FM styrylové sloučeniny/barvičky (fy. Mol.Probes) fluoreskují po zapojení do membrány. Internalizují se endocyózou. Optimální je pro rostlinné buňky
|
|
- Libor Bařtipán
- před 6 lety
- Počet zobrazení:
Transkript
1
2
3 FM styrylové sloučeniny/barvičky (fy. Mol.Probes) fluoreskují po zapojení do membrány. Internalizují se endocyózou. Optimální je pro rostlinné buňky FM4-64
4
5 Cytokinese a endocytóza GFP či YFP-AtEB1 a CLIP170 značí + konce MTs. GFP či YFP- MAP4 značí celé MTs.
6 clerender.fcgi?tool=pubmed&pub medid= Videa, která stojí za vidění jako Suppl. Data na konci článku.
7 KAT1 draselný vtokový kanál a změny objemu svěracích buněk průduchů. Měření membránové kapacitance
8 Genom Arabidopsis obsahuje celý komplement genů kódujících a regulujících klatrinové obaly
9
10 Various receptors and clathrin protein coats recognize vesicle types, and these are delivered (along cytoskeleton pathways?) to appropriate target sites in the cell. Other recognition molecules, such as (vesicle) v - snares and (target) t-snares are involved in targeting vesicles with one set of contents to one site, and another set of vesicles to another site. Fig Clathrin coated vesicles. Deep freeze etching EM of inner surface of plasma membrane of cultured fibroblast cells.
11
12
13
14
15
16 Aktivovaný receptor (př. receptorová kináza) může stabilizovat vznikající obalené jámy.
17 v
18 Internalizace obsazeného receptoru nemusí být jen krok, vedoucí k jeho destrukci (a oslabení signalizace), ale v některých případech signalizace pokračuje v endosomu signalizační endosom. (př. signal. brassinosteroidy BRI1).
19 Při endocytóze PM velmi pravděpodobně může také docházet k internalizaci (modifikaci a posléze recyklaci) části pektinů a xyloglukanů buněčné stěny. Internalizace AGP, které silně interagují s pektiny.
20 Po přidání BFA (B) jsou téměř všechny xyloglukany internalizovány do BFA kompartmentu.
21
22 U rostlin řada otazníků!
23 Endosomy
24
25 Příklad z živočišné buňky. Odlišný osud obsazených/aktivovaných transferrinových a opioidních receptorů z časného endosomu jdou transferrinové rec. přes recyklující endosom zpět do PM, zatímco opioidní rec. putují do lysosomu /vakuoly přes late endosom.
26 Nějak podobně je pravděpodobně regulována lokalizace PIN auxinových přenašečových komplexů. Auxin také blokuje endocytózu a tak automaticky zvyšuje výskyt výtokových přenašečů na PM To je pravděpodobně klíčovou součástí procesu kdy auxin reguluje svůj vlastní transport.
27
28 Homolog RabF/Rab5 Ara6 je lokalizován v časném endosomu.
29 GTPázy-lipidy : zákl. regul. smyčka endomembránového systému Lokální specifické domény membránových fosfolipidů jsou klíčovou součástí udržování identity nejen organel, ale také sub- domén na organelách. Proto zvl. Arf, ale i Rho a Rab GTPázy regulují některé aktivity - kinázy, fosfolipázy, flipázy! které vytvářejí lokalizované membránové domény.
30 Distribution of phosphatidylinositides in cells: PI(4)P (blue) - concentrated on Golgi PI(3)P (green) - early endosomes PI(4,5)P 2 -plasma membrane PI(3,5)P 2 - multivesicular endosomes Roth 2004
31 Structures of PI(3)P-binding Modules Lemmon 2003
32
33 Two RabA of pea have different subcellular localization (detail) toto pozorování ukazuje na různorodost endosomů v jedné buňce.
