Skalární a vektorový popis silového pole
|
|
- Pavla Kašparová
- před 6 lety
- Počet zobrazení:
Transkript
1 Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma bodovými náboji (částicemi s nábojem) při které náboj vytváří elektrické pole do kterého vkládáme náboj lze popsat Coulombovým zákonem Gravitační pole Hmotnost m [m] = kg Interakci (vzájemné silové působení) mezi dvěma hmotnými body při které bod o hmotnosti M vytváří gravitační pole do kterého vkládáme bod o hmotnosti m lze popsat Newtonovým gravitačním zákonem 1 kde gravitační konstanta Ve kde ve vakuu platí k N.m 2.C 2. Ve vektorovém tvaru má Coulombův zákon tvar: vektorovém tvaru má Newtonův zákon tvar: 4 0 r kde r 0. Za Q a q dosazujeme včetně znamének! r kde r r 0 Znaménko mínus vyjadřuje přitahování r Vektorový popis silového pole Intenzitu elektrického pole definujeme vztahem s rozměrem [ ]. Intenzitu gravitačního pole definujeme vztahem s rozměrem [ ]. Pro elektrické pole bodového náboje Q v bodě A platí: k Q E k Q za Q dosazujeme včetně znaménka Elektrické pole soustavy bodových nábojů v bodě A ( ) Pro gravitační pole hmotného bodu hmotnosti m v bodě A platí: Gravitační pole soustavy hmotných bodů v bodě A ( ) Za dosazujeme včetně znamének 1
2 Mechanická praáce sil pole Práce sil el pole ( ) Potenciální energie elektrická Práce sil gravitačního pole ( ) Potenciální energie gravitační Za Q a q dosazujeme včetně znamének Skalární popis silového pole Elektrický potenciál φ: W pe [ ] ( ) q Gravitační potenciál V: V W pg [ ] m Elektrický potenciál pole bodového náboje Q v bodě A: Q k r Gravitační potenciál pole hmotného bodu hmotnosti M v bodě A Grafické znázornění silových polí Vektorové pole siločára (vektorová čára) Skalární pole ekvipotenciální plocha (hladina potenciálu) φ = konst. na ekvipotenciální ploše (v daném bodě ekvipotenciální plochy leží na notmále plochy v tomto bodě) Př. radiálni pole bodového náboje 2
3 Souvislost mezi skalárním a vektorovým popisem silového pole Ve výše uvedených silových polích platí: A W p respektive da dwp dwp da Elektrické pole: dwpe da Fe dr QEdr Gravitační pole: dwpg da Fg dr mk dr d dφ E. dr,po integraci φ Edr φ x, y, z C d Q m V K. dr V x, y, z C dv dr, po integraci E dr dr b) Uvažujme skalární pole V V( y z) v něm dvě ekvipotenciální plochy s potenciály V a V+dV. Z plochy V konst na plochu V dv konst se můžeme dostat v různých směrech dr dr dr dv Veličina je růst potenciálu, velikost této veličiny závisí na dr. Maximální růst potenciálu je ve směru normály. dri Definice: Gradient potenciálu grad V (obecně gradient skalární funkce, kterou je skalární pole definováno v určité části prostoru) je vektor, který má v daném bodě skalárního pole směr a velikost maximálního růstu skalární veličiny (potenciálu), kterou je pole definováno. (Definice je fyzikálním významem gradientu.) Výpočet gradientu: Uvažujme skalární pole ( ). Má-li funkce V totální diferenciál, lze psát Pravou stranu lze chápat jako skalární součin dvou vektorů 3
4 ( ) ( ) Gradient skalární funkce je vektorová funkce. Gravitační pole Protože je a zároveň platí. Vynásobíme-li tento vztah hmotností, dostaneme: Elektrické pole Analogicky platí a, proto také platí. Vynásobíme-li tento vztah nábojem dostaneme: Elektřina a magnetismus Vektorový popis Elektrické pole popisujeme pomocí vektorů elektrické intenzity, elektrické indukce s jednotkou [ ]. s jednotkou [ ] Magnetické pole popisujeme pomocí vektoru magnetické indukce definovaného pomocí rovnice Fm I l B s jednotkou [ ] a vektoru magnetické intenzity H Gaussův zákon Tok vektoru elektrické intenzity plochou S definujeme: B s jednotkou [ ]. 4
