Měření tíhového zrychlení reverzním kyvadlem
|
|
- Zdeňka Iva Kovářová
- před 8 lety
- Počet zobrazení:
Transkript
1 43 Kapitola 7 Měření tíhového zrychlení reverzním kyvadlem 7.1 Úvod Tíhové zrychlení je zrychlení volného pádu ve vakuu. Závisí na zeměpisné šířce a nadmořské výšce. Jako normální tíhové zrychlení g n se definuje hodnota g n = m s 2, což je tíhové zrychlení na 45 severní zeměpisné šířky při hladině moře. Mezi jednoduché, ale přesné metody stanovení jeho velikosti patří měření pomocí kyvadel. Kyvadla je možné rozdělit na dvě základní skupiny Matematická kyvadla Jde hmotný bod zavěšený na nehmotném závěsu. Pro periodu kyvu T matematického kyvadla, za předpokladu, že výchylka kyvadla nepřesáhne 4, platí: l T =2π g, kde { g = tíhové zrychlení l = délka kyvadla. (7.1) V praxi je možné matematické kyvadlo aproximovat zavěšením velmi malé, těžké koule na co nejlehčí, dobře ohebný závěs. Takto realizovaným kyvadlem je možné tíhové zrychlení měřit podle vztahu (7.1) s přesností okolo 1 % Fyzikální kyvadla Fyzikální kyvadlo může být každé tuhé těleso libovolného tvaru, které se může volně otáčet okolo osy neprocházející jeho těžištěm. Pohybová rovnice fyzikálního
2 44 Bartoň, Křivánek, Severa kyvadla je: J d2 φ(t) dt 2 = mgd sin φ(t), kde J = moment setrvačnosti tělesa vzhledem k ose otáčení d = vzdálenost těžiště tělesa od osy otáčení φ(t) = výchylka kyvadla, závisí na čase t, měří se od klidové polohy (7.2) Pokud se omezíme na malé výchylky, φ(t) 4, je možné ve vztahu (7.2) nahradit sin φ(t) φ(t) a získáme tak rovnici d 2 φ(t) + ω 2 φ(t) =0, kde ω 2 = mgd, ω = úhlová frekvence. (7.3) dt 2 J Vyřešením diferenciální rovnice (7.3) je možné získat vztah pro periodu kyvu: T = 2 π J ω =2π mgd. (7.4) Problém ale je s určením momentu setrvačnosti kyvadla J. Pokud se použije zvláštní, reverzní kyvadlo, není jej nutné znát Reverzní kyvadlo Obrázek 7.1: Reverzní kyvadlo Reverzní kyvadlo je znázorněno na obrázku 7.1. Jde o kyvadlo, které se může kývat okolo dvou rovnoběžných os, ležících v rovině obsahující hmotný střed kyvadla. Pokud osy nejsou okolo hmotného středu položeny symetricky a přitom doba kyvu pro obě osy je shodná, pak vzdálenost obou os je rovna délce matematického kyvadla, které má stejnou dobu kyvu. Vzdálenosti os se říká redukovaná délka l r reverzního kyvadla a osy se nazývají sdružené. 7.2 Experimentální uspořádání V praxi je reverzní kyvadlo tyč opatřená dvěma rovnoběžnými břity O 1 a O 2 vzdálenými o vzdálenost l r. Na jednom konci je posuvný těžký přívažek Z, zajišt ující
3 Měření tíhového zrychlení reverzním kyvadlem 45 asymetrii os vůči hmotnému středu kyvadla. Dá se nalézt taková poloha závaží Z, při které budou doby kyvu pro oba břity shodné. Přívažek Z se posouvá rotací po uvolnění aretačního šroubu. Po přesunu do nové polohy je nutné přívažek opět zajistit dotažením aretačního šroubu. Určit přesnou polohu přívažku je možné grafickou metodou. Měříme doby kyvu T 1 a T 2 kolem os R 1 a R 2 v závislosti na poloze = počtu otáček n přívažku Z od jeho nulové polohy, tedy od dorazu u břitu R 2. Dobu kyvu určíme pomocí optické závory a programu ISES. Obslužný program spustíme kliknutím na ikonu s popisem ISES. Po startu programu vybereme z menu Experiment možnost Nový experiment. Program otevře okno Parametry experimentu, znázorněné ne obrázku 7.2. Dobu měření nastavíme na 180 s. Dále nasta- Obrázek 7.2: Parametry experimentu víme Start měření z podmenu vybereme Trigger. Zkontrolujeme, zda program rozpoznal optickou závoru Vstupní kanál A. Kyvadlo zavěsíme na břit R 1, vychýlíme jej k dorazu na optické závoře a necháme kývat. Kliknutím na ikonu OK se toto menu uzavře. Měření se spustí automaticky a zastaví se po uplynutí nastaveného času.