34
35 GTPázy-lipidy : zákl. regul. smyčka endomembránového systému Lokální specifické domény membránových fosfolipidů jsou klíčovou součástí udržování identity nejen organel, ale také sub- domén na organelách. Proto zvl. Arf, ale i Rho a Rab GTPázy regulují některé aktivity - kinázy, fosfolipázy, flipázy! které vytvářejí lokalizované membránové domény.
36
37 Endosomy se mohou pohybovat také mechanismem aktinové komety. Pohyb je závislý na polymeraci aktinu a nezávislý na myosinu.
38 Důležitým nástrojem studia sekreční dráhy je brefeldin A BFA
39 Obsah BFA kompartmentu odhaluje bílkoviny PM, které cyklují mezi PM a recyklujícím endosomem.
40
41
42 Research tool for membrane trafficking: BFA GDP ARF-GEF GTP Vesicle budding in Golgi is ARF1-dependent; ARF1 undergoes recruitment to Golgi membrane by ARF-GEF-promoted GTP for GDP exchange; ARF1 recruits protein coats (green) needed for vesicle budding; brefeldin A binds at ARF1-GDP /ARF1-GEF interface and inhibits GTP exchange/ membrane recruitment of ARF1 and coats; Golgi stack is disrupted and protein trafficking through the Golgi is inhibited, ALE I DALŠÍ KOMP. Arf-GEFy působí na několika stanicích endom. Syst.
43
44 NE KAŽDÝ ARF GEF JE CITLIVÝ K BFA!!
45 BFA on GA
46 V rostlinných buňkách se po působení BFA objevují min.dva nové kompartmenty (v různých buňkách různě): 1. Hybridní cisga-er (podobně jako u živočichů). 2. Tzv. BFA- compartment transgaendosom.
47
48 Problém interpretace vlivu BFA 1. V buňce je (podle stavu diferenciace) několik GEFů (8x u At) pro několik ARFů(12x u At), různě silně exprimovaných a různě lokalizovaných. 2. Některé ARF-GEFy (u At 3x) nejsou!!! inhibovány BFA.
49
50 C, F, I linie odolná k BFA
51 Polární transport IAA je závislý na polární lokalizaci PIN auxinových výtokových přenašečů. Jejich lokalizace je závislá na polarizované sekreci a aktinovém cytoskeletu.
52 Recyklace PIN1 je závislá na aktinu
53
54 Recyklace IAA přenašeče PIN2 je závislá na jiném typu endosomu obsahujícím sorting nexin 1, který je citlivý k wortmanninu (inhibitor PI-3-Kin, PI3kin)
55 Cytokinese a endocytóza
56 Uspořádání Uspořádání MT MT během během buněčného buněčného cyklu cyklu rostlinné rostlinné buňky buňky Po PPB zbývá actin depleted zone a bílkovina TANGLED.
57
58
59 Před nástupem mitózy se tvoří v místě zaostřujícícho se PPB pás zvýšené endocytózy.
60 F až K EMTs (endplasmic MTs) Dorustají do oblasti předchozího PPB a tak se setkávají s endosomy, které po nich putují v minus-směru.
61 Inhibitor transportu auxinu NPA (naphthylphthalamic acid) narušuje tvorbu PPB a orientaci buněčné přepážky. (viz. také video)
62 Endocytóza je intenzivní v místech kde se endoplasmatické MTs setkávají s PPB. Pás endosomů proto leží v těsné blízkosti PPB a je zachován i po rozpadu PPB při tvorbě mitotického vřeténka. Kyselina naftylftalamová (NPA) inhibitor polárního výtoku auxinu - působí anomální PPBs a následně posuny v rovině buněčného dělení.
63 Dynamiky cytoskeletu a endomembránového systému jsou neoddělitelně recipročně provázány.
64
65 či spíše vakuoly
66 Protoplast aleuronu kukuřice V1=PSV V2=LV
67 Topologicky je to extracytoplasmatický kompartment a také se velmi rychle vyrovnává se změnami osmotických poměrů v apoplastu.
