Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
|
|
- Rostislav Navrátil
- před 9 lety
- Počet zobrazení:
Transkript
1 Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování se smršťují. Snad nejvýznamnější výjimkou z tohoto pravidla je vod Když vodu ochlazujeme z bodu varu 100 C na zhruba 4 C, tak se smršťuje. Od teploty 4 C do bodu tuhnutí 0 C se naopak roztahuje. Díky tomuto neobvyklému jevu má led menší hustotu než vod Různé materiály se při stejné změně teploty roztahují nebo smršťují různě. Obecně platí, že při stejné změně teploty se plyny rozpínají více než kapaliny. Kapaliny se zase rozpínají více než pevné látky. Při zahřívání nebo ochlazování se zvětšují nebo zmenšují všechny rozměry těles Z praktických důvodů zavádíme dva typy teplotní roztažnosti: délkovou roztažnost (zajímá nás změna jednoho rozměru tělesa) a objemovou roztažnost (zajímá nás změna všech tří rozměrů tělesa). Mírou změny rozměru je součinitel teplotní délkové nebo objemové roztažnosti. Často nás zajímá, jek se změní rozměr potrubí, kolejnic, elektrického vedení nebo jiných dlouhých objektů. Například o kolik bude delší elektrické vedení v horkém letním dnu za teploty 30 C ve srovnání s chladným zimním dnem s teplotou -20 C? Ve skutečnosti se vedení rozpíná ve všech třech rozměrech, ale v praxi nás zajímá pouze změna jeho délky.
2 Obrázek 1: kolejnice deformované vlivem teplotní roztažnosti Pro pevné látky zavádíme koeficient teplotní roztažnosti l. Velikost tohoto koeficientu se pro jednotlivé materiály poměrně značně liší. Například koeficient teplotní roztažnosti pro hliník je asi padesátkrát větší než pro křemenné sklo. Koeficient teplotní roztažnosti vlastně udává konstantu úměrnosti mezi změnou délky materiálu a změnou teploty, která tuto změnu vyvolá. Je definován jako l = 1 dl l dt, (1) kde dl je malá změna délky l, dt je malá změna teploty. Pokud již známe koeficient teplotní roztažnosti, můžeme z (1) odhadnout změnu délky jako: l=l 0 l T (2) Tato rovnice platí, pokud se koeficient teplotní roztažnosti příliš nemění se změnou teploty T. To není obecně splněno, ale pro malé změny teploty platí (2) poměrně přesně. Pokud se koeficient teplotní roztažnosti s teplotou výrazně mění, je nutné vyjádřit změnu délky pomocí integrálu z (1) T 2 l=l 0 L T dt (3) T 1 Koeficient objemové roztažnosti zavádíme obecně jako V = 1 V dv dt p, (4)
3 kde dv je malá změna objemu V, dt je malá změna teploty. Index p znamená, že tlak je konstantní v průběhu rozpínání. Toto je důležité v případě plynů, protože tlak plynu závisí silně na teplotě plynu. Pokud známe součinitel teplotní roztažnosti, můžeme vyjádřit změnu objemu jako V =V V T (5) Velké množství technických zařízení a systémů je založeno na teplotní roztažnosti materiálů. Příkladem je bimetalický pásek. Tento pásek se skládá ze dvou kovových proužků s různou teplotní roztažností. Tyto proužky jsou svařené dohromady. Když začneme pásek zahřívat, jeden z kovů se rozpíná rychleji než druhý. Pásek se vychýlí ve směru kovu s menší teplotní roztažností. Tento bimetalický pásek nejčastěji požíváme v termostatech. Když se v místnosti začne ochlazovat, oba kovy v pásce se začnou smršťovat, jeden více než druhý. Při určité teplotě se páska ohne tak, že se dostane do kontaktu s kovovým kontaktem a spojí tak elektrický obvod, který uvede do chodu topení. Jakmile teplota v místnosti vzroste, bimetalická páska se začne ohýbat v opačném směru. Nakonec se vzdálí od kovového kontaktu, přeruší tak elektrický obvod a tím topení zase vypne. Teplotní roztažnost objektů v reálném světě je často v pozornosti vědců a inženýrů. Například kovové spoje použité na mostech musí být zkonstruovány tak, aby zajistily dostatečný prostor pro teplotní roztažnost jednotlivých dílů mostu.
