TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
|
|
- Viktor Černý
- před 9 lety
- Počet zobrazení:
Transkript
1 TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
2 Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný pohyb ( translační ) otáčivý pohyb ( rotační ) složený pohyb
3 Moment síly Přesněji moment síly vzhledem k ose otáčení. Vyjadřuje otáčivý účinek síly. Jde o vektorovou fyzikální veličinu. Značka: M Základní jednotka: N m ( Newtonmetr )
4 Moment síly Velikost momentu síly vypočítáme:! M = F d! F - působící síla d - rameno síly - kolmá vzdálenost působící síly od osy otáčení
5 Moment síly Směr momentu síly určíme pomocí pravidla pravé ruky: Položíme-li pravou ruku na těleso tak, aby zahnuté prsty ukazovaly směr otáčení, ukazuje vztyčený palec směr momentu síly.
6 Moment síly Pokud na těleso působí více sil, celkový otáčivý účinek je pak dán výsledným momentem sil. Výsledný moment sil je vektorový součet jednotlivých momentů sil vzhledem k dané ose, tedy:!! M = M! 1 + M! M! n Momentová věta: platí v případě, kdy se jednotlivé otáčivé účinky ruší, platí tedy:! M = M! 1 + M! M! n = 0!
7 Příklad 1 Čtvercová deska o straně 1 m je otáčivá kolem osy jdoucí jejím středem a kolmé k rovině desky. Na desku působí síly F1, F2, F3 a F4 podle obrázku. Všechny síly leží v rovině desky a mají stejnou velikost 20 N. a) Vypočtěte velikosti momentů jednotlivých sil vzhledem k ose otáčení. b) Určete velikost a směr výsledného momentu sil působících na desku. F3 F4 F2 O F1
8 Příklad 2 Čtvercová deska o straně 2 m je otáčivá F3 D kolem osy jdoucí jejím vrcholem A a kolmé k rovině desky. Ve vrcholu B působí síla F1 o velikosti 40 N, ve vrcholu C síla F2 o velikosti 50 N a ve vrcholu D působí síla F3 o velikosti O 30 N. a) Vypočtěte velikosti momentů A jednotlivých sil vzhledem k ose otáčení. b) Určete velikost a směr výsledného momentu sil působících na desku. C F2 B F1
9 Moment dvojice sil Dvojice sil - dvě stejně velké síly opačně orientované. Otáčivý účinek dvojice sil udává moment dvojice sil.! d - rameno dvojice sil D=F d
10 Příklad 3 Zámečník vyřezává závit pomocí vratidla o délce 30 cm, přičemž na obou koncích vratidla působí silami o velikosti 40 N. Jak velkými silami by musel působit na koncích vratidla o délce 20 cm, aby dosáhl stejného účinku?
11 Skládání sil 1.Skládání sil se společným působištěm Známe již ze skládání vektorů. 2.Skládání různoběžných sil různým působištěm Využití skládání sil se společným působištěm. 3.Skládání rovnoběžných sil se různým působištěm Využití momentu síly.
12 Příklad 4 Najděte velikost a působiště výslednice dvou rovnoběžných sil o velikostech 40 N a 60 N, je-li vzájemná vzdálenost jejich působišť 2 m. Síly jsou a) stejného směru, b) opačného směru.
13 Rozklad síly Rozklad síly je opačným procesem skládání sil. Danou sílu nahrazujeme více silami tak, aby účinek byl zachován. Platí stejná pravidla jako u skládání sil. Rozkládáme: na rovnoběžné složky na různoběžné složky
14 Příklad 5 Dva muži nesou břemeno o hmotnosti 90 kg zavěšené na tyči o zanedbatelně malé hmotnosti. První z nich opírá tyč o rameno ve vzdálenosti 0,6 m od závěsného bodu břemena, druhý ve vzdálenosti 0,9 m. Jak velikou silou tyč na každého z nich působí?
15 Příklad 6 Tyč o délce 1 m a zanedbatelně malé hmotnosti je podepřena na obou koncích. Na tyč zavěsíme těleso o hmotnosti 20 kg. Kam je třeba umístit závěs tělesa, aby na pravou podpěru působila síla o velikosti 160 N? Jak velká síla působí na levou podpěru?
16 Příklad 7 Lampa o hmotnosti 2 kg je zavěšena na svislé stěně pomocí vodorovného trámu a šikmého drátu, který svírá se stěnou úhel 30. Určete síly, kterými lampa působí na trám a na drát.