68
69 Prevacuol. comp. Multi Vesicular Body ESCRT complex
70 Sort. rec. BP-80
71 Vakuolární lokalizační signály NPIR NPIR
72
73 Třídění do lytické vakuoly přes BP-80/ELP receptory.
74
75 Prolaminy Agregace jako třídící mechanismus v ER - PB. Lokalizovaná translace na spec. doménách ER.
76 Od ER odvozená PB jsou obklopována a pohlcována vakuolami. PROBLÉM HOMOTYPICKÉ FÚZE.
77 PEP12 je prevakuolární t-snare u Arabidopsis
78 Podstatnou součástí třídění leguminů je jejich postupná agregace v periferních oblastech GA.
79 CVV, které vznikají na PB dom. GA pravděpodobně odtřiďují složky, které do PSV nepatří.
80
81 Tvorba MVB
82
83
84 Třídění bílkovin z MVB do vakuoly je řízeno třemi komplexy ESCRT - u Arabidopsis jsou některé podjednotky známy díky analýze mutantů hyade.
85 Vesicular traffic and the role of Golgi apparatus (body) as a traffic controller. Protein modifications take place in the Golgi, which result in acquisition of appropriate signals, and hence packaging into correct vesicles. Hydrolytic enzymes are sent to lysosome, export vesicles to plasmalemma and ER membranes and proteins are recycled back to ER (Fig 13-21). Retromer pomáhá recyklovat z PVC do TGN
86 Homology jsou také u rostlin a je pravděpodobné, že funguje podobně.
87
88 Rostliny jsou schopny přežívat fáze nedostatku živin mj. také díky bohatě rozvinuté schopnosti autofagie - degradace cytoplasmatickýchčástí ve speciální vakuole.
89 Autofagická vakuola 4 dráhy
90 Bílkoviny řídící tvorbu autofagických vakuol jsou dobře evolučně konzervovány. Celá dráha je aktivována TOR kinázou a pak procesem podobným ubiquitinaci. Důležitou roli hraje PI3K - VPS34, která je inhibována wortmanninem.
91
92 Distribution of phosphatidylinositides in cells: PI(4)P (blue) - concentrated on Golgi PI(3)P (green) - early endosomes PI(4,5)P 2 -plasma membrane PI(3,5)P 2 - multivesicular endosomes Roth 2004
93 Ve vakuole dochází k nespecifické degradaci řady substrátů včetně lipidů, polysacharidů a bílkovin.
94 Arabidopsis s postiženou tvorbou autofágních vakuol rychleji stárne a hůře odolává hladovění.
95 Vakuoly jsou centrální pro pochopení života rostlinné buňky.
96 Robinsonovy shrnující modely 2005
97
98
Endosomy, vakuola a ti druzí
Endocytóza Endosomy, vakuola a ti druzí Endocytické váčky mají clathrinový obal Various receptors and clathrin protein coats recognize vesicle types, and these are delivered (along cytoskeleton pathways?)
Endosomy, vakuola a ti druzí
Endocytóza Endosomy, vakuola a ti druzí Endocytické váčky mají clathrinový obal Various receptors and clathrin protein coats recognize vesicle types, and these are delivered (along cytoskeleton pathways?)
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
Endozóm Endozóm: soubor membránových organel, regulujících transport v rámci endomembránového systému.
Endozóm Endozóm: soubor membránových organel, regulujících transport v rámci endomembránového systému. Endozomální organely přijímají váčky s nově syntetizovaným materiálem (v ER a GA) i endocytovaný materiál
Endozóm Endozóm: soubor membránových organel, regulujících transport v rámci endomembránového systému.
