySearch. 1 Příklad 2 Mysĺım
ÚVODNÍ ZNALOSTI. datové struktury. správnost programů. analýza algoritmů
ÚVODNÍ ZNALOSTI datové struktury správnost programů analýza algoritmů Datové struktury základní, primitivní, jednoduché datové typy: int, char,... hodnoty: celá čísla, znaky, jednoduché proměnné: int i;
Generování vnitřní reprezentace programu
Generování vnitřní reprezentace programu Miroslav Beneš Dušan Kolář Možnosti překladu Interpretace Okamžité provádění programu Překlad do instrukcí procesoru Závislost na konkrétním typu procesoru Překlad
Algoritmy výpočetní geometrie
Algoritmy výpočetní geometrie prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
PG 9.5 novinky ve vývoji aplikací
PG 9.5 novinky ve vývoji aplikací P2D2 2016 Antonín Houska 18. února 2016 Část I GROUPING SETS, ROLLUP, CUBE Agregace Seskupení řádků tabulky (joinu) do podmnožin podle určitého kĺıče. Za každou podmnožinu
Správa paměti. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta, 2016
Správa paměti Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta, 2016 Objektové modelování, B36OMO 10/2016, Lekce 2 https://cw.fel.cvut.cz/wiki/courses/xxb36omo/start
ALG 09. Radix sort (přihrádkové řazení) Counting sort. Přehled asymptotických rychlostí jednotlivých řazení. Ilustrační experiment řazení
ALG Radix sort (přihrádkové řazení) Counting sort Přehled asymptotických rychlostí jednotlivých řazení Ilustrační experiment řazení Radix sort Neseřazeno Řaď podle. znaku Cbb DaD adb DCa CCC add DDb adc
14.4.2010. Obsah přednášky 7. Základy programování (IZAPR) Přednáška 7. Parametry metod. Parametry, argumenty. Parametry metod.
Základy programování (IZAPR) Přednáška 7 Ing. Michael Bažant, Ph.D. Katedra softwarových technologií Kancelář č. 229, Náměstí Čs. legií Michael.Bazant@upce.cz Obsah přednášky 7 Parametry metod, předávání
Implementace LL(1) překladů
Překladače, přednáška č. 6 Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 30. října 2007 Postup Programujeme syntaktickou analýzu: 1 Navrhneme vhodnou LL(1) gramatiku
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3
DobSort Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 V roce 1980 navrhl Dobosiewicz variantu (tzv. DobSort),
Algoritmizace a programování
Algoritmizace a programování Řídicí struktury jazyka Java Struktura programu Příkazy jazyka Blok příkazů Logické příkazy Ternární logický operátor Verze pro akademický rok 2012/2013 1 Struktura programu
Iterator & for cyklus
Iterator & for cyklus for (Object o : foo) funguje pokud je foo pole nebo je foo iterovatelné jako to zařídit? implementovat interface java.lang.iterable Iterable má jednu metodu java.util.iterator iterator()
Struktura programu v době běhu
Struktura programu v době běhu Miroslav Beneš Dušan Kolář Struktura programu v době běhu Vztah mezi zdrojovým programem a činností přeloženého programu reprezentace dat správa paměti aktivace podprogramů
WORKSHEET 1: LINEAR EQUATION 1
WORKSHEET 1: LINEAR EQUATION 1 1. Write down the arithmetical problem according the dictation: 2. Translate the English words, you can use a dictionary: equations to solve solve inverse operation variable
Teoretické minimum z PJV
Teoretické minimum z PJV Pozn.: následující text popisuje vlastnosti jazyka Java zjednodušeně pouze pro potřeby výuky. Třída Zavádí se v programu deklarací třídy což je část programu od klíčových slov