Magnety a cívky s proudem
|
|
- Olga Kamila Fišerová
- před 6 lety
- Počet zobrazení:
Transkript
1 Magnety a cívky s proudem VÍT BOČEK KDF MFF UK Elektromagnetické kyvadlo Zaměříme na zařízení elektromagnetické kyvadlo (obrázek 1, obrázek 2), jehož závaží magnet, je umístěno do magnetického pole cívky. Na magnet tak působí různé síly, které jej vychýlí. Tyto síly podrobně prozkoumáme a pokusíme se jejich prostřednictvím popsat pozorované jevy. Hlavní smysl experimentu spočívá v zapínání a vypínání proudu do cívky. Při správných intervalech spínání totiž najdeme rezonanční frekvenci kyvadla, čímž bude docházet k jeho maximálním vychýlením a účastníkovi experimentu se podaří chytnout magnetem magnetický předmět zavěšený poblíž místa maximální výchylky magnetu. Obrázek 2 Elektromagnetické kyvadlo (rozebrané) Obrázek 1 Elektromagnetické kyvadlo Cíl experimentu Experiment má díky své interaktivní povaze značný potenciál zaujmout studenty. Mělo by tak být snazší upevnit v nich poznatek, že elektřina a magnetismus jsou provázané jevy, což je také stěžejní sdělení experimentu. Ve vyšších ročnících lze propojit elektromagnetické 40
2 jevy s jevy mechanickými, jako jsou např. rezonanční frekvence kyvadla, působení sil a momentů sil, rozklad sil atp. Součástky a jejich cenová kalkulace Součástky Cena [Kč] 1 AA článek (3 ks) 30 2 Držák na články (1 ks) 15 3 Zvonkový spínač (1 ks) 80 4 Izolovaný vodič (1 m) 5 5 Lakovaný vodič (0,7 mm, 5 m) 50 6 Neodymový magnet (váleček, 2 ks) 20 Celkem 200 Návod na výrobu a popis konstrukce Prvním krokem při výrobě zařízení je zhotovení cívky o průměru cca 7 cm. Na láhev např. od vína přes sebe namotáme cca 30 závitů lakovaného drátu. Vzniklou cívku z láhve opatrně stáhneme a slepíme ji např. lepicí páskou, či pomocí tavné pistole tak, aby se nerozmotala. Následně ji ve dvou protějších bodech na svém obvodu přilepíme ke dvěma dřevěným laťkám. Každou z nich provrtáme ve stejné vzdálenosti od svého konce a do jednoho z otvorů vsuneme kovovou osičku. V tomto otvoru ji pevně (např. pomocí tavné pistole nebo lepidla) uchytíme. Druhý konec osičky necháme nefixovaný, což umožní snadno na ni nasouvat druhou laťku. Spodní konce latěk pevně uchytíme k podložce. Dále vytvoříme otvor v dřevěné tyčince (místo dřevěné tyčinky lze použít dostupnější a snadno upravovatelné brčko), tak aby měl nepatrně větší průměr, než je průměr osičky. Tím při otáčení tyčinky nedojde k výraznému tření a zároveň se tyčinka nebude v širokém otvoru chaoticky viklat. Důležité je, aby byl otvor v takové vzdálenosti od spodního konce tyčinky, že se konec tyčinky po vsunutí osičky do otvoru nachází cca 5 mm nad středem cívky. Vsuneme tedy tyčinku na osičku a přes její dolní konec přichytíme dva malé neodymové magnety (v našem případě válečky). Tím v podstatě vznikne jeden magnet. Je však třeba dbát na to, aby severojižní osa magnetu byla vodorovná a zároveň kolmá k ose otáčení. Konce cívky připojíme přes zvonkový spínač k baterii tří článků typu AA v sérii. Jako efektní prvek doinstalujeme například kovový přívěsek, který se studenti budou snažit chytit. Technické poznámky Z obrázku je patrné, že jsou v naší konstrukci použity žluté kousky plastu pod konci dřívek. Jde o čtyři části stavebnice, přičemž jedna kostička je vždy pevně připevněna k podkladovému prkénku a druhá je pevně připevněna k dřívku. Díky tomu lze dřívka odepnout a položit, což je výhoda zejména při přesouvání experimentu na delší vzdálenosti. Za zmínku stojí také průměr lakovaného vodiče. Otázkou je, zda by mohl být vodič tenčí dvě tužkové baterie totiž nemohou dodat dostatečně velký proud, aby se drát zahřál na rizikovou teplotu. Důvod, proč byl použit vodič o takovémto průměru (0,7 mm) je čistě praktický. Po odepnutí dřívek by se totiž cívka z tenčího vodiče mohla při transportu zařízení snadno zdeformovat, zatímco drát se zmíněným průměrem činí cívku robustní a odolnou. 41