Endozóm Endozóm: soubor membránových organel, regulujících transport v rámci endomembránového systému. Endozomální organely přijímají váčky s nově syntetizovaným materiálem (v ER a GA) i endocytovaný materiál
Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA
Slide 1a ROSTLINNÁ BUŇKA Slide 1b Specifické součásti ROSTLINNÁ BUŇKA Slide 1c Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna Slide 1d Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna plasmodesmy Slide
2. Buněčné membrány a vakuoly rostlinných buněk
2. Buněčné membrány a vakuoly rostlinných buněk Biologické membrány (blány): model tekuté mosaiky Povrchová membrána rostlinné buňky, plasmalema Endomembránový systém rostlinné buňky: definice, složení,
Bílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
5) Fyziologie rostlinných hormonů auxinů: receptory a signální dráhy
SFZR 1 2014 5) Fyziologie rostlinných hormonů auxinů: receptory a signální dráhy a) Auxinový receptor TIR1 b) Auxinový receptor ABP1 c) Kooperace receptorů TIR1 a ABP1 Estelle M et al. (2011) Auxin Signaling:
Příběh pátý: Auxinová signalisace
Příběh pátý: Auxinová signalisace Co je auxin? Derivát tryptofanu Příbuzný serotoninu a melatoninu Všechny deriváty přítomny jak u živočichů, tak u rostlin IAA Serotonin Serotonin: antagonista auxinu Přítomen
Regulace translace REGULACE TRANSLACE LOKALIZACE BÍLKOVIN V BUŇCE. 4. Lokalizace bílkovin v buňce. 1. Translační aparát. 2.
Regulace translace 1. Translační aparát 2. Translace 3. Bílkoviny a jejich posttranslační modifikace a jejich degradace 5. Translace v mitochondriích a chloroplastech REGULACE TRANSLACE LOKALIZACE BÍLKOVIN
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce
BUŇEČNÝ CYKLUS A JEHO KONTROLA
BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2015-2016 1 Název Funkční analýza jaderných proteinů fosforylovaných pomocí mitogenaktivovaných proteinkináz. Školitel
MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK
MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK PLASMATICKÁ MEMBRÁNA EUKARYOTICKÝCH BUNĚK Všechny buňky (prokaryotické a eukaryotické) jsou ohraničeny membránami zajišťujícími integritu a funkci buněk Ochrana
INTRACELULÁRNÍ SIGNALIZACE II
INTRACELULÁRNÍ SIGNALIZACE II 1 VÝZNAM INTRACELULÁRNÍ SIGNALIZACE V MEDICÍNĚ Příklad: Intracelulární signalizace: aktivace Ras proteinu (aktivace receptorové kinázy aktivace Ras aktivace kinázové kaskády
Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings
Biologie I Buňka II Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings BUŇKA II centrioly, ribosomy, jádro endomembránový systém semiautonomní organely peroxisomy
Fyziologie AUTOFAGIE. MUDr. JAN VARADY KARIM FNO
Fyziologie AUTOFAGIE MUDr. JAN VARADY KARIM FNO 29.1.2019 Autofagie?? Autofagie Self-eating Regulovaný katabolický jev Degradace a recyklace buněčných cytoplasmatických komponent: malfunkční a staré proteiny,
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Endomembránový systém rostlinné buňky. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK
Endomembránový systém rostlinné buňky Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK Endomembránový systém: systém vnitřních membrán eukaryotické buňky Součástí je: -Jaderný obal -Endoplazmatické
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Úloha 5 k zápočtu z přednášky B130P16 (praktické základy vědecké práce)
Úloha 5 k zápočtu z přednášky B130P16 (praktické základy vědecké práce) Úkol: Sepište krátký rukopis vědeckého původního článku na téma "Směrovaný transport auxinu přes plazmatickou membránu hraje úlohu
Základy buněčné biologie
Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
Stavba dřeva. Základy cytologie. přednáška
Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná
Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav
Buněčná teorie: Počátky formování: 1840 a dále, Jan E. Purkyně myšlenka o analogie rostlinného a živočišného těla (buňky zrníčka) Schwann T. Virchow R. nové buňky vznikají pouze dělením buněk již existujících
BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ
BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za
Struktura a funkce biomakromolekul KBC/BPOL
Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2017-2018 1 Název Fenotypová analýza vybraných dvojitých mutantů MAPK v podmínkách abiotického stresu. Školitel Mgr.