17 Příklad 8 Vypočítejte velikosti sil působících na každé lano, je-li těleso o hmotnosti 100 kg zavěšeno podle obrázků.
18 Těžiště tuhého tělesa Působiště tíhové síly tělesa v homogenním tíhovém poli. Experimentálně lze polohu těžiště zjistit zavěšováním - těžiště je místo, kde se protínají těžnice. Těžiště může být i mimo látku tělesa.
19 Poloha těžiště U stejnorodých těles se středem souměrnosti leží těžiště v tomto středu. Má-li stejnorodé těleso osu symetrie, leží těžiště na této ose. Má-li stejnorodé těleso rovinu symetrie, leží těžiště v této rovině. U pravidelných těles lze polohu těžiště určit výpočtem.
20 Příklad 9 Určete polohu těžiště tělesa na obrázku. Těleso se skládá z tyče o délce 50 cm a hmotnosti 4 kg, na jejíchž koncích jsou upevněny koule. První koule má poloměr 10 cm a hmotnost 24 kg, druhá koule má poloměr 8 cm a hmotnost 12 kg. Všechny části tělesa jsou stejnorodé.
21 Příklad 10 Na konci tyče o délce 0,6 m je připevněna koule o poloměru 0,1 m, jejíž střed leží na ose tyče. Obě tělesa jsou stejnorodá a mají stejnou hmotnost. Určete polohu těžiště tohoto útvaru.
22 Rovnovážná poloha tuhého tělesa Podmínky rovnovážné polohy: silová rovnováha ( vektorový součet sil je nulový ) momentová rovnováha ( vektorový součet momentů je nulový )
23 Rovnovážná poloha tuhého tělesa 1.Stálá ( stabilní ) poloha po vychýlení se těleso vrací do této polohy potenciální energie je minimální těžiště je v nejnižší poloze
24 Rovnovážná poloha tuhého tělesa 2.Vratká ( labilní ) poloha po vychýlení se těleso nevrací do této polohy potenciální energie je maximální těžiště je v nejvyšší poloze
25 Rovnovážná poloha tuhého tělesa 3.Volná ( indiferentní ) poloha po vychýlení se těleso nevrací do této polohy potenciální energie je stále stejná výška těžiště se nemění
26 Stabilita tělesa Stabilita tělesa je dána prací, kterou musíme vykonat, abychom těleso přemístili z rovnovážné polohy do polohy vratké. W = mg(h 2 h 1 )
27 Příklad 11 Jakou stabilitu má krychle o hraně 0,5 m a hmotnosti 900 kg?
28 Příklad 12 Dvě stejné bedny stojí na vodorovné podlaze. Jedna z beden je naplněna až po okraj pískem, ve druhé je do poloviny nasypán železný odpad. Hmotnosti beden s obsahem jsou stejné. Která bedna má větší stabilitu?
29 Kinetická energie tuhého tělesa Při posuvném pohybu:!! E k = 1 2 mv2 Při otáčivém pohybu:!! E k = 1 2 Jω 2 J - moment setrvačnosti tělesa, jednotka kg m 2
30 Příklad 13 Rotor elektromotoru má moment setrvačnosti 1,2 kg m 2 a koná 50 otáček za sekundu. Jakou má kinetickou energii?
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
Více1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
VíceMechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
VíceMECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
VíceObsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
VíceDigitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ..07/.5.00/4.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím
VíceTest jednotky, veličiny, práce, energie, tuhé těleso
DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost
VíceZavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_6_Mechanika tuhého tělesa Ing. Jakub Ulmann 6 Mechanika tuhého tělesa 6.1 Pohyb tuhého tělesa 6.2 Moment
Více6. MECHANIKA TUHÉHO TĚLESA
6. MECHANIKA TUHÉHO TĚLESA 6.1. ZÁKLADNÍ VLASTNOSTI A POJMY Tuhé těleso: Tuhé těleso je fyzikální model tělesa u kterého uvažujeme s jeho.. a. Zanedbáváme.. Pohyb tuhého tělesa: 1). Při posuvném pohybu
Více5. Mechanika tuhého tělesa
5. Mechanika tuhého tělesa Rozměry a tvar tělesa jsou často při řešení mechanických problémů rozhodující a podstatně ovlivňují pohybové účinky sil, které na ně působí. Taková tělesa samozřejmě nelze nahradit
VíceF - Mechanika tuhého tělesa
F - Mechanika tuhého tělesa Učební text pro studenty dálkového studia a shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem
Více4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
VíceZavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_6_Mechanika tuhého tělesa Ing. Jakub Ulmann 6 Mechanika tuhého tělesa 6.1 Pohyb tuhého tělesa 6.2 Moment
VíceBIOMECHANIKA. 3,Geometrie lidského těla, těžiště, stabilita, moment síly
BIOMECHANIKA 3,Geometrie lidského těla, těžiště, stabilita, moment síly Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. TĚŽIŠTĚ TĚLESA Tuhé těleso je složeno z velkého
VíceSÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole
Více7. Mechanika tuhého tělesa
7. Mechanika tuhého tělesa 7. Základní poznatky Dosud jsme se při studiu pohybových účinků sil na těleso nahrazovali pevné těleso hmotným bodem. Většinou jsme nebrali v úvahu tvar a rozměry tělesa, neuvažovali
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
Více2.5 Rovnováha rovinné soustavy sil
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice
VíceProjekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště
VíceBIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
VíceFyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.
VíceMoment síly výpočet
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.2.3.2 Moment síly výpočet Moment síly je definován jako součin síly a kolmé vzdálenosti osy síly od daného
VíceObsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...
VíceKapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.
Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu
VícePřipravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
Více2.4 Výslednice rovinné soustavy sil
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.4 Výslednice rovinné soustavy sil Při skládání sil v rovinné soustavě zpravidla definované rovinou X-0-Y
VíceMechanika - síla. Zápisy do sešitu
Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla
VíceTŘENÍ A PASIVNÍ ODPORY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez
VíceOTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka)
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka) A) Výklad: Posuvné účinky: Ze studia posuvných účinků síly jsme zjistili: změny rychlosti nebo směru posuvného pohybu tělesa závisejí na tom, jak velká síla
VícePrůmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky
Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního
Více3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
VícePRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
VíceDynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
VíceHydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
VíceFyzika pokus 11. 11.1 Zjištění těžiště tuhého tělesa 11.2 funkce těžiště na stabilitu tuhého tělesa
Fyzika pokus 11 11.1 Zjištění těžiště tuhého tělesa 11.2 funkce těžiště na stabilitu tuhého tělesa Projekt TROJLÍSTEK podpora výuky přírodopisu, biologie, fyziky a chemie žáků ve věku 11 až 15 let reg.
VíceF - Jednoduché stroje
F - Jednoduché stroje Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
VíceVZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE
Příklady: 1A. Jakou silou působí homogenní magnetické pole na přímý vodič o délce 15 cm, kterým prochází proud 4 A, a svírá s vektorem magnetické indukce úhel 60? Velikost vektoru magnetické indukce je
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
VíceMĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové
VíceObsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: SKLÁDÁNÍ SIL -
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL - řešení... 8 17_Skládání různoběžných sil působících v jednom
VíceFYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
VíceFYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar
VíceStřední škola automobilní Ústí nad Orlicí
Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,
VíceFyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
VíceČíslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Skládání a rozkládání sil Číslo DUM: III/2/FY/2/1/17 Vzdělávací předmět: Fyzika Tematická oblast:
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Skládání a rozkládání sil Číslo DUM: III/2/FY/2/1/17 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra
VícePříklady z teoretické mechaniky pro domácí počítání
Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.
VíceFYZIKA Mechanika tuhých těles
Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Mechanika
Více4. Práce, výkon, energie a vrhy
4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce
VíceVY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE
VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických
VíceProjekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:
VíceExperimentální hodnocení bezpečnosti mobilní fotbalové brány
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky, biomechaniky a mechatroniky Odbor mechaniky a mechatroniky Název zprávy Experimentální hodnocení bezpečnosti mobilní fotbalové brány
Více3.1 Magnetické pole ve vakuu a v látkovén prostředí
3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká
VíceKontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky. Základní pojmy
Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky Základní pojmy Pojem hmota, základní formy existence (atributy) hmoty Čím se liší pojmy hmota a hmotnost Axiomy statiky Mechanický
VícePRAKTIKUM I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č. XXI Název: Měření tíhového zrychlení Pracoval: Jiří Vackář stud. skup. 11 dne 10..
Více(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.
STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné
VícePodmínky k získání zápočtu
Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné
VíceDigitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím
VícePráce, energie a další mechanické veličiny
Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních
VíceFyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
VíceDruhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda
VíceOkruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),
VíceFyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
Více03 - síla. Síla. Jak se budou chovat vozíky? Na obrázku jsou síly znázorněny tak, že 10 mm odpovídá 100 N. Určete velikosti těchto sil.
1 03 - síla Síla Tato veličina se značí F a její jednotkou je 1 newton = 1 N. Často se zakresluje jako šipkou (vektorem), kde její délka odpovídá velikosti síly, začátek jejímu působišti a šipka udává
Více1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.
1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními
VíceMoment síly Statická rovnováha
Moment síly Statická rovnováha Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Jedná se o zatím pracovní verzi, rok 2009 ZKRÁCENÁ VERZE Síla může mít rozdílný
VícePřímková a rovinná soustava sil
Přímková a rovinná soustava sil 1) Souřadný systém - v prostoru - v rovině + y + 2) Síla P ( nebo F) - vektorová veličina - působiště velikost orientace Soustavy sil - přehled Soustavy sil můžeme rodělit
VíceLaboratorní práce č. 3: Měření součinitele smykového tření
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 3: Měření součinitele smykového tření G Gymnázium Hranice Přírodní vědy moderně a interaktivně
VíceVzorové příklady - 2.cvičení
Vorové příklady - cvičení Vorový příklad Vypočtěte velikost síly, potřebné k naddvihnutí poklopu, hradícího výpust nádrže s vodou obráek Hloubka vody v nádrži h =,0 m, a = 0,5 m, = 60º, tíha poklopu G
VíceObr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
VícePřijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
VíceRychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
VíceELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník
ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče
VíceMěření tíhového zrychlení matematickým a reverzním kyvadlem
Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte
Vícea) Jak na sebe vzájemně mohou působit tělesa? b) Vysvětli, jak je možné, aby síla působila na dálku. c) Co může způsobit síla? d) Vysvětli pojmy a
SÍLA opakování 1 a) Jak na sebe vzájemně mohou působit tělesa? b) Vysvětli, jak je možné, aby síla působila na dálku. c) Co může způsobit síla? d) Vysvětli pojmy a uveď příklady: Působení síly statické
VíceSTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník
STACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Magnetické pole Vytváří se okolo trvalého magnetu. Magnetické pole vodiče Na základě experimentů bylo
VíceGraf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu
VíceSTAVEBNÍ STATIKA. Ing. Petr Konečný, Ph.D. LPH 407/3. tel
STAVEBNÍ STATIKA Ing. Petr Konečný, Ph.D. LPH 47/3 tel. 59 732 1394 petr.konecny@vsb.c http://fast1.vsb.c/konecny roklad síly v rovině síla pod úhlem γ - (k ose ) až -18 až +18 x A γ P P P x γ + x P x
VíceMěření momentu setrvačnosti
Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :
VíceRovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
Více5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.
VíceHmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);
Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech
Více3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.
Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného
VíceELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ
Více1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.
Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)
VícePříklad 5.3. v 1. u 1 u 2. v 2
Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu
VíceBIOMECHANIKA. 2, Síly a statická rovnováha Vektory a skaláry. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 2, Síly a statická rovnováha Vektory a skaláry Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. Síly působí v každém okamžiku na naše tělo (při pohybu
VíceKMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině
KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme
Více4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
Víceb) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm
b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.
VíceSTACIONÁRNÍ MAGNETICKÉ POLE
Příklay: 1. Přímý voič o élce 0,40 m, kterým prochází prou 21 A, leží v homogenním magnetickém poli kolmo k inukčním čarám. Velikost vektoru magnetické inukce je 1,2 T. Vypočtěte práci, kterou musíme vykonat
VíceZadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně
Více7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
VíceZákladní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů
1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou
VíceVÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská
VíceMolekulová fyzika a termika. Přehled základních pojmů
Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou
Více6. Statika rovnováha vázaného tělesa
6. Statika rovnováha vázaného tělesa 6.1 Rovnováha vázaného tělesa Těleso je vystaveno působení vnějších sil akčních, kterými mohou být osamělé síly, spojité zatížení a momenty silových dvojic. Akční síly
VíceTrojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
VíceSoustava hmotných bodů
Soustava hmotných bodů Těleso soustava hmotných bodů Tuhé těleso - pevný předmět jehož rozměr se nemění každé těleso se skládá z mnoha částc síla působící na -tou částc výsledná síla působící na předmět
VíceTÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem
Vícem.s se souřadnými osami x, y, z? =(0, 6, 12) N. Určete, jak velký úhel spolu svírají a jakou velikost má jejich výslednice.
Obsah VYBRANÉ PŘÍKLADY DO CVIČENÍ 2007-08 Vybrané příklady [1] Koktavý, Úvod do studia fyziky... 1 Vybrané příklady [2] Koktavý, Mechanika hmotného bodu... 1 Vybrané příklady [3] Navarová, Čermáková, Sbírka
Více