5 Uvažujme bodový náboj Q, který leží ve středu kulové plochy o poloměru r. Intenzita tohoto radiálního pole má ve všech bodech této kulové plochy stejnou velikost a má radiální směr.. Tok vektoru touto kulovou plochou je Dosadíme za E a dostaneme Protože elektrické siločáry jsou spojité křivky, bude rovnice N která uzavírá týž náboj. 1 Q platit pro uzavřenou plochu jakéhokoliv tvaru, Gaussův zákon Je-li v elektrickém poli sestrojena uzavřená plocha jakéhokoliv tvaru tak, že uzavírá náboj Q, je tok vektoru intenzity touto plochou roven součinu 1 a velikosti náboje uvnitř plochy, bez ohledu na to, jak je náboj rozdělen: Poznámky: Uzávírá-li plocha náboje pak celkový tok intenzity plochou je roven součinu a algebraického součtu nábojů uvnitř plochy: (Je-li, pak tok uzavřenou plochou je roven nule). Je-li náboj Q vně zvolené uzavřené plochy S, je tok vektoru intenzity touto plochou roven 0. 5
6 (Plošky přispívají k celkovému toku stejnou hodnotou opačného znaménka). Uzavřenou plochu volíme vždy tak, aby na ní náboj Q neležel, protože v místě náboje není intenzita pole definována. Je-li náboj Q rozprostřen v objemu V s hustotou náboje ([ ] ), tj., pak Gaussův zákon v diferenciálním tvaru K úpravě vztahu použijeme matematickou Gaussovu-Ostrogradského větu: Tok vektoru uzavřenou plochou S ve směru vnější normály je roven objemovému integrálu divergence vektoru přes oblast V ohraničenou plochou S: Použijeme-li tuto větu k úpravě levé strany rovnice rovnice, můžeme za předpokladu x,y,z, prostředí je homogenní) psát (tj. nezávisína a z toho respektive, což je Gaussův zákon v diferenciálním tvaru. Magnetický indukční tok Je definován vztahy, respektive s jednotkou [ ]. V magnetickém poli se dá dokázat, že platí: Použijeme-li Gaussovu-Ostrogradského větu je tato vlastnost popsána v diferenciálním tvaru rovnicí magnetické pole je polem nezřídlovým. Magnetické indukční čáry jsou uzavřené křivky. Výpočet magnetických polí vodičů s proudem K výpočtu se používá Laplaceova zákona ( ) Ampérův zákon Při výpočtu pole přímého, tenkého, nekonečně dlouhého vodiče z Laplaceova zákona vyjde pro velikost magnetické indukce, kde x je vzdálenost od vodiče. Indukční čáry jsou kružnice se středem na vodiči, poloměrech x a jejich roviny jsou kolmé k vodiči. Zapišme tento výsledek ve tvaru:, kde je délka indukční 6
7 čáry a výraz představuje změnu velikosti vektoru při jenom kladném oběhu (indukční čára je orientovaná křivka) po indukční čáře. Změna vektoru při jednom oběhu po indukční čáře se nazývá cirkulace vektoru. Pak se vztah dá interpretovat takto: Cirkulace vektoru magnetické indukce podél příslušné indukční čáry je rovna μ násobku proudu, který toto pole vytvořil. V obecném případě není proudovodič přímý a homogenní, pole v jeho okolí je složitější. V takovém případě vezmeme příspěvek elementu vodiče k cirkulaci vektoru a celková cirkulace je pak což je Ampérův zákon. Křivkou navíc nemusí být indukční čára, ale libovolná uzavřená křivka, která obsahuje ve svém vnitřku proudovodič, kterým teče proud I. Ampérův zákon (pro magnetické pole vytvořené stacionárním proudem I) lze vyslovit následovně: Cirkulace vektoru podél libovolné křivky, obsahující proudovodič ve svém vnitřku, je rovna μ násobné hodnotě proudu I. Ampérův zákon v diferenciálním tvaru K úpravě vztahu použijeme matematickou Stokesovu větu: Cirkulace vektoru po uzavřené orientované křivce je rovna plošnému integrálu rotace vektoru přes plochu S, pro kterou je hraniční křivka a plocha S je souhlasně orientována vzhledem ke křivce : Zapíšeme-li pomocí proudové hustoty: a za předpokladu, pak použijeme-li Stokesovu větu dostaneme z rovnice a odtud, respektive, což je Ampérův zákon v diferenciálním tvaru. Faradayův zákon elektromagnetické indukce Z Bakalářské fyziky známe integrální tvar zákona elektromagnetické indukce: který můžeme přepsat do tvaru Použijeme-li pro levou stranu Stokesovu větu, pak 7