Struktura a funkce biomakromolekul KBC/BPOL
Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je
FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz
FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.
Růst a vývoj rostlin - praktikum MB130C78
Růst a vývoj rostlin - praktikum MB130C78 Blok 3 Role aktinového cytoskeletu v morfogenezi rostlinných buněk - analýza fenotypu Úlohy: 1. Kvantifikace počtu zkroucených a správně tvarovaných trichomů u
Auxin - nejdéle a nejlépe známý fytohormon
Auxin - nejdéle a nejlépe známý fytohormon Auxin je nejdéle známým fytohormonem s mnoha popsanými fyziologickými účinky Darwin 1880, Went 1928 pokusy s koleoptilemi trav a obilovin prokázali existenci
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY 1 VÝZNAM MEMBRÁNOVÝCH RECEPTORŮ V MEDICÍNĚ Příklad: Membránové receptory: adrenergní receptory (receptory pro adrenalin a noradrenalin) Funkce: zprostředkování
Z Buchanan et al. 2000
Průběh buněčného cyklu Z Buchanan et al. 2000 Změny v uspořádání mikrotubulů v průběhu buněčného cyklu A interfáze, kortikální mikrotubuly uspořádané v cytoplasmě pod plasmalemou B konec G2 fáze, mikrotubuly
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis Mikrotubuly Formace heterodimerů α/βtubulinu Translace α a β -tubulin monomerů chaperonin c-cpn správný folding α-tubulin se váže na TFC B a β na TFC
- pro učitele - na procvičení a upevnění probírané látky - prezentace
Číslo projektu Název školy Autor Tematická oblast CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 10 obecná biologie Organely eukaryotní buňky Ročník 1. Datum tvorby
Cytologie. Přednáška 2010
Cytologie Přednáška 2010 Buňka 1.Velikost 6 200 µm, průměrná velikost 20um 2. JÁDRO a CYTOPLAZMA 3. ORGANELY (membránové) 4. CYTOPLAZMATICKÉ INKLUZE 5. CYTOSKELET 6. Funkční systémy eukaryotické buňky:
d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů
MBR2 2016 2) Membránový transport 1 d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů d) Kanály Rostliny: iontové kanály a akvaporiny
Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii
Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.
STRUKTURA EUKARYONTNÍCH BUNĚK
STRUKTURA EUKARYONTNÍCH BUNĚK EUKARYOTICKÉ ORGANELY Jádro Ribozomy Endoplazmatické retikulum Golgiho aparát Lysozomy Endozomy Mitochondrie Plastidy Vakuola Cytoskelet Vznik eukaryotického jádra Jaderný
NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly
NEMEMBRÁNOVÉ ORGANELY Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly RIBOSOMY Částice složené z rrna a proteinů, skládají se z velké kulovité
prokaryotní Znaky prokaryoty
prokaryotní buňka Znaky prokaryoty Základní stavební jednotka bakterií a sinic Mikroskopická velikost viditelné pouze v optickém mikroskopu Buňka neobsahuje organely Obsahuje pouze 1 biomembránu cytoplazmatickou
BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:
BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,
in Cl - Δµ s = RTln(C si /C so ) + zf(e i - E o ) MBR ) Membránový transport
MBR1 2016 3) Membránový transport d) Kanály e) Přenašeče a cotransportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů g) Sekreční dráha proteinů h) Rozpad proteinu
Schéma rostlinné buňky
Rostlinná buňka 1 2 3 5 vakuola 4 5 6 Rostlinná buňka je eukaryotní buňkou se základními charakteristikami tohoto typu buňky. Krom toho má některé charakteristiky typické pro rostlinné buňky, jako je předevšímř
STRUKTURA EUKARYONTNÍCH BUNĚK
STRUKTURA EUKARYONTNÍCH BUNĚK EUKARYOTICKÉ ORGANELY Jádro Ribozomy Endoplazmatické retikulum Golgiho aparát Lysozomy Endozomy Mitochondrie Plastidy Vakuola Cytoskelet Vznik eukaryotického jádra Jaderný
Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová
Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 3. Enzymy a proteinové motory Ivo Frébort Enzymová katalýza Mechanismy enzymové katalýzy o Ztráta entropie při tvorbě komplexu ES odestabilizace komplexu ES
VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ
FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů
VAKUOLY - voda v rostlinné buňce
VAKUOLY - voda v rostlinné buňce Úvod: O vakuole: Vakuola je membránová struktura, která je součástí většiny rostlinných buněk. Může zaujímat 30-90% objemu buňky. Vakuola plní v rostlinné buňce mnoho důležitých
MBRO ) Membránový transport
MBRO1 2018 3) Membránový transport 1 d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů g) Sekreční dráha proteinů h) Rozpad
Endomembránový systém. exocytóza a endocytóza
Endomembránový systém. exocytóza a endocytóza Transport membrán -Membrane Traffic How do proteins and lipids move from one compartment to another? What are the signals that target molecules to their appropriate
Buněčné jádro a viry
Buněčné jádro a viry Struktura virionu Obal kapsida strukturni proteiny povrchove glykoproteiny interakce s receptorem na povrchu buňky uvnitř nukleocore (ribo )nukleova kyselina, virove proteiny Lokalizace
VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ
REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů
Biologie buňky. systém schopný udržovat se a rozmnožovat
Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
8. Polysacharidy, glykoproteiny a proteoglykany
Struktura a funkce biomakromolekul KBC/BPOL 8. Polysacharidy, glykoproteiny a proteoglykany Ivo Frébort Polysacharidy Funkce: uchovávání energie, struktura, rozpoznání a signalizace Homopolysacharidy a
3) Membránový transport
MBR1 2016 3) Membránový transport a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy 1 Prokaryotická buňka Eukaryotická buňka 2 Pohyb vody první reakce klidných
3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek
MBRO1 1 2 2017 3) Membránový transport Prokaryotická buňka Eukaryotická buňka a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy Pohyb vody první reakce klidných
44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů
Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál
Přijímací zkoušky BGI Mgr. 2016/2017. Počet otázek: 30 Hodnocení každé otázky: 1 bod Čas řešení: 60 minut. Varianta B
Přijímací zkoušky BGI Mgr. 2016/2017 Počet otázek: 30 Hodnocení každé otázky: 1 bod Čas řešení: 60 minut Varianta B A1. Čepička na 5' konci eukaryotické mrna je tvořena a. 7-methylguanosin trifosfátem
Prokaryotická X eukaryotická buňka. Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen)
Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Cytoplazmatická membrána osemipermeabilní ofosfolipidy, bílkoviny otransport látek, receptory,
MEMBRÁNOVÝ PRINCIP BUŇKY
MEMBRÁNOVÝ PRINCIP BUŇKY Gorila východní horská Gorilla beringei beringei Uganda, 2018 jen cca 880 ex. Biologie 9, 2018/2019, Ivan Literák MEMBRÁNOVÝ PRINCIP BUŇKY MEMBRÁNOVÝ PRINCIP BUŇKY živá buňka =
Buňky, tkáně, orgány, soustavy
Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma
Fluorescenční mikroskopie. -fluorescenční mikroskopie -konfokální mikroskopie
Fluorescenční mikroskopie -fluorescenční mikroskopie -konfokální mikroskopie Fluorescence a fluorofory Schéma konvenčního fluorescenčního mikroskopu -Na fluorescenčně značený vzorek dopadá pouze světlo
Biosyntéza a degradace proteinů. Bruno Sopko