3 Fyzika experimentu a jeho průběh Naším cílem je popsat proč, jak, a s jakou silou se kyvadlo s magnetem jakožto závažím vychýlí v magnetickém poli cívky. Fyzika experimentu není triviální, a proto ji rozebereme postupně a podrobně prostřednictvím následujících náhledů. Nejprve se zaměříme na základní jevy, které mohou nastat při umístění magnetu do magnetického pole. Poté se zaměříme na zjednodušenou verzi experimentu a následně výsledky úvah aplikujeme na náš experiment. Popis chování válcového magnetu v magnetickém poli Jestliže axiálně (směr standardní magnetizace) zmagnetovaný volný magnet umístíme do homogenního magnetického pole, dojde k natáčení magnetu do směru indukčních čar tohoto pole. Pokud bychom magnet umístili do nehomogenního pole (např. pole dalšího magnetu), kromě zmíněného natáčení magnetu se zde uplatní ještě další účinek vtahování magnetu do místa s vyšší hustotou indukčních čar (do silnějšího pole), případně (při opačné orientaci jednoho z polí) vypuzování magnetu z místa větší hustoty indukčních čar. Tyto jevy jsou příčinou toho, že se dva magnety odpuzují nebo přitahují. Nyní se přiblížíme našemu experimentu. Jako zdroj nehomogenního magnetického pole slouží cívka s proudem. Magnet je axiálně zmagnetovaný, ale na rozdíl od předchozí úvahy je fixně připevněný ke konci dřevěné tyčinky volně zavěšené na svém horním konci, která mu nedovolí, aby se zorientoval ve směru indukčních čar, nebo vtáhnul do cívky. Pokusíme se tedy zjistit, proč se magnet s tyčinkou vychýlí. Jinými slovy se ptáme, jaké síly na kyvadlo působí a jaká je jejich výslednice. Spíše, než kvantitativní závěry pro nás budou podstatné ty kvalitativní, tedy kterým směrem, a proč, kyvadlo vykývne. Rozbor sil a momentů sil působících na magnet v magnetickém poli (obrázek 3) Uvažujme tedy kyvadlo vodorovně orientovaný magnet (váleček) délky d který je fixně uchycen v polovině své délky k pevnému závěsu (např. dřevěné tyčince) délky l. K levé straně závaží umístíme zátaras tak, aby kyvadlo nemohlo na tuto stranu vykývnout. V tom případě se kyvadlo nebude pohybovat a při rozboru situace využijeme toho, že výslednice sil tím pádem musí být nulová. Předpokládejme, že se magnet nachází v homogenním magnetickém poli směřujícím (bez újmy na obecnosti) svisle zdola nahoru. Jak bylo řečeno, magnet se snaží zorientovat do směru pole pro jednoduchost si představme, že na jeden pól působí síla směrem dolů a na druhý pól druhá síla směrem nahoru. Uvažujme nyní pouze sílu působící směrem dolů. Místo magnetu a homogenního pole si také představíme válcové závaží a sílu s působištěm v bodě A (krajní bod závaží na jeho ose) směřující svisle dolů. Rozeberme postupně síly, které působí na různé části kyvadla. Na kyvadlo působí tíhová síla, kterou kompenzuje síla závěsu. Těmito dvěma silami se tedy již nemusíme zabývat. V bodě A působíme svisle dolů silou, kterou kompenzuje síla. Závaží na zátaras působí silou, ale díky 3. Newtonovu pohybovému zákonu (Zákon akce a reakce) působí také zátaras na závaží stejně velkou silou, ovšem opačného směru. Kromě těchto sil pů- 42