4 46 Bartoň, Křivánek, Severa Po ukončení měření stanovíme následujícím způsobem frekvenci kyvů f. V Menu zvolíme možnost Zpracování, dále Zpracování dat. Poté stiskneme ikonu na levé straně okna se symbolem Sinusovka. Kurzorem myši najedeme na pole měření a to na střed levé strany a stiskneme a držíme levé tlačítko myši. Následným pohybem kurzoru myši doprava označíme celé měření a uvolníme tlačítko. V pravém okně se zobrazí hodnota vypočtené frekvence kyvů, viz obrázek 7.3. Skutečná frekvence Obrázek 7.3: Určení frekvence kyvů kyvů f je poloviční, protože optická závora změří během periody dva průchody kyvadla! Odtud se již pomocí vztahu T =1/f vypočte doba kyvu. Nyní se kyvadlo beze změny polohy přívažku zavěsí na osu R 2,opět se vychýlí a nechá se kývat. V hlavním menu měřícího programu stiskneme Experiment a vybereme možnost Nový experiment. Nastavení nového experimentu zachovává parametry experimetu předchozího. Stiskem OK se spustí nové měření. Po změření frekvence způsobem popsaným výše a vypočtení periody kyvu na ose R 2 provedeme změnu polohy otáčením přívažku, zavěsíme kyvadlo na osu R 1 a celý postup zopakujeme. Do grafu vyneseme na vodorovnou osu polohu přívažku, tedy počet otáček od krajní polohy dorazu a na svislou osu příslušné doby kyvu pro každou osu. Získáme
5 Měření tíhového zrychlení reverzním kyvadlem 47 tak dvě křivky, jejich průsečík pak určuje takovou polohu n 0 přívažku, pro niž je doba kyvu T 0 v rámci chyb měření stejná pro obě osy. Pokud se budou doby kyvu při nastavení přívažku do n 0 přesto lišit, provedeme nové měření v okolí hodnoty n 0 a stanovíme její novou a přesnější polohu. V případě nutnosti přesnějšího stanovení n 0 je nutné zvýšit i přesnost určení doby jednoho kyvu, což provedeme zvýšením počtu kyvů, jejichž dobu měříme. 7.3 Měření a vyhodnocení Změříme doby kyvu kolem obou os alespoň pro pět různých poloh přívažku Z, vždy po cca dvaceti otáčkách. Hodnoty zapíšeme do tabulky a vyneseme do grafu, který využijeme pro stanovení polohy n 0 přívažku. n [ot] T 1 [s] T 2 [s] 1 x 1 T 11 T N x N T 1N T 2N Obrázek 7.4: Grafické určení polohy přívažku Přívažek nastavíme tuto polohu, změříme a vypočteme periodu jednoho kyvu T 0 opět pomocí programu ISES a optické závory. Pro zvýšení přesnosti měření nastavíme v okně Parametry experimentu dobu měření 600 s.