Biosyntéza a degradace proteinů Bruno Sopko Obsah Proteosyntéza Post-translační modifikace Degradace proteinů Proteosyntéza Tvorba aminoacyl-trna Iniciace Elongace Terminace Tvorba aminoacyl-trna Aminokyselina
od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z :
Otázka: Buňka Předmět: Biologie Přidal(a): konca88 MO BI 01 Buňka je základní stavební jednotka živých organismů. Je to nejmenší živý útvar schopný samostatné existence a rozmnožování. Každá buňka má svůj
- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina )
Otázka: Buňka a dělení buněk Předmět: Biologie Přidal(a): Štěpán Buňka - cytologie = nauka o buňce - rostlinná a živočišná buňka jsou eukaryotické buňky Stavba rostlinné (eukaryotické) buňky: buněčná stěna
Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách
Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako
http://www.accessexcellence.org/ab/gg/chromosome.html
3. cvičení Buněčný cyklus Mitóza Modifikace mitózy 1 DNA, chromosom genetická informace organismu chromosom = strukturní podoba DNA během dělení (mitózy) řetězec DNA (chromonema) histony další enzymatické
Systém HLA a prezentace antigenu. Ústav imunologie UK 2.LF a FN Motol
Systém HLA a prezentace antigenu Ústav imunologie UK 2.LF a FN Motol Struktura a funkce HLA historie struktura HLA genů a molekul funkce HLA molekul nomenklatura HLA systému HLA asociace s nemocemi prezentace
3. Nukleocytoplasmatický kompartment rostlinných buněk
3. Nukleocytoplasmatický kompartment rostlinných buněk Co je nukleocytoplasmatický kompartment a jak vypadá u typické rostlinné buňky Jádro buněčné Nositel naprosté většiny genetické informace buňky Jak
Endomembránový systém. exocytóza a endocytóza
Endomembránový systém. exocytóza a endocytóza Transport membrán -Membrane Traffic How do proteins and lipids move from one compartment to another? What are the signals that target molecules to their appropriate
BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY
BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY 1 VÝZNAM BUNĚČNÉ MOTILITY A MOLEKULÁRNÍCH MOTORŮ V MEDICÍNĚ Příklad: Molekulární motor: dynein Onemocnění: Kartagenerův syndrom 2 BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
STRUKTURNÍ SKUPINY ADHEZIVNÍCH MOLEKUL
STRUKTURNÍ SKUPINY ADHEZIVNÍCH MOLEKUL - INTEGRINY LIGANDY) - SELEKTINY (SACHARIDOVÉ LIGANDY) - ADHEZIVNÍ MOLEKULY IMUNOGLOBULINOVÉ SKUPINY - MUCINY (LIGANDY SELEKTIN - (CD5, CD44, SKUPINA TNF-R AJ.) AKTIVACE
Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308
Buňka Autor: Mgr. Jitka Mašková Datum: 27. 10. 2012 Gymnázium, Třeboň, Na Sadech 308 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0702 VY_32_INOVACE_BIO.prima.02_buňka Škola Gymnázium, Třeboň, Na Sadech
Buněčný cyklus a molekulární mechanismy onkogeneze
Buněčný cyklus a molekulární mechanismy onkogeneze Imunofluorescence DAPI Přehled regulace buněčného cyklu Základní terminologie: Cycliny evolučně konzervované proteiny s homologními oblastmi; jejich
Prokaryota x Eukaryota. Vibrio cholerae
Živočišná buňka Prokaryota x Eukaryota Vibrio cholerae Dělení živočišných buněk: buňky jednobuněčných organismů (volně žijící samostatné jednotky) buňky mnohobuněčných větší morfologické i funkční celky
Apoptóza Onkogeny. Srbová Martina
Apoptóza Onkogeny Srbová Martina Buněčný cyklus Regulace buněčného cyklu 1. Cyklin-dependentní kináza (Cdk) cyclin Regulace buněčného cyklu 2. Retinoblastomový protein (prb) E2F Regulace buněčného cyklu
I rostliny mají hormony!... co a jak s auxinem. Eva Zažímalová Ústav experimentální botaniky AV ČR, Praha
I rostliny mají hormony!... co a jak s auxinem Eva Zažímalová Ústav experimentální botaniky AV ČR, Praha Rostliny a tvarová (a vývojová) různorodost Reakce na okolní prostředí Reakce na nepříznivé podmínky
Molecular Biology of the Cell Fifth Edition
Membránový princip organizace buňky (kompartmenty). Třídění proteinů. doc. Mgr. Jiří Drábek, PhD. Laboratoř experimentální medicíny při Dětské klinice LF UP a FN Olomouc jiri_drabek@seznam.cz Alberts Johnson
- v interfázi dále viditelné - jadérko, jaderný skelet, jaderný obal
Buňka buňka : 10-30 mikrometrů největší buňka : vajíčko životnost : hodiny: leukocyty, erytrocyty: 110 130 dní, hepatocyty: 1 2 roky, celý život organismu: neuron počet bb v těle: 30 biliónů pojem buňka
Energetický metabolizmus buňky
Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie
Endocytóza o regulovaný transport látek v buňce
. Endocytóza o regulovaný transport látek v buňce Exocytóza BUNĚČNÝ CYKLUS OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí systém regulace
Číslo a název projektu Číslo a název šablony
Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_ZE_1.05
Speciální chemicko-biologické obory. Molekulární biologie a biochemie organismů
UNIVERZITA KARLOVA V PRAZE PŘÍRODOVĚDECKÁ FAKULTA Studijní program: Speciální chemicko-biologické obory Studijní obor: Molekulární biologie a biochemie organismů Markéta Polidarová Vezikulární transport
Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost
BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE
MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE
Cvičení 6: BUNĚČNÝ CYKLUS, MITÓZA Jméno: Skupina: MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE Trvalý preparát: kořínek cibule obarvený v acetorceinu V buňkách kořínku cibule jsou viditelné různé mitotické figury.
Vakuola. Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich
Vakuola Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich objemu. Je ohraničená na svém povrchu membránou zvanou tonoplast. Tonoplast je součástí endomembránového systému buňky
Proteinkinázy typu AGC a jejich role při regulaci transportu auxinu
Přírodovědecká fakulta Univerzity Karlovy v Praze Katedra experimentální biologie rostlin Proteinkinázy typu AGC a jejich role při regulaci transportu auxinu The role of AGC protein kinases in the regulation
3) Fyziologie rostlinných hormonů auxinů: receptory a signální dráhy
SFR 1 2017 3) Fyziologie rostlinných hormonů auxinů: receptory a signální dráhy a) Auxinový receptor TIR1 b) Auxinový receptor ABP1 c) Kooperace receptorů TIR1 a ABP1 Estelle M et al. (2011) Auxin Signaling:
Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.
Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický
Mendělejevova tabulka prvků
Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých
REGULACE TRANSLACE DEGRADACE BÍLKOVIN. 4. Degradace bílkovin. 4. Degradace bílkovin. 4. Degradace bílkovin
4. Degradace bílkovin Degradace - několik proteolytických cest, specifických pro určitý buněčný kompartment REGULACE TRANSLACE DEGRADACE BÍLKOVIN 4. Degradace bílkovin 4. Degradace bílkovin Degradace bílkovin
Regulace růstu a vývoje
Regulace růstu a vývoje REGULACE RŮSTU A VÝVOJE ROSTLINNÉHO ORGANISMU a) Regulace na vnitrobuněčné úrovni závislost na rychlosti a kvalitě metabolických drah, resp. enzymů a genů = regulace aktivity enzymů
Interakce buněk s mezibuněčnou hmotou. B. Dvořánková
Interakce buněk s mezibuněčnou hmotou B. Dvořánková Obsah přednášky Buňka a její organely Extracelulární matrix Interakce buněk s ECM i navzájem Kultivace buněk in vitro Buněčné jádro Alberts: Molecular