4 Obrázek 2: kovové spoje částí mostu Železniční koleje jsou v některých úsecích (dlouhé mosty) budovány tak, že mezi jednotlivými kolejnicemi zůstává dilatační mezer Kolejnice tak mohou při změnách délky v horkých a studených dnech klouzat směrem jedna k druhé, aby bylo zajištěno, že nedojde k jejich deformaci vlivem přehřátí. Objemová roztažnost má také mnoho praktických aplikací. Například bychom chtěli vědět, jak se změní objem balónu s rostoucí teplotou. Odpověď na tuto otázku závisí na koeficientu objemové roztažnosti použitého plynu. Objemová roztažnosti plynů se mění od poměrně malé pro vzduch do poměrně velké pro oxid uhličitý a oxid siřičitý.
5 Page 1 of 4 Test znalostí k úloze: Teplotní roztažnost Jaroslav Jíra Vyhodnotit test 1. Délka platinové tyče s rostoucí teplotou roste klesá nemění se 2. Objem jednoho kilogramu vody v intervalu 20 o C - 70 o C s rostoucí teplotou roste klesá nemění se 3. Objem jednoho kilogramu vody v intervalu 0 o C - 4 o C s rostoucí teplotou roste klesá nemění se 4. Součinitel objemové teplotní roztažnosti je definován jako
6 Page 2 of 4 5. Teplota se zvýší o. Délka tyče se zvětší o 6. Teplota se zvýší o. Objem benzínu v nádrži se zvětší o 7. Ocelová tyčka má délku přesně 20 m při 20 o C. Součinitel teplotní délkové roztažnosti oceli je = K -1. O kolik se tyč prodlouží při 100 o C? o 0,38 mm o 8,22 mm o 17,6 mm o 55,1 mm 8. Závislost délky kovové tyče na teplotě je v grafu
7 Page 3 of 4
8 Page 4 of 4 Vyhodnotit test
9 Page 1 of 3 Test znalostí k úloze: Teplotní roztažnost Jaroslav Jíra Vyhodnotit test 1. Délka ocelové tyče s rostoucí teplotou roste klesá nemění se 2. Délka platinové tyče s rostoucí teplotou roste klesá nemění se 3. Objem jednoho kilogramu vody v intervalu 20 o C - 70 o C s rostoucí teplotou roste klesá nemění se 4. Jednotka součinitele teplotní délkové roztažnosti je K.m K.m -1 K -1.m K Součinitel objemové teplotní roztažnosti je definován jako
10 Page 2 of 3 6. Teplota se zvýší o. Délka tyče se zvětší o 7. Teplota se zvýší o. Objem benzínu v nádrži se zvětší o
11 Page 3 of 3 8. Ocelová tyčka má délku přesně 3 m při 30 o C. Součinitel teplotní délkové roztažnosti oceli je = K -1. O kolik se tyč prodlouží při 50 o C? o 0,025 mm o 0,12 mm o 0,66 mm o 1,15 mm Vyhodnotit test
12 Page 1 of 3 Test znalostí k úloze: Teplotní roztažnost Jaroslav Jíra Vyhodnotit test 1. Délka hliníkové tyče s rostoucí teplotou roste klesá nemění se 2. Objem jednoho kilogramu vody v intervalu 20 o C - 70 o C s rostoucí teplotou roste klesá nemění se 3. Objem jednoho kilogramu vody v intervalu 0 o C - 4 o C s rostoucí teplotou roste klesá nemění se 4. Součinitel teplotní délkové roztažnosti je definován jako
13 Page 2 of 3 5. Součinitel objemové teplotní roztažnosti je definován jako 6. Teplota se zvýší o. Délka tyče se zvětší o 7. Teplota se zvýší o. Objem benzínu v nádrži se zvětší o
14 Page 3 of 3 8. Ocelová tyčka má délku přesně 3 m při 30 o C. Součinitel teplotní délkové roztažnosti oceli je = K -1. O kolik se tyč prodlouží při 200 o C? o 0,035 mm o 0,72 mm o 1,66 mm o 5,61 mm Vyhodnotit test
VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Termika VY_32_INOVACE_0301_0212 Teplotní roztažnost látek. Fyzika 2. ročník, učební obory Bez příloh
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
VíceF8 - Změny skupenství Číslo variace: 1
F8 - Změny skupenství Číslo variace: 1 1. K vypařování kapaliny dochází: při každé teplotě v celém jejím objemu pouze při teplotě 100 C v celém objemu kapaliny pouze při normální teplotě a normálním tlaku
VíceDigitální učební materiál
Evidenční číslo materiálu: 516 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 22. 1. 2013 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:
VíceMěření teplotní roztažnosti
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty
VíceMezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid
Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín
VíceČíslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Teplota Číslo DUM: III/2/FY/2/1/13 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Teplota Číslo DUM: III/2/FY/2/1/13 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra Kejkrtová Anotace:
VíceZávislost odporu kovového vodiče na teplotě
4.2.1 Závislost odporu kovového vodiče na teplotě Předpoklady: 428, délková a objemová roztažnost napětí [V] 1,72 3,43 5,18 6,86 8,57 1,28 proud [A],,47,69,86,11,115,127,14,12,1 Proud [A],8,6,4,2 2 4 6
VíceMolekulová fyzika a termika:
Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta
VíceVÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0220 Anotace
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
VíceStřední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1
Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_15_OC_1.01 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tématický celek Ing. Zdenka
VíceLOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
VíceZákladem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
Víceměření teploty Molekulová fyzika a termika Teplotní délková roztažnost V praxi úlohy
měření teploty Molekulová fyzika a termika rozdíl mezi stupnicí celsiovskou a termodynamickou př. str. 173 (nové vydání s. 172) teplo(to)měry roztažnost látek rtuťový, lihový, bimetalový vodivost polovodičů
VíceTeplota. fyzikální veličina značka t
Teplota fyzikální veličina značka t Je to vlastnost předmětů a okolí, kterou je člověk schopen vnímat a přiřadit jí pocity studeného, teplého či horkého. Jak se tato vlastnost jmenuje? Teplota Naše pocity
VíceZměna objemu těles při zahřívání teplotní roztažnost
Změna objemu těles při zahřívání teplotní roztažnost 6. třída - Teplota Změna objemu pevných těles při zahřívání Vezmeme plastové pravítko, prkénko a dva hřebíky. Hřebíky zatlučeme do prkénka tak, aby
Více12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
VíceFYZIKA 6. ročník 2. část
FYZIKA 6. ročník 2. část 23_Hmotnost tělesa... 2 24_Rovnoramenné váhy.... 3 25_Hustota... 4 26_Výpočet hustoty látky... 4 27_Výpočet hustoty látky příklady... 6 28_Výpočet hmotnosti tělesa příklady...
VícePOZNÁMKA: V USA se používá ještě Fahrenheitova teplotní stupnice. Převodní vztahy jsou vzhledem k volbě základních bodů složitější: 9 5
TEPLO, TEPLOTA Tepelný stav látek je charakterizován veličinou termodynamická teplota T Jednotkou je kelvin T K Mezi Celsiovou a Kelvinovou teplotní stupnicí existuje převodní vztah T 73,5C t POZNÁMKA:
Více2.1 Empirická teplota
Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická
VíceMěření teplotní roztažnosti
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty
VíceZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů
ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Mgr. Vladimír Hradecký Číslo materiálu 8_F_1_02 Datum vytvoření 2. 11. 2011 Druh učebního materiálu
VíceTEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie
TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení
Více23_ 2 24_ 2 25_ 2 26_ 4 27_ 5 28_ 5 29_ 5 30_ 7 31_
Obsah 23_ Změny skupenství... 2 24_ Tání... 2 25_ Skupenské teplo tání... 2 26_ Anomálie vody... 4 27_ Vypařování... 5 28_ Var... 5 29_ Kapalnění... 5 30_ Jak určíš skupenství látky?... 7 31_ Tepelné motory:...
VíceVnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie)
Změny skupenství Při změně tělesa z pevné látky na kapalinu nebo z kapaliny na plyn se jeho vnitřní energie zvyšuje musíme dodávat teplo (zahřívat). Při změně tělesa z plynu na kapalinu, nebo z kapaliny
VíceLOGO. Struktura a vlastnosti kapalin
Struktura a vlastnosti kapalin Povrchová vrstva kapaliny V přírodě velmi často pozorujeme, že se povrch kapaliny, např. vody, chová jako pružná blána, která unese např. hmyz Vysvětlení: Molekuly kapaliny
VíceFYZIKA 6. ročník 2. část
FYZIKA 6. ročník 2. část 23_Hmotnost tělesa... 2 24_Rovnoramenné váhy.... 3 25_Hustota... 4 26_Výpočet hustoty látky... 4 27_Výpočet hustoty látky příklady... 6 28_Výpočet hmotnosti tělesa příklady...
VíceDUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia
projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály
VíceTepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007
Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní
VíceZákony ideálního plynu
5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8
VícePřijímací zkoušky FYZIKA
Přijímací zkoušky 2014 2015 FYZIKA 1. Soustava SI je: a) mezinárodní soustava fyzikálních jednotek a veličin b) skupina prvků s podobnými vlastnostmi jako křemík c) přehled fyzikálních vzorců 2. 500 cm
VíceFyzika. 6. ročník. měřené veličiny. značky a jednotky fyzikálních veličin
list 1 / 5 F časová dotace: 2 hod / týden Fyzika 6. ročník F 9 1 02 uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí LÁTKY A TĚLESA látka, těleso,
VíceSEZNAM POKUSŮ TEPLO 1 NÁVODY NA POKUSY MĚŘENÍ TEPLOT. Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2.
TEPLO TA1 419.0008 TEPLO 1 SEZNAM POKUSŮ MĚŘENÍ TEPLOT Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2.) KALORIMETRIE Teplotní rovnováha. (2.1.) Studium kalorimetru. (2.2.) Křivka
Více3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc
VíceVnitřní energie. Teplo. Tepelná výměna.
Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie
VíceVnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Míček upustíme z výšky na podlahu o Míček padá zvětšuje se, zmenšuje se. Celková mechanická energie se - o Míček se od země odrazí a stoupá vzhůru zvětšuje se, zmenšuje se.
VíceTechnologické procesy (Tváření)
Otázky a odpovědi Technologické procesy (Tváření) 1) Co je to plasticita kovů Schopnost zůstat neporušený po deformaci 2) Jak vzniká plastická deformace Nad mezi kluzu 3) Co jsou to dislokace Porucha krystalové
VíceBEZSTYKOVÁ KOLEJ NA MOSTECH
Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce
VíceSTRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 21. 4. 2013 Název zpracovaného celku: STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Pevné látky dělíme na látky: a) krystalické b) amorfní
VíceMol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Více5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m
1. Vypočítejte šířku jezera, když zvuk šířící se ve vodě se dostane k druhému břehu o 1 s dříve než ve vzduchu. Rychlost zvuku ve vodě je 1 400 m s -1. Rychlost zvuku ve vzduchu je 340 m s -1. 1) 449 m
VíceSKUPENSTVÍ LÁTEK Prima - Fyzika
SKUPENSTVÍ LÁTEK Prima - Fyzika Skupenství látek Pevné skupenství Skupenství látek Skupenství látek Pevné skupenství Kapalné skupenství Skupenství látek Pevné skupenství Kapalné skupenství Plynné skupenství
VíceCena za set Kč SESTAVA OBSAHUJE: Nádrž 250 L se dvěma trubkovými výměníky 1 ks. Čerpadlová skupina dvoucestná 1 ks.
Solární system SESTAVA OBSAHUJE: Nádrž 250 L se dvěma trubkovými výměníky 1 ks. Čerpadlová skupina dvoucestná 1 ks. Plochý solární kolektor 2 m 2 ks Solární regulátor 1 ks Solární nádoba 18 L 1 ks Připojovací
VíceŘešení: Fázový diagram vody
Řešení: 1) Menší hustota ledu v souladu s Archimédovým zákonem zapříčiňuje plování jedu ve vodě. Vodní nádrže a toky tudíž zamrzají shora (od hladiny). Kdyby hustota ledu byla větší než hustota vody, docházelo
VíceFyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných
VícePovrch, objem, proporce. Jindřiška Svobodová
Povrch, objem, proporce Jindřiška Svobodová Plocha a objem tělesa Tělesa z geometrického pohledu se liší svými proporcemi, fakta: Plocha povrchu těles roste s 2.mocninou jejich lineárního rozměru Objem
VícePříklady na derivace a integrály. arboristika kombinovaná arboristika denní Robert Mařík,
Příklady na derivace a integrály arboristika kombinovaná 2.11.2018 arboristika denní 27.11.2018 Robert Mařík, Ústav matematiky MENDELU, (podle knihy Stewart: Calculus) 1. Vypočtěte derivace funkcí y =
VíceTermodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
VíceMOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 4. TEPLO, TEPLOTA, TEPELNÁ VÝMĚNA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLO Teplo je míra změny vnitřní energie, kterou systém vymění při styku s jiným
VíceStanovení měrného tepla pevných látek
61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,
VícePoznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1
Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme
VíceTermika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.
Termika Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. 1. Vnitřní energie Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou
Víced p o r o v t e p l o m ě r, t e r m o č l á n k
d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující
VíceFYZIKA II. Petr Praus 6. Přednáška elektrický proud
FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní
Více17. Celá čísla.notebook. December 11, 2015 CELÁ ČÍSLA
CELÁ ČÍSLA 1 Teploměr na obrázku ukazuje teplotu 15 C Říkáme: je mínus 15 stupňů Celsia je 15 stupňů pod nulou je 15 stupňů mrazu Ukaž na teploměru: 10 C, 8 C, +3 C, 6 C, 25 C, +36 C 2 Teploměr Teploměr
VíceVLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken
VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém
VíceTepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
Více215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI
215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI ÚVOD Rektifikace je nejčastěji používaným procesem pro separaci organických látek. Je široce využívána jak v chemické laboratoři, tak i v průmyslu.
VíceÚloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku
Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku Teorie První termodynamický zákon je definován du dq dw (1) kde du je totální diferenciál vnitřní energie a dq a dw jsou neúplné
VíceT0 Teplo a jeho měření
Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná
Více9. Struktura a vlastnosti plynů
9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)
VíceElektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu
Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb
VíceR9.1 Molární hmotnost a molární objem
Fyzika pro střední školy I 73 R9 M O L E K U L O V Á F Y Z I K A A T E R M I K A R9.1 Molární hmotnost a molární objem V čl. 9.5 jsme zavedli látkové množství jako fyzikální veličinu, která charakterizuje
VíceJiří ŠVEC 1, Pavel ŠVEC 2 OBJEMOVÉ ZMĚNY LÁTEK
Jiří ŠC, Pavel ŠC 2 OBJMOÉ ZMĚNY LÁTK Abstrakt Předložený článek se zabývá objemovými změnami látek. Jsou diskutovány objemové změny vyvolané vnějšími silami a teplotní délkovou nebo objemovou roztažností,
VíceMĚŘENÍ S TERMISTORY Václav Piskač, Brno 2011
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 MĚŘENÍ S TERMISTORY Václav Piskač, Brno 2011 NTC termistor je polovodičová součástka,
VíceLOGO. Struktura a vlastnosti plynů Ideální plyn
Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu
VícePRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VIII Název: Kalibrace odporového teploměru a termočlánku fázové přechody Pracoval: Pavel Ševeček stud. skup.:
VícePŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST
PŘÍMÁ EPŘÍMÁ ÚMĚRNOST y kx, kde k je Pro kladné veličiny x, y, které jsou přímo úměrné, platí kladné číslo, které se nazývá koeficient přímé úměrnosti. Kolikrát se zvětší x, tolikrát se zvětší y. Kolikrát
VíceFyzikální praktikum III
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum III Úloha č. 19 Název úlohy: Měření indexu lomu Jaminovým interferometrem Jméno: Ondřej Skácel Obor: FOF Datum měření: 24.2.2016 Datum odevzdání:...
VíceVlastnosti tepelné odolnosti
materiálu ARPRO mohou být velmi důležité, v závislosti na použití. Níže jsou uvedeny technické informace, kterými se zabývá tento dokument: 1. Očekávaná životnost ARPRO estetická degradace 2. Očekávaná
VíceIntegrovaná střední škola, Kumburská 846, Nová Paka Automatizace Snímače teploty. Snímače teploty
Snímače teploty Měření teploty patří k jednomu z nejdůležitějších oborů měření, protože je základem řízení řady technologických procesů. Pro měření teploty jsou stanoveny dvě stupnice: a) Termodynamická
VíceFyzika - Sexta, 2. ročník
- Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
VíceElektrický proud. Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů
Elektrický proud Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů Vodivé kapaliny : Usměrněný pohyb iontů Ionizované plyny: Usměrněný pohyb iontů
VíceVybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
VícePotrubí a armatury. Potrubí -slouží k dopravě kapalin, plynů, sypkých hmot i kusového materiálu
Potrubí a armatury Potrubí -slouží k dopravě kapalin, plynů, sypkých hmot i kusového materiálu Výhody : snadná regulovatelnost dopravovaného množství Možnost vzájemného míšení několik látek dohromady Snadné
VíceSBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v
Více1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:
1 Pracovní úkol 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: (a) platinovýodporovýteploměr(určetekonstanty R 0, A, B). (b) termočlánek měď-konstantan(určete konstanty a, b,
VíceCHEMIE. Pracovní list č. 5 - žákovská verze Téma: Vliv teploty na rychlost chemické reakce, teplota tání karboxylových kyselin. Mgr.
www.projektsako.cz CHEMIE Pracovní list č. 5 - žákovská verze Téma: Vliv teploty na rychlost chemické reakce, teplota tání karboxylových kyselin Lektor: Mgr. Lenka Horutová Projekt: Student a konkurenceschopnost
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
VíceSKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D11_Z_OPAK_T_Skupenske_premeny_T Člověk a příroda Fyzika Skupenské přeměny Opakování
VíceTVÁŘENÍ ZA STUDENA STŘÍHÁNÍ. Mezi tváření za studena patří:
TVÁŘENÍ ZA STUDENA Polotovary vyráběné tvářením (lisováním) za studena 1.Tváření plošné, při kterém se dosáhne žádaného tvaru součásti bez podstatné změny průřezu nebo tloušťky výchozího materiálu. Mechanické
Více7. MECHANIKA TEKUTIN - statika
7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné
VíceSvarové spoje. Svařování tavné tlakové. Tlakové svařování. elektrickým obloukem plamenem termitem slévárenské plazmové
Svarové spoje Svařování tavné tlakové Tavné svařování elektrickým obloukem plamenem termitem slévárenské plazmové Tlakové svařování elektrické odporové bodové a švové třením s indukčním ohřevem Kontrola
VíceKAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Kapaliny Krátkodosahové uspořádání molekul. Molekuly kmitají okolo rovnovážných poloh. Při zvýšení teploty se zmenšuje doba setrvání v rovnovážné
VíceV izolované soustavě nedochází k výměně tepla s okolím. Dokonalá izolovaná soustava neexistuje, nejvíce se jí blíží kalorimetr nebo termoska.
Teplo a vnitřní energie pracovní list Vnitřní energie Všechny tělesa se skládají z částic, které vykonávají neustálý a neuspořádaný pohyb a které na sebe navzájem silově působí. Částice uvnitř všech těles
VíceVNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika
VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má
VíceZáklady vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
VíceIII. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
Více6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)
TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC
VíceV izolované soustavě nedochází k výměně tepla s okolím. Dokonalá izolovaná soustava neexistuje, nejvíce se jí blíží kalorimetr nebo termoska.
Teplo a vnitřní energie pracovní list Vnitřní energie Všechny tělesa se skládají z částic, které vykonávají neustálý a neuspořádaný pohyb a které na sebe navzájem silově působí. Částice uvnitř všech těles
Více1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)
SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.
VíceJEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D17_Z_MOLFYZ_Jevy_na_rozhrani_pevneho_tel esa_a_kapaliny_pl Člověk a příroda Fyzika
VíceMOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 2 metody zkoumání látek na základě vnějších projevů: I. KINETICKÁ TEORIE LÁTEK -studium vlastností látek na základě vnitřní struktury, pohybu a vzájemného působení jednotlivých
VíceNelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
Více5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu
Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství
VíceZMĚNY SKUPENSTVÍ LÁTEK
ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak
VíceZ PRÁŠ. lení. s použit. itím m tlaku bez použit. ití tlaku. ení tvaru výrobku. pevnosti
ZHUTŇOV OVÁNÍ VÝROBKŮ Z PRÁŠ ÁŠKŮ (formování) Účel vytvářen ení tvaru výrobku zajištění manipulační pevnosti Základní rozdělen lení s použit itím m tlaku bez použit ití tlaku Chování částic práš ášků Volně
VíceTERMOMECHANIKA 15. Základy přenosu tepla
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný
VíceTestové otázky za 2 body
Přijímací zkoušky z fyziky pro obor MŽP K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně
VíceTéma sady: Výroba, rozvod a spotřeba topných plynů. Název prezentace: nebezpečné vlastnosti
Téma sady: Výroba, rozvod a spotřeba topných plynů. Název prezentace: nebezpečné vlastnosti Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1243_nebezpečné_vlastnosti_pwp Název školy: Číslo a název
Více