8 a tedy což je diferenciální tvar zákona. Indukované elektrické pole je vírové. Maxwellův posuvný proud Pokud dochází v prostředí v důsledku polarizace dielektrika ke vzniku tzv. vázaného náboje na volném povrchu dielektrika, platí i pro tento vázaný náboj Q V Gaussův zákon ve tvaru ( ) Pokud rovnici derivujeme podle času, dostaneme kde I P je posuvný proud, tedy proud vznikající díky polarizaci dielektrika. Položíme-li pak výraz má význam hustoty posuvného proudu.posuvný proud má stejné účinky jako vodivý proud vyvolává vznik magnetického pole a můžeme tedy zobecnit Ampérův zákon pro nestacionární elektromagnetické pole: ( ) a v diferenciálním tvaru Maxwellovy rovnice Hlavní Maxwellovy rovnice v integrálním tvaru ( ) v diferenciálním tvaru 8
9 Vedlejší Maxwellovy rovnice: ( ) 9
ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole
Kde se nacházíme? ČÁST V F Y Z I K Á L N Í P O L E 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Mapování elektrického pole -jak? Detektorem.Intenzita
GAUSSŮV ZÁKON ELEKTROSTATIKY
GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ
VEKTOROVÁ POLE Otázky
VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,
ELT1 - Přednáška č. 6
ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,
Elektrostatické pole Coulombův zákon - síla působící mezi dvěma elektrickými bodovými náboji Definice intenzity elektrického pole Siločáry
Elektrostatické pole Coulombův zákon - síla působící mezi dvěma elektrickými bodovými náboji Definice intenzity elektrického pole iločáry elektrického pole Intenzita elektrického pole buzená bodovým elektrickým
VEKTOROVÁ POLE VEKTOROVÁ POLE
Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s
Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové
MAGNETICKÉ POLE V LÁTCE, MAXWELLOVY ROVNICE MAGNETICKÉ VLASTNOSTI LÁTEK Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární
Základní otázky pro teoretickou část zkoušky.
Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.
Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika
1 Fyzika 1, bakaláři AFY1 BFY1 KFY1 ZS 08/09 Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách Mechanika Při studiu části mechanika se zaměřte na zvládnutí následujících pojmů: Kartézská
Potenciální proudění
Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace
ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník
ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro
7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,
14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta
14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2010/11 14.1 Úvod Definice (zobecněná plocha) Řekneme, že S R n (n 2) je zobecněná (n
Přehled látky probírané v předmětu Elektřina a magnetismus
Přehled látky probírané v předmětu Elektřina a magnetismus 1 Matematický aparát 1.1 Skalární a vektorová pole Skalární pole, hladina skalárního pole, vektorové pole, siločára, stacionární a nestacionární
Elektrické pole vybuzené nábojem Q2 působí na náboj Q1 silou, která je stejně veliká a opačná: F 12 F 21
Příklad : Síla působící mezi dvěma bodovými náboji Dva bodové náboje na sebe působí ve vakuu silou, která je dána Coulombovým zákonem. Síla je přímo úměrná velikosti nábojů, nepřímo úměrná kvadrátu vzdálenosti,
13. cvičení z Matematické analýzy 2
. cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy
2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená
Elektrické a magnetické pole zdroje polí
Elektrické a magnetické pole zdroje polí Podstata elektromagnetických jevů Elementární částice s ohledem na elektromagnetické působení Elektrické a magnetické síly a jejich povaha Elektrický náboj a jeho
Přijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční
Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická
Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů
14. cvičení z Matematické analýzy 2
4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti
F n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D12_Z_OPAK_E_Elektricky_naboj_a_elektricke_ pole_t Člověk a příroda Fyzika Elektrický
Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.
Magnetické pole Stacionární magnetické pole Kolem trvalého magnetu existuje magnetické pole. Stacionární magnetické pole Pilinový obrazec magnetického pole tyčového magnetu Stacionární magnetické pole
STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník
STACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Magnetické pole Vytváří se okolo trvalého magnetu. Magnetické pole vodiče Na základě experimentů bylo
Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23
Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony
Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení
Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Úkoly měření: 1. Měření na digitálním osciloskopu a přenosném dataloggeru LabQuest 2. 2. Ověřte Faradayovy zákony pomocí pádu magnetu skrz trubici
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
Přehled veličin elektrických obvodů
Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic
Vzájemné silové působení
magnet, magnetka magnet zmagnetované těleso. Původně vyrobeno z horniny magnetit, která má sama magnetické vlastnosti dnes ocelové zmagnetované magnety, ferity, neodymové magnety. dva magnetické póly (S-J,
ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA
ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých
Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112
Elektřina a magnetismus UF/01100 Rozsah: 4/2 Forma výuky: přednáška Zakončení: zkouška Kreditů: 9 Dop. ročník: 1 Dop. semestr: letní Základy elektřiny a magnetismu UF/PA112 Rozsah: 3/2 Forma výuky: přednáška
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
MFT - Matamatika a fyzika pro techniky
MFT - Matamatika a fyzika pro techniky Pro každou přednášku by zde měl být seznam klíčových témat, odkaz na literaturu, zápočtový příklad k řešení a další příklady k procvičování převážně ze sbírky příkladů
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 10. POSUVNÝ PROUD A POYNTINGŮV VEKTOR 3 10.1 ÚKOLY 3 10. POSUVNÝ
MAGNETICKÉ POLE V REÁLNÉM PROSTŘEDÍ ( MAGNETIKA)
MAGNETICKÉ POLE V REÁLNÉM PROSTŘEDÍ ( MAGNETIKA) Aplikace : Magnetický HD Snímání binárního signálu u HD HD vývoj hustota záznamu PC hard disk drive capacity (in GB). The vertical axis is logarithmic,
ELEKTROMAGNETISMUS ELEKTRO MAGNETISMUS
ELEKTROMAGNETISMUS ELEKTRO MAGNETISMUS úvodní poznámky klasický elektromagnetismus: ve smyslu nekvantový, tj. všechny veličiny měřitelné s libovolnou přesností klasická teorie měla dnešní podobu již před
Práce, energie a další mechanické veličiny
Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
elektrický náboj elektrické pole
elektrický náboj a elektrické pole Charles-Augustin de Coulomb elektrický náboj a jeho vlastnosti Elektrický náboj je fyzikální veličina, která vyjadřuje velikost schopnosti působit elektrickou silou.
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 18 Vektorová analýza a teorie pole Vybrané kapitoly z matematiky 2018-2019 2 / 18 Vektorová funkce jedné
Parametrické rovnice křivky
Křivkový integrál Robert Mařík jaro 2014 Tento text je tištěnou verzí prezentací dostupných z http://user.mendelu.cz/marik/am. Křivkový integrál Jedná se o rozšíření Riemannova integrálu, kdy množinou
1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.
Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)
ELEKTROSTATICKÉ POLE V LÁTKÁCH
LKTROSTATIKÉ POL V LÁTKÁH A) LKTROSTATIKÉ POL V VODIČÍH VODIČ látka obsahující volné elektrické náboje náboje se po vložení látky do pole budou pohybovat až do vytvoření ustáleného stavu, kdy je uvnitř
a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.
Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako
Elektrostatické pole. Vznik a zobrazení elektrostatického pole
Elektrostatické pole Vznik a zobrazení elektrostatického pole Elektrostatické pole vzniká kolem nepohyblivých těles, které mají elektrický náboj. Tento náboj mohl vzniknout například přivedením elektrického
Parametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
Základní zákony a terminologie v elektrotechnice
Základní zákony a terminologie v elektrotechnice (opakování učiva SŠ, Fyziky) Určeno pro studenty komb. formy FMMI předmětu 452702 / 04 Elektrotechnika Zpracoval: Jan Dudek Prosinec 2006 Elektrický náboj
FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce
FYZIKA II Petr Praus 10. Přednáška Magnetické pole v látce Osnova přednášky Magnetické pole v látkovém prostředí, Ampérovy proudové smyčky, veličiny B, M, H materiálové vztahy, susceptibilita a permeabilita
Cvičení F2070 Elektřina a magnetismus
Cvičení F2070 Elektřina a magnetismus 20.3.2009 Elektrický potenciál, elektrická potenciální energie, ekvipotenciální plochy, potenciál bodového náboje, soustavy bodových nábojů, elektrického pole dipólu,
NESTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník
NESTACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Nestacionární magnetické pole Vektor magnetické indukce v čase mění směr nebo velikost. a. nepohybující
7 Základní elektromagnetické veličiny a jejich měření
7 Základní elektromagnetické veličiny a jejich měření Intenzity elektrického a magnetického pole, elektrická a magnetická indukce. Materiálové vztahy. Měrné metody elektrických a magnetických veličin.
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.
E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO
Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: ELEKTŘINA A MAGNETISMUS FYZIKA JANA SUCHOMELOVÁ 01 - Elektrické pole elektrická síla
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny
Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY
Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY Garant: Škvor Z. Vyučující: Pankrác V., Škvor Z. Typ předmětu: Povinný předmět programu (P) Zodpovědná katedra: 13117 - Katedra elektromagnetického
Elektřina a magnetizmus - elektrické napětí a elektrický proud
DUM Základy přírodních věd DUM III/2-T3-03 Téma: Elektrické napětí a elektrický proud Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus
FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli
FYZIKA II Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli Osnova přednášky Stacionární magnetické pole Lorentzova síla Hallův jev Pohyb a urychlování nabitých částic (cyklotron,
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
y ds, z T = 1 z ds, kde S = S
Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných
1. Cvičení: Opakování derivace a integrály
. Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )
Magnetické pole - stacionární
Magnetické pole - stacionární magnetické pole, jehož charakteristické veličiny se s časem nemění kolem vodiče s elektrickým polem je magnetické pole Magnetické indukční čáry Uzavřené orientované křivky,
Matematická analýza III.
2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom
Kapacita. Gaussův zákon elektrostatiky
Kapacita Dosud jsme se zabývali vztahy mezi náboji ve vakuu. Prostředí mezi náboji jsme charakterizovali permitivitou ε a uvedli jsme, že ve vakuu je ε = 8,854.1-1 C.V -1.m -1. V této kapitole se budeme
Elektřina a magnetizmus magnetické pole
DUM Základy přírodních věd DUM III/2-T3-13 Téma: magnetické pole Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus magnetické pole
Zapnutí a vypnutí proudu spínačem S.
ELEKTROMAGNETICKÁ INDUKCE Dva Faradayovy pokusy odpovídají na otázku zda může vzniknout elektrický proud vlivem magnetického pole Pohyb tyčového magnetu k (od) vodivé smyčce s měřidlem, nebo smyčkou k
ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE
ELEKTRICKÝ NÁBOJ ELEKTRICKÉ POLE 1. Elektrický náboj, elektrická síla Elektrické pole je prostor v okolí nabitých těles nebo částic. Jako jiné druhy polí je to způsob existence hmoty. Elektrický náboj
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ELEKTRICKÝ NÁBOJ Mgr. LUKÁŠ FEŘT
VEKTOROVÁ POLE VEKTOROVÁ POLE
VEKTOROVÁ POLE Podíváme se podrobněji na vektorové funkce. Jde často o zkoumání fyzikálních veličin jako tlak vzduchu, proudění tekutin a podobně. VEKTOROVÁ POLE Na zobrazení z roviny do roviny nebo z
+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)
Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Hlavní body - elektromagnetismus
Elektromagnetismus Hlavní body - elektromagnetismus Lorenzova síla, hmotový spektrograf, Hallův jev Magnetická síla na proudovodič Mechanický moment na proudovou smyčku Faradayův zákon elektromagnetické
c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky
Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda
GE - Vyšší kvalita výuky CZ.1.07/1.5.00/
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Alena Škárová Elektrické pole,
Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.
Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností
21 MAGNETICKÉ POLE. 21.1 Lorentzova síla, Ampérův zákon silového působení
221 21 MAGNETICKÉ POLE Lorentzova síla, Ampérův zákon silového působení Siotův-Savartův zákon, Ampérův zákon celkového proudu Síly v magnetickém poli Magnetické pole v reálném látkovém prostředí Indukční
Elektromagnetismus. - elektrizace třením (elektron = jantar) - Magnetismus magnetovec přitahuje železo zřejmě první záznamy o používání kompasu
Elektromagnetismus Historie Staré Řecko: Čína: elektrizace třením (elektron = jantar) Magnetismus magnetovec přitahuje železo zřejmě první záznamy o používání kompasu Hans Christian Oersted objevil souvislost
Matematika pro chemické inženýry
Matematika pro chemické inženýry Drahoslava Janovská Plošný integrál Přednášky Z 216-217 ponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 216 Povinná látka. Bude v písemkách a bude se zkoušet při ústní
NESTACIONÁRNÍ MAGNETICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Masarykovo gymnázium Vsetín Autor: Mgr. Jitka Novosadová DUM: MGV_F_SS_3S3_D16_Z_OPAK_E_Nestacionarni_magneticke_pole_T Vzdělávací obor: Člověk a příroda Fyzika Tematický okruh: Nestacionární magnetické
Simulace mechanických soustav s magnetickými elementy
Simulace mechanických soustav s magnetickými elementy Martin Bílek, Jan Valtera Modelování mechanických soustav 4.12.2014 Úvod Magnetismus je fyzikální jev, při kterém dochází k silovému působení na nositele
5 Stacionární magnetické pole HRW 28, 29(29, 30)
5 STACIONÁRNÍ MAGNETICKÉ POLE HRW 28, 29(29, 30) 31 5 Stacionární magnetické pole HRW 28, 29(29, 30) 5.1 Magneticképole,jehozdrojeaúčinkyHRW28(29) 5.1.1 Permanentní magnet Vedle výhradně přitažlivé interakce
Obsah. Obsah. 2.3 Pohyby v radiálním poli Doplňky 16. F g = κ m 1m 2 r 2 Konstantu κ nazýváme gravitační konstantou.
Obsah Obsah 1 Newtonův gravitační zákon 1 2 Gravitační pole 3 2.1 Tíhové pole............................ 5 2.2 Radiální gravitační pole..................... 8 2.3..................... 11 3 Doplňky 16
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
Potenciál vektorového pole
Kapitola 12 Potenciál vektorového pole 1 Definice a výpočet Důležitým typem vektorového pole je pole F, pro které existuje spojitě diferencovatelná funkce f tak, že F je pole gradientů funkce f, tedy F
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
Matematika III. Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík. Ústav matematiky
Matematika III Základy vektorové analýzy Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Skalární a vektorový součin Skalární součin Vektorový součin
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
GE - Vyšší kvalita výuky CZ.1.07/1.5.00/
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Alena Škárová Vodič a izolant
12. Křivkové integrály
12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr