BIOMECHANIKA KINEMATIKA
|
|
- Jindřich Novotný
- před 8 lety
- Počet zobrazení:
Transkript
1 BIOMECHANIKA KINEMATIKA
2 MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti mechanického pohybu. Mechanickým pohybem rozumíme změnu polohy tělesa nebo jeho částí vzhledem k jiným tělesům nebo jinému, tzv. vztažnému tělesu, v závislosti na čase. Spojením vztažného tělesa se souřadnou soustavou vznikne vztažná soustava.
3 KINEMATIKA DEFINICE Slovo kinematika pochází z řeckého kineo, což znamená pohyb. Kinematika studuje a popisuje pohyb těles bez ohledu na jeho příčinu (působící sílu). Základními veličinami, které používáme k popisu pohybu jsou polohový vektor r, rychlost v, zrychlení a. Pojem těleso bývá v textu často nahrazen termínem hmotný bod. Hmotný bod je objekt, jehož rozměry a tvar můžeme při řešení určitého problému zanedbat (zjednodušení řešení úlohy).
4 KINEMATIKA DĚLENÍ POHYBŮ Podle trajektorie a) přímočaré trajektorií pohybu je přímka, vektor rychlosti v má stále stejný směr b) křivočaré trajektorií pohybu je křivka, vektor rychlosti mění svůj směr. V každém okamžiku je tečnou k trajektorii. v
5 KINEMATIKA DĚLENÍ POHYBŮ Podle rychlosti a) rovnoměrný a = 0m s 2 b) rovnoměrně zrychlený (zpomalený) c) nerovnoměrně zrychlený (zpomalený). a = konst a konst.
6 KINEMATIKA RYCHLOST Při svém pohybu má těleso rychlost, která je charakterizována změnou dráhy, ke které dojde během časového intervalu. Jednotkou rychlosti je m.s -1. Stanovíme průměrnou rychlost v daném úseku v p = s t Okamžitou rychlost (rychlost v okamžiku odrazu, odhodu apod.) definujeme v = lim s = t lim t 0 t 0 r s
7 KINEMATIKA ZRYCHLENÍ Zrychlení je změna rychlosti, ke které dojde během časového intervalu. a = v t Jednotkou zrychlení je m.s -2. Průměrné zrychlení je celková změna rychlosti za celý časový interval. Okamžité zrychlení získáme, jestliže časový interval limitně zmenšíme a = lim v = t 0 t dv dt
8 ROVNOMĚRNÝ PŘÍMOČARÝ POHYB Při tomto pohybu se těleso pohybuje konstantní rychlostí. Za stejné časové intervaly urazí těleso stejnou dráhu. Protože se rychlost nemění, je zrychlení pohybu nulové. Grafickým znázorněním závislosti rychlosti na čase je přímka rovnoběžná s časovou osou.
9 ROVNOMĚRNÝ PŘÍMOČARÝ POHYB Pro dráhu rovnoměrného pohybu získáme vztah. Dráha roste přímo úměrně v závislosti na čase. s = vt + s Grafickým znázorněním této závislosti je přímka různoběžná s časovou osou. 0
10 ROVNOMĚRNĚ ZRYCHLENÝ PŘÍMOČARÝ POHYB Rychlost tohoto pohybu rovnoměrně roste v závislosti na čase. Za stejné časové intervaly vzroste rychlost o stejnou hodnotu. Zrychlení je tedy konstantní.
11 ROVNOMĚRNĚ ZRYCHLENÝ PŘÍMOČARÝ POHYB Dráha je vyjádřena kvadratickou závislostí. Proto grafickým znázorněním závislosti dráhy na čase je parabola.
12 ROVNOMĚRNĚ ZPOMALENÝ PŘÍMOČARÝ POHYB Zrychlení tohoto pohybu je orientováno proti směru rychlosti. = s = at + v t 2 0 v at + v Pohyb přímočarý rovnoměrně zrychlený a rovnoměrně zpomalený zahrnujeme pod označení pohyb rovnoměrně proměnný.
13 VOLNÝ PÁD Volný pád je zvláštním případem rovnoměrně zrychleného pohybu. Všechna tělesa volně puštěná se v tíhovém poli Země pohybují se stejným zrychlením. Toto zrychlení nazýváme tíhové. Značíme g. Hodnota tíhového zrychlení v naší zeměpisné šířce je g = 9,81 m.s -2. Počáteční rychlost volného pádu v 0 = 0 m.s -1, počáteční dráha s 0 = 0 m. 2 Pak, s = g t. v = g t 1 2
14 POHYB PO KRUŽNICI Trajektorií pohybu je kružnice. Jestliže se těleso pohybuje z bodu A, pak se po určité době dostane zpět do původního postavení. Jedná se o pohyb periodický. Veličinu, která charakterizuje tento pohyb časově, se nazývá perioda T. Jednotkou periody je sekunda. Počet oběhů za sekundu se nazývá frekvence f. Mezi periodou a frekvencí platí vztah Jednotkou frekvence je hertz (Hz). f = 1 T
15 POHYB PO KRUŽNICI DOSTŘEDIVÉ ZRYCHLENÍ, TEČNÉ ZRYCHLENÍ Změna směru rychlosti je způsobena dostředivým (normálovým) zrychlením a n. Normálové (dostředivé) zrychlení směřuje vždy do středu křivosti. 2 v a = n r Změna velikosti rychlosti je způsobena tečným zrychlením a t. U zrychleného pohybu má stejný směr jako vektor rychlosti, u zpomaleného pohybu má opačný směr vzhledem k vektoru rychlosti.
16 POHYB KŘIVOČARÝ ZRYCHLENÍ Tečné zrychlení Normálové zrychlení
17 POHYB PO KRUŽNICI ÚHLOVÉ VELIČINY Úhlová dráha představuje úhel, o který se těleso otočí při pohybu po kružnici za určitý čas. Jednotkou úhlové dráhy je radián. ϕ ω Úhlová rychlost je charakterizována změnou velikosti úhlové dráhy, která nastane během časového intervalu. Obvodová rychlost je úměrná úhlové rychlosti. v = ω r Platí.
18 ZÁKON O NEZÁVISLOSTI POHYBU Koná-li hmotný bod současně dva nebo více pohybů, je jeho výsledná poloha taková, jako kdyby konal tyto pohyby po sobě, a to v libovolném pořadí.
19 VRHY Vrhy jsou složené pohyby. Těleso je vrženo v určitém směru počáteční rychlostí v. Vlivem tíhového pole Země se těleso v každém okamžiku zároveň pohybuje volným pádem ve směru svislém. 0
20 VRH SVISLÝ VZHŮRU Pohyb rovnoměrný přímočarý vzhůru + pohyb rovnoměrně zrychlený (volný pád) dolů Kdyby neexistovalo tíhové pole Země (odpor vzduchu neuvažujeme), pak by se těleso pohybovalo konstantní rychlostí vzhůru. Okamžitou hodnotu rychlosti popíšeme vztahem v = v 0 g t Okamžitá výška tělesa nad povrchem Země s = v t g t 2 Rychlost se během pohybu mění. Postupně klesá, až v maximální výšce je rovna nule. Poté těleso padá a rychlost opět roste.
21 VRH SVISLÝ VZHŮRU Shrnutí skládá se z pohybu rovnoměrného přímočarého ( ) a volného pádu doba výstupu = doba volného pádu počáteční rychlost = rychlosti v době dopadu výška výstupu závisí na velikosti počáteční rychlosti
22 VRH VODOROVNÝ Pohyb rovnoměrný přímočarý ve směru horizontálním + volný pád Těleso je při vodorovném vrhu v určité výšce y vrženo počáteční rychlostí ve vodorovném směru. Kdyby neexistovalo tíhové pole Země, pak by se pohybovalo rovnoměrným pohybem ve směru osy x.
23 VRH VODOROVNÝ Shrnutí pohyb rovnoměrný přímočarý ve směru počáteční rychlosti ( ) a volný pád trajektorií je část paraboly s vrcholem v místě začátku pohybu dosažená vzdálenost je ovlivněna počáteční výškou a počáteční rychlostí
24 VRH ŠIKMÝ Těleso je vrženo vzhledem k vodorovné rovině pod úhlem rychlostí. v 0 α
25 VRH ŠIKMÝ Maximální dolet Do maximální vzdálenosti x dopadne těleso za dobu letu. max Určíme ji ze vztahu pro hodnotu x-ové souřadnice dosazením za čas t. Po úpravě dostaneme t L x max = v 2 0 sin 2α g
26 VRH ŠIKMÝ l 2 v.cos 2α 2 = 2. g. sinα + sin α + 2 g v0 0. h
27 VRH ŠIKMÝ Shrnutí pohyb rovnoměrný přímočarý ve směru počáteční rychlosti a volný pád příklad pohybu vrh koulí, odkop míče, odraz při chůzi dosažená vzdálenost závisí na: velikosti a směru (úhlu) počáteční rychlosti velikosti a směru (úhlu) počáteční rychlosti a výšce nad terénem
KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
Mechanika - kinematika
Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb
Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:
Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici
Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Kinematika hmotného bodu
Kinematika hmotného bodu (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 17. října 2009 Obsah Hmotný bod, poloha a vztažná soustava Trajektorie. Dráha Polohový vektor. Posunutí Rychlost
1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.
1. KŠPA Kladno, s. r. o., Holandská 2531, 272 01 Kladno, www.1kspa.cz FYZIKA Kapitola 3.: Kinematika Mgr. Lenka Hejduková Ph.D. Kinematika obor, který zkoumá pohyb bez ohledu na jeho příčiny klid nebo
BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 4, Kinematika pohybu I. (zákl. pojmy - rovnoměrný přímočarý pohyb, okamžitá a průměrná rychlost, úlohy na pohyb těles, rovnoměrně zrychlený a zpomalený pohyb, volný pád) Studijní program,
Počty testových úloh
Počty testových úloh Tematický celek rok 2009 rok 2011 CELKEM Skalární a vektorové veličiny 4 lehké 4 těžké (celkem 8) 4 lehké 2 těžké (celkem 6) 8 lehkých 6 těžkých (celkem 14) Kinematika částice 6 lehkých
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.
5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
2. Kinematika bodu a tělesa
2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a
R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.
2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P01 KINEMATIKA HMOTNÉHO BODU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P01 KINEMATIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH
4. Práce, výkon, energie a vrhy
4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce
Ing. Oldřich Šámal. Technická mechanika. kinematika
Ing. Oldřich Šámal Technická mechanika kinematika Praha 018 Obsah 5 OBSAH Přehled veličin A JEJICH JEDNOTEK... 6 1 ÚVOD DO KINEMATIKY... 8 Kontrolní otázky... 8 Kinematika bodu... 9.1 Hmotný bod, základní
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
FYZIKA I. Složené pohyby (vrh šikmý)
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Složené pohb (vrh šikmý) Prof. RNDr. Vilém Mádr, CSc. Prof. In. Libor Hlaváč, Ph.D. Doc. In. Irena Hlaváčová, Ph.D. Mr. Art. Damar
Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);
Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1
DUM Základy přírodních věd DUM III/2-T3-07 Téma: Mechanika a kinematika Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TESTY Testy Část 1 1. Čím se zabývá kinematika? 2. Které těleso
Kinematika hmotného bodu
KINEMATIKA Obsah Kinematika hmotného bodu... 3 Mechanický pohyb... 3 Poloha hmotného bodu... 4 Trajektorie a dráha polohového vektoru... 5 Rychlost hmotného bodu... 6 Okamžitá rychlost... 7 Průměrná rychlost...
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
GE - Vyšší kvalita výuky CZ.1.07/1.5.00/
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma : Diferenciální a integrální
Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,
5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Mechanika 1. ročník, kvinta 2 hodiny Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky Úvod Žák vyjmenuje základní veličiny
Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb
Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
Kinematika II. Vrhy , (2.1) . (2.3) , (2.4)
Kinematika II Vrhy Galileo Galilei již před čtyřmi staletími, kdy studoval pád různých těles ze šikmé věže v Pise, zjistil, že všechna tělesa se pohybují se stálým zrychlením směřujícím svisle dolů můžemeli
Rychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
2. Mechanika - kinematika
. Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu
Kinematika. Tabulka 1: Derivace a integrály elementárních funkcí. Funkce Derivace Integrál konst 0 konst x x n n x n 1 x n 1.
Kinematika Definice: Známe-li časový průběh polohového vektoru r(t), potom určíme vektor okamžité rychlosti hmotného bodu časovou derivací vektoru r(t), v= d r dt Naopak, známe-li časový průběh vektoru
GRAVITAČNÍ POLE. Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí
GRAVITAČNÍ POLE Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí Přitahují se i vzdálená tělesa, například, z čehož vyplývá, že kolem Země se nachází gravitační pole
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 2. Kinematika Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:
FYZIKA I cvičení, FMT 2. POHYB LÁTKY
FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného
Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9
Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů
Studentovo minimum GNB Kinematika hmotného bodu. přeměnová konstanta (relativní úbytek jader za 1 s) Λ
1 Základní pojmy Řecká abeceda (vybraná písmena používaná ve fyzice) Název malé význam velké význam alfa α úhel, teplotní součinitel délkové roztažnosti, teplotní součinitel el. odporu, konstanta jemné
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
(test version, not revised) 9. prosince 2009
Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
Fyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
11. Dynamika Úvod do dynamiky
11. Dynamika 1 11.1 Úvod do dynamiky Dynamika je částí mechaniky, která se zabývá studiem pohybu hmotných bodů a těles při působení sil. V dynamice se řeší takové případy, kdy síly působící na dokonale
Příklad 5.3. v 1. u 1 u 2. v 2
Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s
1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření
ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce
1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
MECHANIKA POHYBY V HOMOGENNÍM A RADIÁLNÍM POLI Implementace ŠVP
Projekt Efektivní Učení Reformou oblastí ymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA POHYBY V HOMOGENNÍM A RADIÁLNÍM POLI Implementace
Název: Konstrukce vektoru rychlosti
Název: Konstrukce vektoru rychlosti Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Mechanika kinematika
Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.
1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete
STUDIJNÍ TEXT. Základy fyziky. Fakulta strojní. Eva Janurová
STUDIJNÍ TEXT Základy fyziky Fakulta strojní Eva Janurová VŠB TU Ostrava, Katedra fyziky, 6 OBSAH ÚVOD, ZÁKLADNÍ POJMY 4 FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY 4 ROZDĚLENÍ FYZIKÁLNÍCH VELIČIN 6 KINEMATIKA
1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti:
1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti: 3. V pravoúhlých souřadnicích je rychlost rovnoměrného přímočarého
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:
Gravitace na vesmírné stanici. odstředivá síla
Gravitace na vesmírné stanici odstředivá síla O čem to bude Ukážeme si, jak by mohla odstředivá síla nahradit sílu tíhovou. Popíšeme si, jak by mohl vypadat život na vesmírné stanici, která se otáčí. 2/44
K L A S I C K Á T E O R I E P O H Y B U Č Á S T I C A J E J I CH S O U S T A V
ČÁST III K L A S I C K Á T E O R I E P O H Y B U Č Á S T I C A J E J I CH S O U S T A V 10. Pohyb hmotného bodu 11. Dynamika hmotného bodu 12. Dynamika systému hmotných bodů 13. Statistická mechanika 14.
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,
Seriál II.II Vektory. Výfučtení: Vektory
Výfučtení: Vektory Abychom zcela vyjádřili veličiny jako hmotnost, teplo či náboj, stačí nám k tomu jediné číslo (s příslušnou jednotkou). Říkáme jim skalární veličiny. Běžně se však setkáváme i s veličinami,
KINEMATIKA 13. VOLNÝ PÁD. Mgr. Jana Oslancová VY_32_INOVACE_F1r0213
KINEMATIKA 13. VOLNÝ PÁD Mgr. Jana Oslancová VY_32_INOVACE_F1r0213 Volný pád První systematické pozorování a měření volného pádu těles prováděl Galileo Galilei (1564-1642) Úvodní pokus: Poslouchej, zda
Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie D., kde t 1 = s v 1
Řešení úloh kola 5 ročníku fyzikální olympiády Kategorie D Autořiúloh:JJírů(až6),MJarešová(7) a) Označme sdráhumezivesnicemi, t časjízdynakole, t časchůze, t 3 čas běhuav =7km h, v =5km h, v 3 =9km h jednotlivérychlosti
Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217
KINEMATIKA 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 OPAKOVÁNÍ Otázka 1: Uveď příklady takových hmotných bodů, které vykonávají rovnoměrný pohyb
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_12 Název materiálu: Druhy pohybů. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k výuce pohybů, jejich dělení a vlastností. Očekávaný výstup:
Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika
= (1.21) a t. v v. což je výraz v závorce ve vztahu (1.19). Normálové zrychlení a H jednoduše jako rozdíl = (1.20)
Tečné zrychlení získáme průmětem vektoru zrychlení a vynásobením jednotkovým vektorem ve směru rychlosti do směru rychlosti a a t v v a v v = (1.19) Podotýkáme, že vektor tečného zrychlení může být souhlasně
Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM
Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)
Brouk na desce.
http://www.fyzikalniulohy.cz/uloha_111 Stránka č. 1 z 6 Brouk na desce K popisu pohybu brouka lezoucího po dřevěné desce jsme si na desku nakreslili mřížku. Z mřížky jsme vyčetli, že se pohyboval po přímce
FYZIKA I VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová Ostrava 03
FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
6 Pohyb částic v magnetickém poli
Pohb částic v magnetickém poli V této části si ukážeme, jak homogenní magnetické pole ovlivňuje pohb částic. Soustavu souřadnic volíme vžd tak, ab vektor magnetickéindukce Bsměřovalposměruos (obr.).. Lorentova
Elementární křivky a plochy
Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
Pohyby HB v některých význačných silových polích
Pohyby HB v některých význačných silových polích Pohyby HB Gravitační pole Gravitační pole v blízkém okolí Země tíhové pole Pohyb v gravitačním silovém poli Keplerova úloha (podrobné řešení na semináři)
KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218
KINEMATIKA 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 Úkol 1: Roztřiď do dvou sloupců, které veličiny, popisující pohyb, jsou u všech bodů otáčejícího
Betonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
České vysoké učení technické v Praze Fakulta biomedicínského inženýrství
České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Úloha KA03/č. 5: Měření kinematiky a dynamiky pohybu osoby v prostoru pomocí ultrazvukového radaru Ing. Patrik Kutílek, Ph.., Ing.
s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.
Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková. Mechanika. Mechanický pohyb. Fyzika 2. ročník, učební obory. Bez příloh. Identifikační údaje školy
VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf,
3. Obecný rovinný pohyb tělesa
. Obecný rovinný pohyb tělesa Při obecném rovinném pohybu tělesa leží dráhy jeho jednotlivých bodů v navzájem rovnoběžných rovinách. Těmito dráhami jsou obecné rovinné křivky. Všechny body ležící na téže
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště
Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence :
Skládání různoběžných kmitů Uvědomme si principiální bod tohoto problému : na jediný hmotný bod působí dvě nezávislé pružné síl ve dvou různých směrech. Jednotlivé mechanické pohb, které se budou skládat,
n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně
Konzultace č. 9 dynamika dostředivá a odstředivá síla Dynamika zkoumá zákonitosti pohybu těles se zřetelem na příčiny (síly, silové účinky), které pohyb vyvolaly. Znalosti dynamiky umožňují řešit kinematické
2. Mechanika - kinematika
. Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu
Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_18_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_18_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika
Sbírka řešených příkladů z mechaniky
Univerzita Pardubice Fakulta chemicko-technologická Sbírka řešených příkladů z mechaniky Petr Janíček Jana Kašparová Pardubice 04 UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Ústav aplikované fyziky
Mechanika II.A Třetí domácí úkol
Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení
Dynamika hmotného bodu
Dynamika hmotného bodu Dynamika Dynamika odvozeno odřeckéhoδύναμις síla Část mechaniky, která se zabývá příčinami změny pohybového stavu tělesa Je založena na třech Newtonových zákonech pohybu Dynamika