6 48 Bartoň, Křivánek, Severa Dále změříme vzdálenost břitů os redukovanou délku kyvadla l r. Tíhové zrychlení poté vypočteme ve vztahu: g = 4 π2 l T0 2 r. Pokud určí vedoucí cvičení, pak způsobem naznačeným v části 1.4 určíme krajní chybu κ g tíhového zrychlení g. K výpočtu použijeme krajní chyby měření doby kyvu κ T0 a redukované délky κ lr. 7.4 Závěr a diskuse V závěru uvedeme naměřenou hodnotu g spolu s krajní chybou κ g a relativní chybou měření η g. Provedeme diskusi přesnosti měření a porovnáme naměřenou hodnotu s tabelovanými hodnotami. 7.5 Kontrolní otázky 1. K čemu je vhodné znát přesně tíhové zrychlení? 2. Co je moment setrvačnosti? 3. Proč se v rovnici (7.3) musíme omezit na maximální výkyv do 4? 4. Lze přesně změřit dobu velkého množství kyvů, aniž bychom je museli počítat? 5. Jak určit počet kyvů, jejichž dobu lze změřit i bez jejich počítání? 6. Jaká je souvislost mezi matematickým a reverzním kyvadlem? 7. Je reverzní kyvadlo i fyzikálním kyvadlem? 8. Co je fyzikální kyvadlo? 9. Proč osa závěsu fyzikálního kyvadla nesmí procházet jeho těžištěm? 10. Víte co je to Foucaltovo kyvadlo? 11. Délka závěsu matematického kyvadla se zdojnásobí. Jak se změní jeho perioda?
Měření tíhového zrychlení matematickým a reverzním kyvadlem
Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte
2. Fyzikální kyvadlo (2.2) nebo pro homogenní tělesa. kde r je vzdálenost elementu dm, resp. dv, od osy otáčení, ρ je hustota tělesa, dv je objem
30. Fyzikální kyvadlo 1. Klíčová slova Fyzikální kyvadlo, matematické kyvadlo, kmitavý pohyb, perioda, doba kyvu, tíhové zrychlení, redukovaná délka fyzikálního kyvadla, moment setrvačnosti tělesa, frekvence,
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem
ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE. Úloha 5: Měření tíhového zrychlení
ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: číslo skupiny: Spolupracovali: 1 Úvod 1.1 Pracovní úkoly [1] Úloha 5: Měření tíhového zrychlení Jméno: Ročník, kruh: Klasifikace: 1. V domácí
PRAKTIKUM I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č. XXI Název: Měření tíhového zrychlení Pracoval: Jiří Vackář stud. skup. 11 dne 10..
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.
STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE
DANIEL TUREČEK 2005 / 2006 1. 412 5. 14.3.2006 28.3.2006 5. STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE 1. Úkol měření 1. Určete velikost tíhového zrychlení pro Prahu reverzním
3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.
Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného
Rychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.
STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné
MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství LABORATORNÍ PRÁCE MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 Obsah ZADÁNÍ... 4 TEORIE... 4 Metoda torzních kmitů... 4 Steinerova
Měření momentu setrvačnosti prstence dynamickou metodou
Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá
Měření hodnoty g z periody kmitů kyvadla
Měření hodnoty g z periody kmitů kyvadla Online: http://www.sclpx.eu/lab2r.php?exp=8 Úvod Při určení hodnoty tíhové zrychlení z periody kmitů kyvadla o délce l vycházíme ze známého vztahu (2.4.1) pro periodu
Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer
Laboratorní úloha č. 3 Spřažená kyvadla Max Šauer 17. prosince 2003 Obsah 1 Úkol měření 2 2 Seznam použitých přístrojů a pomůcek 2 3 Výsledky měření 2 3.1 Stanovení tuhosti vazbové pružiny................
Měření momentu setrvačnosti
Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :
MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové
1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.
1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními
Stanovení hustoty pevných a kapalných látek
55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní
pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa
pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa Výstup RVP: Klíčová slova: Eva Bochníčková žák měří vybrané veličiny vhodnými metodami, zpracuje získaná data
Kapitola 13. Kalibrace termočlánku. 13.1 Úvod
77 Kapitola 13 Kalibrace termočlánku 13.1 Úvod Termoelektrické teploměry (termočlánky, tepelné články) měří teplotu na základě termoelektrického jevu: Ve vodivém okruhu tvořeném dvěma vodivě spojenými
5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení
1 Pracovní úkoly 1. Změřte dobu kmitu T 0 dvou stejných nevázaných fyzických kyvadel.. Změřte doby kmitů T i dvou stejných fyzických kyvadel vázaných slabou pružnou vazbou vypouštěných z klidu při počátečních
MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:
MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,
Kapitola Hlavička. 3.2 Teoretický základ měření
23 Kapitola 3 Protokol o měření Protokol o měření musí obsahovat všechny potřebné údaje o provedeném měření, tak aby bylo možné podle něj měření kdykoliv zopakovat. Proto protokol musí obsahovat všechny
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Mechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
Pracovní list vzdáleně ovládaný experiment. Obr. 1: Matematické kyvadlo.
Mechanické kmitání (SŠ) Pracovní list vzdáleně ovládaný experiment Určení tíhového zrychlení z doby kmitu matematického kyvadla Fyzikální princip Matematickým kyvadlem rozumíme abstraktní model mechanického
MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:
MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině
KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme
Měření zrychlení volného pádu
Měření zrychlení volného pádu Online: http://www.sclpx.eu/lab1r.php?exp=10 Pro tento experiment si nejprve musíme vyrobit hřeben se dvěma zuby, které budou mít stejnou šířku (např. 1 cm) a budou umístěny
Tíhové zrychlení na několik žákovských způsobů
Tíhové zrychlení na několik žákovských způsobů VOJTĚCH ŽÁK Katedra didaktiky fyziky, Matematicko-fyzikální fakulta Univerzity Karlovy V tomto příspěvku jsou popsány a diskutovány tři žákovské experimenty,
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal
LABORATORNÍ CVIČENÍ Z FYZIKY
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY ABORATORNÍ CVIČENÍ Z FYZIKY Jéno: Petr Česák Datu ěření: 7.. Studijní rok: 999-, Ročník: Datu odevzdání:.5. Studijní skupina: 5 aboratorní skupina: Klasifikace:
ρ = měrný odpor, ρ [Ω m] l = délka vodiče
7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem
Rezonance v obvodu RLC
Rezonance v obvodu RLC Úkoly: 1. Prozkoumejte, jak rezonanční frekvence závisí na kapacitě kondenzátoru. 2. Prozkoumejte, jak rezonanční frekvence závisí na parametrech cívky. 3. Zjistěte, jak se při rezonanci
Stanovení měrného tepla pevných látek
61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,
Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce
ermistor Pomůcky: Systém ISES, moduly: teploměr, ohmmetr, termistor, 2 spojovací vodiče, stojan s držáky, azbestová síťka, kádinka, voda, kahan, zápalky, soubor: termistor.imc. Úkoly: ) Proměřit závislost
Určení hmotnosti zeměkoule vychází ze základního Newtonova vztahu (1) mezi gravitačním zrychlením a g a hmotností M Z gravitačního centra (Země).
Projekt: Cíl projektu: Určení hmotnosti Země Místo konání: Černá věž - Klatovy, Datum: 28.10.2008, 12.15-13.00 hod. Motto: Krása středoškolské fyziky je především v její hravosti, stejně tak jako je krása
Senzor může být připojen ke všem měřícím rozhraním platformy einstein.
Optická brána Produktové číslo: FU-ENFTG137 Optická brána měří čas, jak dlouho se vyskytuje mezi jejími dvěma rameny nějaká překážka. Pro optickou bránu je speciálně navržen nástroj Časový průvodce, který
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu ýuky obecné fyziky MFF UK Praktikum I Mechanika a molekuloá fyzika Úloha č. XXI Náze: Měření tíhoého zrychlení Pracoal: Matyáš Řehák stud.sk.: 16 dne: 9.5.008
1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy
MěřENÍ MOMENTU SETRVAčNOSTI KOLA TEREZA ZÁBOJNÍKOVÁ 1. Teorie Moment setrvačnosti kola lze měřit dvěma metodami. 1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy otáčení
Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9
Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů
SCLPX 07 2R Ověření vztahu pro periodu kyvadla
Klasické provedení a didaktické aspekty pokusu U kyvadla, jakožto dalšího typu mechanického oscilátoru, platí obdobně vše, co bylo řečeno v předchozích experimentech SCLPX-7 a SCLPX-8. V současném pojetí
1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
(test version, not revised) 9. prosince 2009
Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.
1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul
ROVNOMĚRNĚ ZRYCHLENÝ POHYB
ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou
Příklady z teoretické mechaniky pro domácí počítání
Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště
GRAVITAČNÍ SÍLA A HMOTNOST TĚLESA
GRAVITAČNÍ SÍLA A HMOTNOST TĚLESA Vzdělávací předmět: Fyzika Tematický celek dle RVP: Pohyb těles. Síly Tematická oblast: Pohyb a síla Cílová skupina: Žák 7. ročníku základní školy Cílem pokusu je sledování
Obrázek 8.1: Základní části slunečního kolektoru
49 Kapitola 8 Měření účinnosti slunečního kolektoru 8.1 Úvod Sluneční kolektor je zařízení, které přeměňuje elektromagnetické sluneční záření na jiný druh energie. Většinou jde o přeměnu na elektrickou
3.5 Ověření frekvenční závislosti kapacitance a induktance
3.5 Ověření frekvenční závislosti kapacitance a induktance Online: http://www.sclpx.eu/lab3r.php?exp=10 I tento experiment patří mezi další původní experimenty autora práce. Stejně jako v předešlém experimentu
Úlohy na měřicím přístroji TESA 3D MICRO HITE
Úlohy na měřicím přístroji TESA 3D MICRO HITE Ing. Zdeněk Ondříšek 1 Obsah: 1. 0. 0 Cíle... 3 1. 1. 0 Než začneme... 3 1. 2. 0 Příprava součásti pro měření... 8 2. 0. 0 Úloha č. 1 Měření délky... 14 2.
FYZIKA I. Kyvadlový pohyb. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STRONÍ FYZIKA I Kyvadový pohyb Prof. RNDr. Viém Mádr, CSc. Prof. Ing. Libor Haváč, Ph.D. Doc. Ing. Irena Haváčová, Ph.D. Mgr. Art. Dagmar Mádrová
Mechanické kmitání - určení tíhového zrychlení kyvadlem
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení
R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.
2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?
Měření pevnosti slupky dužnatých plodin
35 Kapitola 5 Měření pevnosti slupky dužnatých plodin 5.1 Úvod Měření pevnosti slupky dužnatých plodin se provádí na penetrometrickém přístroji statickou metodou. Princip statického měření spočívá v postupném
Excel tabulkový procesor
Pozice aktivní buňky Excel tabulkový procesor Označená aktivní buňka Řádek vzorců zobrazuje úplný a skutečný obsah buňky Typ buňky řetězec, číslo, vzorec, datum Oprava obsahu buňky F2 nebo v řádku vzorců,
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Goniometrické funkce Mirek Kubera žák načrtne grafy elementárních funkcí a určí jejich vlastnosti, při konstrukci grafů aplikuje znalosti o zobrazeních,
Jednoduché stroje. Mgr. Dagmar Panošová, Ph.D. KFY FP TUL
Vzdělávání pro efektivní transfer technologií a znalostí v přírodovědných a technických oborech (CZ.1.07/2.3.00/45.0011) Jednoduché stroje Mgr. Dagmar Panošová, Ph.D. KFY FP TUL TENTO PROJEKT JE SPOLUFINANCOVÁN
b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm
b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.
5. Mechanika tuhého tělesa
5. Mechanika tuhého tělesa Rozměry a tvar tělesa jsou často při řešení mechanických problémů rozhodující a podstatně ovlivňují pohybové účinky sil, které na ně působí. Taková tělesa samozřejmě nelze nahradit
Veličiny charakterizující geometrii ploch
Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #11 Dynamika rotačního pohybu Jméno: Ondřej Finke Datum měření: 24.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě odvoďte
ELEKTRICKÉ STROJE - POHONY
ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou
HUSTOTA PEVNÝCH LÁTEK
HUSTOTA PEVNÝCH LÁTEK Hustota látek je základní informací o studované látce. V případě homogenní látky lze i odhadnout druh materiálu s pomocí známých tabulkovaných údajů (s ohledem na barvu a vzhled materiálu
INSTITUT FYZIKY VŠB-TU OSTRAVA Číslo práce
Student INSIU FYZIKY VŠB-U OSRAVA NÁZEV PRÁCE Číslo práce Skupina/Osob. číslo Spolupracoval Měření tíhového zrychlení, a to z doby kmitu reverzního kyvadla Datum Podpis studenta: Postup měření: 1. Přímé
Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218
KINEMATIKA 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 Úkol 1: Roztřiď do dvou sloupců, které veličiny, popisující pohyb, jsou u všech bodů otáčejícího