4 sobí na kyvadlo také síla bodu uchycení a na bod uchycení (opět podle 3. NPZ) působí opačná síla tyčinky. Závaží se tedy nepohybuje síly jsou v rovnováze, takže výslednice sil je nulová. Obrázek 3 Síly působící na kyvadlo Nyní rozebereme momenty sil, které na kyvadlo působí. Moment síly podle vztahu: určíme obecně kde je rameno síly. Pro velikost momentu pak platí, kde je úhel mezi ramenem a silou. Vzhledem k bodu B (středu závaží) je velikost momentu síly rovna: Úhel je roven, neboť síla a její rameno o délce jsou kolmé, tedy a Velikost momentu síly (který působí opačným směrem než ) spočteme jako 43
5 Úhel je roven, neboť síla a její rameno o délce l jsou kolmé, tedy a velikosti momentů sil musí být v rovnosti, neboť se kyvadlo nepohybuje. Platí tedy Z této rovnosti můžeme vyjádřit velikost síly jako Pokud tedy odstraníme zátaras, kyvadlo vykývne díky síle. Nyní se vraťme k situaci, kdy je závažím magnet v homogenním magnetickém poli. Díky tomu na závaží magnet působí svisle vzhůru také síla s působištěm v bodě C. Její velikost bude shodná se silou, ale bude mít opačný směr. Přesto však po jednoduché úvaze dojdeme k závěru, že její účinek na zátaras má stejný směr i velikost jako účinek síly. Celková velikost síly působící na kyvadlo tedy bude: Nyní provedeme experiment s cívkou, kterou prochází proud, a malým magnetem na tyčince. Kyvadlo budeme posouvat z výšky h nad středem cívky svisle dolů do výšky -h. Pozorujeme, že v polorovině nad cívkou působí na magnet síla směrem k jedné straně cívky. V polorovině pod cívkou však působí síla na opačnou stranu. Tento jev pomocí předchozích úvah neobjasníme. Příčinou je totiž nehomogenita pole cívky, kterou jsme neuvažovali. Na pomoc si tedy vezmeme teorii magnetických množství. Popis pomocí magnetického množství [1] (obrázek 4) Myšlenka teorie magnetických množství [L. Dvořák, 2016] tkví v představě konců magnetických pólů jako míst s magnetickými množstvími a, která charakterizují jak silné jsou magnetické póly. Pro výpočet magnetické síly mezi póly dlouhých tyčových magnetů platí vztah (analogický Coulombovu zákonu): V elektrostatice počítáme sílu působící na náboj pomocí pole elektrické intenzity jako V magnetickém poli počítáme sílu na magnetické množství jako kde H je intenzita magnetického pole. Kombinací vztahů dostaneme pro intenzitu v okolí pólu dlouhého tyčového magnetu vztah kde je magnetické množství daného pólu. Mezi magnetickou intenzitou a magnetickou indukcí platí vztah Pro sílu F působící na pól tyčového magnetu tedy platí 44
6 Magnet v našem experimentu není tyčový, proto pro něj tento vztah neplatí. Můžeme jej však prodloužit, a pak jde o rozumnou aproximaci. V magnetickém poli cívky tedy působí na magnetická množství na koncích magnetu síly a. Jejich směr je tečný k indukčním čarám magnetického pole cívky. Podstatné jsou pro nás síly a, které jsou průmětem sil a do x-ové osy. Síly a směřují stejným směrem, a tak je zřejmé, že výsledná síla na magnet působí v našem případě směrem doleva. Závěr a začlenění do výuky Obrázek 4 Síly působící na magnetická množství Pomocí výše uvedených náhledů jsme tedy kvalitativně popsali, z jakého důvodu se kyvadlo vychyluje. Mějme však na paměti, že jsme užívali různá přiblížení a některé efekty jsme zanedbávali. Uvědomme si například, že jakmile se magnet vychýlí z rovnovážné polohy, situace se stane značně nesymetrickou a začnou se uplatňovat síly, které v rovnovážné poloze neexistovaly. Magnet se např. bude chtít vtáhnout do místa s vyšší hustotou indukčních čar, jak jsme komentovali výše. 45
7 Je na zvážení, jaký popis experimentu volit pro vysvětlování jevu studentům. Rozbor sil a momentů sil působících na magnet v magnetickém poli je sice obtížný, ale studentům blízký z hodin mechaniky. Popis pomocí magnetických množství pro studenty může být nezvyklý, ale pro základní představu je zřejmě jednodušší. Je však třeba dávat pozor, aby studenti nenabyli dojmu, že na konci magnetů jsou umístěny jakési magnetické náboje. Začlenění experimentu do hodiny může být pro studenty zajímavé také díky tomu, že si sami vyzkouší chytání přívěsku, což bývá velmi oblíbenou aktivitou. V případě, že by si studenti takto hráli, musíme počítat se značnou časovou náročností, neboť většině z nich se ani po minutách úsilí nepodaří úkol splnit. Zajímavé je, že přívěsek bez obtíží chytnou většinou studenti, kteří hrají na hudební nástroj, tancují, případně provozují jinou činnost, která vyžaduje cit pro rytmus. Ten, kdo postrádá tuto schopnost, s chycením přívěsku značně zápasí. Lze to vysvětlit tím, že spínač je nezbytné mačkat ve správných intervalech, a to je výsadou právě lidí vnímajících rytmus. Literatura [1] DVOŘÁK, Leoš, O magnetu, magnetických tělesech a velikém magnetu Zemi [online]. [cit ]. Dostupné z: reky2016.pdf 46
Magnetická indukce příklady k procvičení
Magnetická indukce příklady k procvičení Příklad 1 Rozhodněte pomocí (Flemingova) pravidla levé ruky, jakým směrem bude působit síla na vodič, jímž protéká proud, v následujících situacích: a) Severní
Elektřina a magnetismus úlohy na porozumění
Elektřina a magnetismus úlohy na porozumění 1) Prázdná nenabitá plechovka je umístěna na izolační podložce. V jednu chvíli je do místa A na vnějším povrchu plechovky přivedeno malé množství náboje. Budeme-li
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
Vzájemné silové působení
magnet, magnetka magnet zmagnetované těleso. Původně vyrobeno z horniny magnetit, která má sama magnetické vlastnosti dnes ocelové zmagnetované magnety, ferity, neodymové magnety. dva magnetické póly (S-J,
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.
STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník
STACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Magnetické pole Vytváří se okolo trvalého magnetu. Magnetické pole vodiče Na základě experimentů bylo
ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník
ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče
POPIS VÝUKOVÉ AKTIVITY (METODICKÝ LIST):
POPIS VÝUKOVÉ AKTIVITY (METODICKÝ LIST): Název výukové aktivity: Magnety a magnetismus Vyučovací předmět: Aktivita v rámci Školního vědeckého dne. Anotace: Znázornění magnetického pole, magnet a elektrický
Několik experimentů ze semináře Elektřina a magnetismus krok za krokem
Několik experimentů ze semináře Elektřina a magnetismus krok za krokem VĚRA KOUDELKOVÁ, LEOŠ DVOŘÁK, IRENA DVOŘÁKOVÁ KDF MFF UK Praha Abstrakt Příspěvek popisuje čtyři experimenty (tři z elektrostatiky
ELEKTROMAGNETICKÉ POLE
ELEKTROMAGNETICKÉ POLE 1. Magnetická síla působící na náboj v magnetickém poli Fyzikové Lorentz a Ampér zjistili, že silové působení magnetického pole na náboj Q, závisí na: 1. velikosti náboje Q, 2. relativní
Rychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
Elektřina a magnetizmus magnetické pole
DUM Základy přírodních věd DUM III/2-T3-13 Téma: magnetické pole Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus magnetické pole
ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi
ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 2006, překlad: Vladimír Scholtz (2007) Obsah KONTROLNÍ OTÁZKY A ODPOVĚDI 2 OTÁZKA 41: ZÁVIT V HOMOGENNÍM POLI 2 OTÁZKA 42: ZÁVIT
Experimenty s plácačkou na mouchy
Experimenty s plácačkou na mouchy VÍT BOČEK KDF MFF UK, Praha Příspěvek ukazuje, že elektrickou plácačku na mouchy lze využít ve výuce fyziky jako zdroj vysokého napětí pro nejrůznější elektrostatické
Sada Elektřina a magnetismus. Kat. číslo 104.0021
Sada Elektřina a magnetismus Kat. číslo 104.0021 Strana 1 z 39 Všechna práva vyhrazena. Dílo a jeho části jsou chráněny autorskými právy. Jeho použití v jiných než zákonem stanovených případech podléhá
(2. Elektromagnetické jevy)
(2. Elektromagnetické jevy) - zápis výkladu z 9. a 13. hodiny- B) Magnetické pole vodiče s proudem prochází-li vodičem elektrický proud vzniká kolem něj díky pohybujícímu se náboji (toku elektronů) magnetické
1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
Elektřina vlastníma rukama
Elektřina vlastníma rukama VÍT BOČEK Matematicko-fyzikální fakulta, Univerzita Karlova, Praha Příspěvek představuje experimenty z elektřiny a magnetismu, které jsou efektní a zároveň jednoduché na konstrukci.
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka)
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka) A) Výklad: Posuvné účinky: Ze studia posuvných účinků síly jsme zjistili: změny rychlosti nebo směru posuvného pohybu tělesa závisejí na tom, jak velká síla
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 17. 10. 2012 Pořadové číslo 05 1 Kmitavý pohyb Předmět: Ročník: Jméno autora:
1. ELEKTROMAGNETICKÉ JEVY 1.1. MAGNETICKÉ POLE
1. ELEKTROMAGNETICKÉ JEVY 1.1. MAGNETICKÉ POLE Víme, že kolem každého magnetu a kolem zmagnetizovaných předmětů je magnetické pole. To se projevuje přitažlivou silou na tělesa z feromagnetických látek.
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE
Příklady: 1A. Jakou silou působí homogenní magnetické pole na přímý vodič o délce 15 cm, kterým prochází proud 4 A, a svírá s vektorem magnetické indukce úhel 60? Velikost vektoru magnetické indukce je
GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Alena Škárová Název: Magnetická indukce
4.5.3 Magnetická síla
4.5.3 Magnetická síla Předpoklady: 4501, 4502 Okolo vodiče s proudem vzniká magnetické pole ( stává se z něj magnet ) pokud vodič s proudem dáme k magnetu bude na něj působit magnetická síla. Pokus: Podkovovitý
Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.
Magnetické pole Stacionární magnetické pole Kolem trvalého magnetu existuje magnetické pole. Stacionární magnetické pole Pilinový obrazec magnetického pole tyčového magnetu Stacionární magnetické pole
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
Stacionární magnetické pole
Stacionární magnetické pole Magnetické pole se nachází v okolí planety Země, v okolí permanentních magnetů a také v okolí vodičů s proudem. Všechna tato pole budeme v laboratorní práci studovat za pomoci
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 5 Magnetické pole Pro potřeby
Měření tíhového zrychlení matematickým a reverzním kyvadlem
Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte
Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení
Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Úkoly měření: 1. Měření na digitálním osciloskopu a přenosném dataloggeru LabQuest 2. 2. Ověřte Faradayovy zákony pomocí pádu magnetu skrz trubici
Integrovaná střední škola, Sokolnice 496
Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných
Mechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.
Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu
Seriál II.II Vektory. Výfučtení: Vektory
Výfučtení: Vektory Abychom zcela vyjádřili veličiny jako hmotnost, teplo či náboj, stačí nám k tomu jediné číslo (s příslušnou jednotkou). Říkáme jim skalární veličiny. Běžně se však setkáváme i s veličinami,
Magnetické pole - stacionární
Magnetické pole - stacionární magnetické pole, jehož charakteristické veličiny se s časem nemění kolem vodiče s elektrickým polem je magnetické pole Magnetické indukční čáry Uzavřené orientované křivky,
Datum: 23. 8. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34.
Datum: 23. 8. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_97 Škola: Akademie VOŠ, Gymn. a SOŠUP Světlá nad Sázavou
NESTACIONÁRNÍ MAGNETICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Masarykovo gymnázium Vsetín Autor: Mgr. Jitka Novosadová DUM: MGV_F_SS_3S3_D16_Z_OPAK_E_Nestacionarni_magneticke_pole_T Vzdělávací obor: Člověk a příroda Fyzika Tematický okruh: Nestacionární magnetické
SCLPX 07 2R Ověření vztahu pro periodu kyvadla
Klasické provedení a didaktické aspekty pokusu U kyvadla, jakožto dalšího typu mechanického oscilátoru, platí obdobně vše, co bylo řečeno v předchozích experimentech SCLPX-7 a SCLPX-8. V současném pojetí
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská
ELEKTROMOTORY: Elektrický proud v magnetickém poli (pracovní list) RNDr. Ivo Novák, Ph.D.
ELEKTROMOTORY: Elektrický proud v magnetickém poli (pracovní list) RNDr. Ivo Novák, Ph.D. třední škola, Havířov-Šumbark, ýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci
c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky
Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda
4.5.10 Lenzův zákon. Předpoklady: 4502, 4503, 4507, 4508. Pokus:
4.5.10 Lenzův zákon Předpoklady: 4502, 4503, 4507, 4508 Pokus: Na obrázku je zachyceno rozestavení pokusu. Cívku můžeme připojit ke zdroji a vytvořit z ní elektromagnet. Uvnitř cívky je zastrčeno dlouhé
Obr. 11.1: Rozdělení dipólu na dva náboje. Obr. 11.2: Rozdělení magnetu na dva magnety
Magnetické pole Ve starověké Malé Asii si Řekové všimli, že kámen magnetovec přitahuje podobné kameny nebo železné předměty. Číňané kolem 3. století n.l. objevili kompas. Tyčový magnet (z magnetovce nebo
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště
4.5.3 Magnetická síla
4.5.3 Magnetická síla Předpoklady: 4501, 4502 Okolo vodiče s proudem vzniká magnetické pole ( stává se z něj magnet ) pokud vodič s proudem dáme k magnetu bude na něj působit magnetická síla. Pokus: Podkovovitý
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ELEKTRICKÝ NÁBOJ A COULOMBŮV ZÁKON 1) Dvě malé kuličky, z nichž
2.5 Rovnováha rovinné soustavy sil
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice
Název: Základní pokusy na elektromagnetickou indukci
Název: Základní pokusy na elektromagnetickou indukci Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:
X14 AEE + EVA Mindl. Odstředivý regulátor předstihu zážehu
Odstředivý regulátor předstihu zážehu Legenda: 7-základová deska odstředivého regulátoru, 8-čep otočného závaží, 9-otočné závaží, 10- pružina, 11- kulisa s vačkou, Rozdělovač zapalovacích impulsů s odstředivým
VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE
VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických
Měření hodnoty g z periody kmitů kyvadla
Měření hodnoty g z periody kmitů kyvadla Online: http://www.sclpx.eu/lab2r.php?exp=8 Úvod Při určení hodnoty tíhové zrychlení z periody kmitů kyvadla o délce l vycházíme ze známého vztahu (2.4.1) pro periodu
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 9. ročník M.Macháček : Fyzika 8/1 (Prometheus ), M.Macháček : Fyzika 8/2 (Prometheus ) J.Bohuněk : Pracovní sešit k učebnici fyziky 8
Příklad 5.3. v 1. u 1 u 2. v 2
Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu
ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi
ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 2006, překlad: Vladimír Scholtz (2007) Obsah KONTROLNÍ OTÁZKY A ODPOVĚDI 2 OTÁZKA 31: DIPÓL V MAGNETICKÉM POLI 2 OTÁZKA 32: DIPÓL
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal
Název: Studium magnetického pole
Název: Studium magnetického pole Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika, Zeměpis Tematický celek: Elektřina a magnetismus
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM. M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus)
Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 7. ročník M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus) Očekávané výstupy předmětu
6. MECHANIKA TUHÉHO TĚLESA
6. MECHANIKA TUHÉHO TĚLESA 6.1. ZÁKLADNÍ VLASTNOSTI A POJMY Tuhé těleso: Tuhé těleso je fyzikální model tělesa u kterého uvažujeme s jeho.. a. Zanedbáváme.. Pohyb tuhého tělesa: 1). Při posuvném pohybu
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Bc. Karel Hrnčiřík
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Bc. Karel Hrnčiřík Magnetické pole je kolem vodiče s proudem. Magnetka se natáčí ve směru tečny ke kruhové
Předměty tvořené ocelí nebo jinými kovy, které umí přitahovat železné předměty,
MAGNETY Předměty tvořené ocelí nebo jinými kovy, které umí přitahovat železné předměty, se nazývají trvalé magnety. Jsou tvarovány například jako koňské podkovy, magnetické jehly nebo obyčejné tyče. Kompas
Pohyb tělesa po nakloněné rovině
Pohyb tělesa po nakloněné rovině Zadání 1 Pro vybrané těleso a materiál nakloněné roviny zjistěte závislost polohy tělesa na čase při jeho pohybu Výsledky vyneste do grafu a rozhodněte z něj, o jakou křivku
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
Zajímavé pokusy s keramickými magnety
Veletrh nápadů učitelů fyziky Vl Zajímavé pokusy s keramickými magnety HANS-JOACHIM WILKE Technická UIŮverzita, Drážďany, SRN Překlad - R. Holubová V úvodu konference byla přednesena velice zajímavá přednáška
Magnetické pole se projevuje silovými účinky - magnety přitahují železné kovy.
Magnetické pole Vznik a zobrazení magnetického pole Magnetické pole vzniká kolem pohybujících se elektrických nábojů. V případě elektromagnetů jde o pohyb volných elektronů (nosičů elektrického náboje)
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. IXX Název: Měření s torzním magnetometrem Pracoval: Matyáš Řehák stud.sk.: 13 dne: 31.10.2008
Práce v elektrickém poli Elektrický potenciál a napětí
Práce v elektrickém poli Elektrický potenciál a napětí Elektrický potenciál Pohybuje-li se elektrický náboj v elektrickém poli, konají práci síly elektrické anebo vnější. Tohoto poznatku pak použijeme
3.1 Magnetické pole ve vakuu a v látkovén prostředí
3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká
Paradoxy kvantové mechaniky
Paradoxy kvantové mechaniky Karel molek Ústav technické a experimentální fyziky, ČVUT Bezinterakční měření Mějme bombu, která je aktivována velmi citlivým mechanismem v podobě zrcátka, které je propojeno
PRAKTIKUM I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č. XXI Název: Měření tíhového zrychlení Pracoval: Jiří Vackář stud. skup. 11 dne 10..
ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE
ELEKTRICKÝ NÁBOJ ELEKTRICKÉ POLE 1. Elektrický náboj, elektrická síla Elektrické pole je prostor v okolí nabitých těles nebo částic. Jako jiné druhy polí je to způsob existence hmoty. Elektrický náboj
Věra Keselicová. květen 2013
VY_52_INOVACE_VK62 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová květen 2013 8. ročník
Název: Elektromagnetismus 2. část (Vzájemné působení magnetu a vodiče s proudem)
Výukové materiály Název: Elektromagnetismus 2. část (Vzájemné působení magnetu a vodiče s proudem) Téma: Vzájemné působení magnetu a vodiče s proudem, využití tohoto jevu v praxi Úroveň: 2. stupeň ZŠ,
4.5.2 Magnetické pole vodiče s proudem
4.5.2 Magnetické pole vodiče s proudem Předpoklady: 4501 1820 H. Ch. Oersted objevil, že vodič s proudem působí na magnetku elektrický proud vytváří ve svém okolí magnetické pole (dříve nebyly k dispozici
Moment síly výpočet
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.2.3.2 Moment síly výpočet Moment síly je definován jako součin síly a kolmé vzdálenosti osy síly od daného
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové
MAGNETICKÉ POLE V LÁTCE, MAXWELLOVY ROVNICE MAGNETICKÉ VLASTNOSTI LÁTEK Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární
18. Stacionární magnetické pole
18. Stacionární magnetické pole 1. "Zdroje" magnetického pole a jeho popis a) magnetické pole tyčového permanentního magnetu b) přímého vodiče s proudem c) cívky s proudem d) magnetická indukce e) magnetická
1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge.
V1. Hallův jev Úkoly měření: 1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. Použité přístroje a pomůcky:
FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce
FYZIKA II Petr Praus 10. Přednáška Magnetické pole v látce Osnova přednášky Magnetické pole v látkovém prostředí, Ampérovy proudové smyčky, veličiny B, M, H materiálové vztahy, susceptibilita a permeabilita
Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
7. Mechanika tuhého tělesa
7. Mechanika tuhého tělesa 7. Základní poznatky Dosud jsme se při studiu pohybových účinků sil na těleso nahrazovali pevné těleso hmotným bodem. Většinou jsme nebrali v úvahu tvar a rozměry tělesa, neuvažovali
Název: Měření magnetického pole solenoidu
Název: Měření magnetického pole solenoidu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie) Tematický celek: Elektřina
Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592
Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,
Základní zákony a terminologie v elektrotechnice
Základní zákony a terminologie v elektrotechnice (opakování učiva SŠ, Fyziky) Určeno pro studenty komb. formy FMMI předmětu 452702 / 04 Elektrotechnika Zpracoval: Jan Dudek Prosinec 2006 Elektrický náboj
Rozumíme dobře Archimedovu zákonu?
Rozumíme dobře Archimedovu zákonu? BOHUMIL VYBÍRAL Přírodovědecká fakulta Univerzity Hradec Králové K formulaci Archimedova zákona Archimedův zákon platí za podmínek, pro které byl odvozen, tj. že hydrostatické
Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: SKLÁDÁNÍ SIL -
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL - řešení... 8 17_Skládání různoběžných sil působících v jednom
Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti"
Střední škola umělecká a řemeslná Projekt Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Fyzika Obory nástavbového studia
Měření tíhového zrychlení reverzním kyvadlem
43 Kapitola 7 Měření tíhového zrychlení reverzním kyvadlem 7.1 Úvod Tíhové zrychlení je zrychlení volného pádu ve vakuu. Závisí na zeměpisné šířce a nadmořské výšce. Jako normální tíhové zrychlení g n
Měření momentu setrvačnosti prstence dynamickou metodou
Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá
Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace
Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné
F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18
F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18 Podpis: Třída: Verze testu: A Čas na vypracování: 120 min. Datum: Učitel: INSTRUKCE PRO VYPRACOVÁNÍ PÍSEMNÉ PRÁCE: Na vypracování zkoušky máte 120 minut.
ANOTACE vytvořených/inovovaných materiálů
ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 III/2 Inovace a
Vypracováno jako projekt Soustředění mladých fyziků a matematiků pořádaného MFF UK v Nekoři roku 2013.
Parní elektrárna Soustředění mladých fyziků a matematiků Nekoř, 13. 27. července 2013 Vedoucí projektu: Martin Hájek Konstruktéři: Jan Šetina, Michael Němý, Adam Tywoniak Vypracováno jako projekt Soustředění
Mechanika - síla. Zápisy do sešitu
Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla
Příklady: 31. Elektromagnetická indukce
16. prosince 2008 FI FSI VUT v Brn 1 Příklady: 31. Elektromagnetická indukce 1. Tuhý drát ohnutý do půlkružnice o poloměru a se rovnoměrně otáčí s úhlovou frekvencí ω v homogenním magnetickém poli o indukci