VÝUKA PČ NA 2. STUPNI základy technického modelování. Kreslící a modelovací nástroje Tlačit/táhnout; Přesunout/zkopírovat
VÝUKA PČ NA 2. STUPNI základy technického modelování Kreslící a modelovací nástroje Tlačit/táhnout; Přesunout/zkopírovat Název šablony: III/2-9, Výuka PČ na 2. stupni základy technického modelování Číslo
Pohyb tělesa po nakloněné rovině
Pohyb tělesa po nakloněné rovině Zadání 1 Pro vybrané těleso a materiál nakloněné roviny zjistěte závislost polohy tělesa na čase při jeho pohybu Výsledky vyneste do grafu a rozhodněte z něj, o jakou křivku
Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Mechanika 1. ročník, kvinta 2 hodiny Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky Úvod Žák vyjmenuje základní veličiny
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
Manuál ISES pro laboratorní práce elektřina a magnetismus
Manuál ISES pro laboratorní práce elektřina a magnetismus Novinky ISES pro XP: Vzorkovací frekvence může být až 100 000 Hz. Krokový start se provádí klávesou MEZERNÍK a nikoli ENTER. Při každém měření
Počítačem podporované pokusy z mechaniky
Počítačem podporované pokusy z mechaniky Seminář 28. 6. 2016, Slovanské gymnázium Olomouc Metodická pomůcka pro učitele fyziky, kteří začínají pracovat se soupravou Vernier Pro vybrané pokusy budeme potřebovat
Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb
Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet
Inovace používání vzduchové dráhy pomocí měřicího systému ISES
Školská fyzika 2012/3 Jak to učím já? Inovace používání vzduchové dráhy pomocí měřicího systému ISES Miroslava Jarešová 1, Střední průmyslová škola Chrudim V průběhu své pedagogické praxe provádím demonstrace
Fotorezistor. , kde G 0 je vodivost fotorezistoru bez přítomnosti filtru a G je vodivost. vypočítáme 100%
Pomůcky: Systém ISES, modul ohmmetr, fotorezistor, 2 spojovací vodiče, barevné filtry (modrý, zelený, žlutý, červený pro jedno pracoviště 8 filtrů stejné barvy), zářivka, soubory: fotorez1.icfg, fotorez2.icfg,
SCLPX 11 1R Zákon zachování mechanické energie
Klasické provedení a didaktické aspekty pokusu Zákony zachování mají ve fyzice významné postavení. V učivu mechaniky se na střední škole věnuje pozornost zákonu zachování hybnosti a zákonu zachování energie
Stacionární magnetické pole
Stacionární magnetické pole Magnetické pole se nachází v okolí planety Země, v okolí permanentních magnetů a také v okolí vodičů s proudem. Všechna tato pole budeme v laboratorní práci studovat za pomoci
FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně
1 Veličiny charakterizující geometrii ploch
1 Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně
P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor
FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar
Pravoúhlá axonometrie
Pravoúhlá axonometrie bod, přímka, rovina, bod v rovině, trojúhelník v rovině, průsečnice rovin, průsečík přímky s rovinou, čtverec v půdorysně, kružnice v půdorysně V Rhinu vypneme osy mřížky (tj. červenou
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_6_Mechanika tuhého tělesa Ing. Jakub Ulmann 6 Mechanika tuhého tělesa 6.1 Pohyb tuhého tělesa 6.2 Moment
Voltampérová charakteristika diody
Voltampérová charakteristika diody Pozn.: Voltampérovou charakteristiku diod, resp. i rezistorů, žárovek aj. lze proměřovat se soupravou ISES-PCI a též i s ISES-USB. Souprava ISES-PCI, resp. ISES-PCI Professional
Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
Rezonance v obvodu RLC
99 Pomůcky: Systém ISES, moduly: voltmetr, ampérmetr, dva kondenzátory na destičkách (černý a stříbrný), dvě cívky na uzavřeném jádře s pohyblivým jhem, rezistor 100 Ω, 7 spojovacích vodičů, 2 krokosvorky,
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na
Lekce 12 Animovaný náhled animace kamer
Lekce 12 Animovaný náhled animace kamer Časová dotace: 2 vyučovací hodina V poslední lekci tohoto bloku se naučíme jednoduše a přitom velice efektivně animovat. Budeme pracovat pouze s objekty, které jsme
2.5 Rovnováha rovinné soustavy sil
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice