ZOBRAZOVACÍ METODY V OPTICKÉ MIKROSKOPII
|
|
- Miloš Procházka
- před 9 lety
- Počet zobrazení:
Transkript
1 ZOBRAZOVACÍ METODY V OPTICKÉ MIKROSKOPII Prof.RNDr.Antonín Mikš,CSc. Katedra fyziky, FSv ČVUT, Praha miks@fsv.cvut.cz Úvod Jedním z nejrozšířenějších optických přístrojů je mikroskop, který nachází široké uplatnění v řadě oblastí vědy a techniky. Při studiu vlastností předmětů vyšetřovaných pomocí mikroskopu se používá celé řady technik (metod) a to v závislosti na charakteru vyšetřovaného předmětu. I když je mikroskop znám několik století, dosáhly mikroskopové techniky největšího rozvoje v minulém století. Při vyšetřování vlastností předmětu pomocí optické (světelné) mikroskopie se využívá elektromagnetické záření jehož vlnová délka se nachází v oblasti vlnových délek zhruba od 180 nm do 1300 nm. Při interakci elektromagnetického záření s vyšetřovaným předmětem dochází ke změně charakteristik záření, kterými jsou: amplituda, polarizace, fáze a frekvence (vlnová délka). Elektromagnetické záření také silově působí na vyšetřovaný předmět a tohoto jevu lze např. využít pro manipulaci s mikroskopickými objekty (optická pinzeta). Jedním z úkolů mikroskopu je kvalitně a věrně zobrazit vyšetřovaný předmět a poskytnout pozorovateli co nejvíce informací o jemné struktuře předmětu, která je jinak okem nerozlišitelná. Úkolem mikroskopových technik je pak poskytnout pozorovateli hlubší a podrobnější kvantitativní informace o struktuře vyšetřovaného předmětu. Je zde třeba zdůraznit, že kvalita získaných informací je zcela závislá na kvalitě optických soustav (objektivů, okulárů, kondenzorů, filtrů apod.) použitých v daném mikroskopu. Mikroskopové metody Mikroskopové metody se vyvíjely postupně a v řadě případů byl jejich rozvoj podmíněn stavem vědy a techniky v daném časovém období. Fyzikálním základem řady mikroskopových metod je princip superpozice elektromagnetických polí jejichž vlastnosti jsou ovlivňovány jednak vyšetřovaným předmětem, jednak řízeným zásahem do vlastností pole (amplituda, polarizace, fáze, frekvence) v závislosti na dané mikroskopové metodě.
2 Mezi první mikroskopové metody patřilo barvení biologických preparátů vhodnými barvivy, což způsobilo ovlivnění amplitudy světla prošlého preparátem, který pak byl snadno pozorovatelný a jeho jednotlivé struktury byly vzájemně barevně rozlišeny. Nevýhodou tohoto způsobu bylo to, že při procesu barvení byly biologické preparáty většinou usmrceny. Další metodou je tzv. metoda temné pole. Princip metody spočívá v tom, že předmět je osvětlen pomocí kondenzoru se clonou ve tvaru mezikruží (která se nachází v jeho předmětové ohniskové rovině) tak, že numerická apertura světelného svazku vystupujícího z kondenzoru je větší než numerická apertura mikroskopového objektivu použitého k pozorování daného předmětu (kondenzor je centrálně zacloněn). Do objektivu se tedy dostane jen to světlo, které je rozptýleno předmětem. Předmět se pak jeví jako svítící na tmavém pozadí a je dobře viditelný. Pro tuto metodu dodávají firmy speciální kondenzory (paraboloidní nebo kardioidní) pro temné pole, které se zasunou na místo normálního kondenzoru. Metodou obdobnou metodě temného pole je metoda vícebarevného osvětlení, jejíž princip spočívá v tom, že do předmětové ohniskové roviny kondenzoru umístíme clonku např. ve tvaru mezikruží, kde střední část obsahuje filtr propouštějící světlo určité barvy (např. zelený filtr) a vnější část obsahuje filtr propouštějící světlo jiné barvy (např. červený filtr). Předmět se pak jeví červeně zabarvený na zeleném pozadí. Průměr středního filtru musí být zvolen analogicky jako u metody temného pole. Metoda šikmého osvětlení je další metodou, která nám umožňuje zkontrastnit pozorovaný předmět. Její princip spočívá v tom, že do předmětové ohniskové roviny kondenzoru umístíme clonku s kruhovým otvorem vhodného průměru, jehož střed leží mimo optickou osu kondenzoru a kterou lze volně otáčet. Na předmět pak z kondenzoru dopadá šikmý svazek pod určitým směrem, což má pro pozorovatele ten efekt, že se mu předmět jeví plasticky a je dobře viditelný. Vhodným natočením clonky a vhodnou volbou průměru otvoru v clonce lze tento efekt optimalizovat pro daný předmět. Tuto metodu lze snadno realizovat u mikroskopů opatřených tzv. velkým Abbeho osvětlovacím aparátem (kondenzor doplněný vysunovací irisovou clonou). Významným krokem vpřed bylo, když v roce 1934 prof. Frits Zernike objevil metodu fázového kontrastu, za což dostal v roce 1953 Nobelovu cenu. Princip metody spočívá v cílené změně fáze vlnového pole (nejčastěji kvasimonochromatického) neovlivněného vyšetřovaným předmětem, vzhledem k fázi pole ovlivněného tímto předmětem. Pomocí této metody dosáhneme kontrastního obrazu fázového předmětu tj. předmětu, který prakticky neovlivňuje amplitudu vlnového pole, které jím prochází, ale ovlivňuje pouze jeho fázi (např. bakterie, buňky apod.). Výhodou této metody je, že nepoškozuje živé biologické objekty a umožňuje jejich pozorování v čase. Kombinujeme-li metodu fázového kontrastu s metodou šikmého osvětlení, získáme tzv. metodu reliefního fázového kontrastu. Metoda fázového kontrastu vyžaduje většinou speciální objektivy a kondenzor. V současné době nabízí řada firem ke svým mikroskopům zařízení pro fázový kontrast, která se svým technickým provedením značně liší a pozorujeme-li tentýž fázový předmět metodou fázového kontrastu na mikroskopech různých firem, nebude výsledný obraz vždy stejný.
3 Hoffmanův modulační kontrast je další metodou, která umožňuje dosáhnout zvýšení kontrastu obrazu pozorovaného předmětu. Princip metody spočívá v tom, že pomocí speciální clony nacházející se v předmětové ohniskové rovině kondenzoru a amplitudového filtru v obrazové ohniskové rovině objektivu je ovlivňováno (modulováno) množství přímého světla propuštěného objektivem. Další metodou, která doznala velkého rozšíření a popularity, je metoda interferenčního kontrastu. Princip metody spočívá v tom, že spolu necháme interferovat dvě (nebo více) vlnová pole (buď kvasimonochromatická nebo polychromatická), z nichž první (tzv. předmětové pole) interaguje s vyšetřovaným předmětem a druhé pole je referenční. Je-li referenčním polem mírně modifikované předmětové pole, potom mluvíme o tzv. difereciálním interferenčním kontrastu. V případě dvou polí mluvíme o dvousvazkové interferenci (nejvíce užívané), v případě více polí o vícesvazkové interferenci. Nejrozšířenější metodou v mikroskopii je Nomarského diferenciální interferenční kontrast (DIC Nomarski). Pozorování objektů v polarizovaném světle je základem polarizační mikroskopie, která nachází široké uplatnění zejména v mineralogii. Pozorujeme-li dvojlomný objekt v bílém světle a umístíme-li jej mezi dva polarizátory, jejich propustné směry spolu svírají nějaký úhel, potom se nám předmět jeví v různých místech různě zabarven v závislosti na tom, jak velký je dvojlom v daném místě předmětu. Klasický mikroskop zobrazuje vždy celý objem předmětu, přičemž ostrá (dostatečně kontrastně zobrazená) je jen určitá objemová vrstva tohoto předmětu, jejíž tloušťka závisí na hloubce ostrosti mikroskopového objektivu a akomodační hloubce ostrosti pozorovatelova oka. Ostatní části jsou neostré a pozorovatel musí provádět zaostření (posunem objektivu vůči předmětu), chce-li pozorovat jinou vrstvu předmětu. Do pozorovatelova oka se však dostává světlo i z jiných částí předmětu a obraz je tedy zatížen šumem. Tuto nevýhodu klasického mikroskopu odstraňuje konfokální mikroskop, který umožňuje ostře zobrazit vždy jen určitou, velmi tenkou, vrstvu předmětu. Zobrazení této vrstvy je zatíženo šumem mnohem méně, než v případě klasického mikroskopu. Toho je dosaženo tím způsobem, že je předmět osvětlen prakticky bodovým zdrojem a v obrazové rovině objektivu je umístěna dírková clona (velmi malého průměru), která propustí jen světlo pocházející z té vrstvy předmětu, která se nachází v předmětové rovině mikroskopového objektivu. Můžeme tak skenováním svazku vystupujícího z mikroskopového objektivu (pomocí vhodného skenovacího systému) a jeho postupným zaostřováním zobrazit jednotlivé vrstvy předmětu a poté provést např. jeho počítačovou rekonstrukci. Fluorescence je jev spočívající v tom, že některé látky (fluorofory) po ozáření (excitaci) světlem určité vlnové délky.excit vyzařují (emitují) světlo jiné vlnové délky.emit >.excit. Ze zdroje světla je pomocí tzv. excitačního filtru propuštěno pouze světlo určité vlnové délky.exci, které dopadá na vyšetřovaný vzorek. Zde dochází k fluorescenci, přičemž vzorek emituje světlo o vlnové délce.emit >.excit. Pomocí tzv. bariérového filtru je do oka pozorovatele propuštěno jen světlo emitované vzorkem a oko vidí jen ty části vzorku, které emitují světlo o vlnové délce.emit.
4 Využití tohoto jevu v mikroskopii se stalo základem tzv. fluorescenční mikroskopie, která nachází široké uplatnění zejména v oblasti přírodních věd a v medicíně. Pokud např. na jednu protilátku navážeme fluorescein (emituje zelené světlo při excitaci modrým světlem) a na jinou rhodamine (emituje červené světlo při excitaci žluto-zeleným světlem), pak můžeme porovnávat vzájemné pozice různých molekul ve stejné buňce apod. Nevýhodou klasického fluorescenčního mikroskopu je, že části vzorku nad a pod zaostřenou rovinou jsou také excitovány a světlo pocházející z těchto oblastí přispívá k rozmazání obrazu. Dalším jevem s kterým se setkáváme je tzv. fotovybělování (Photobleaching), při kterém fluorofor trvale ztrácí schopnost emitovat záření. To se děje při intenzivním ozáření fluoroforů, ve kterých dochází k nevratným strukturním změnám vedoucím až k úplnému vyblednutí. Spojení totálního odrazu světla na rozhraní dvou prostředí s fluorescencí je základem další mikroskopové metody zvané TIRFM (Total Internal Reflection Fluorescence Microscopy). Princip metody spočívá v tom, že při totálním odrazu světla na rozhraní dvou různých prostředí proniká část světla z prvního prostředí do druhého prostředí, přičemž hloubka průniku je velmi malá. Nachází-li se v tomto prostoru nějaký objekt, pak nastává rozptyl světla na tomto objektu a daný objekt můžeme pozorovat. Je-li v objektu obsažen fluorofor citlivý na extitační světlo, pak dochází k fluorescenci. Objekty nacházející se mimo oblast průniku světla nejsou pozorovatelné. Metoda umožňuje zobrazit i takové objekty, jejichž velikost leží pod mezí rozlišení použitého mikroskopového objektivu. GFP Zelený fluorescenční protein (Green fluorescent protein) Funkce a chování proteinů je výrazně ovlivněno navázáním specifických protilátek. Proto je tento přístup využíván pro pozorování statického rozmístění proteinů a je uplatněn hlavně na zafixovaných (mrtvých) buňkách. Navíc při použití protilátek v živých buňkách je nutné zajistit jejich zavedení do buněk, ke kterému se nejčastěji používá mikroinjekce. Protože navázání protilátky změní a často úplně potlačí skutečnou úlohu proteinu, je tento postup užíván hlavně při zkoumání vlivu inhibice tohoto proteinu na chování buňky. Za účelem studia dynamického chování proteinů byla vyvinuta technika, při které je buňka geneticky pozměněna tak, že produkuje fluorescenční formu daného proteinu. Tato technika využívá vlastností GFP. FRAP Obnovení fluorescence po fotovybělení (Fluorescence Recovery After Photobleaching) K analýze dynamiky proteinů se využívá těchto GFP-fúzních proteinů, které se vybělí uvnitř vybrané oblasti v buňce. Difúzí nevybělených proteinů do vybělené oblasti dochází k postupnému obnovení fluorescence v této oblasti a z měření rychlosti obnovení fluorescence v této oblasti lze získat řadu informací o pohybu daného proteinu. Tato metoda se nazývá FRAP. V posledních letech navíc dochází k vývoji fotoaktivovatelných forem GFP (PA- GFP), které naopak umožňují fotoaktivovat (UV zářením) GFP molekuly ve vybraných místech v buňce. FRET Fluorescenční rezonanční přenos energie (Fluorescence Resonance Energy Transfer). Tato technika umožňuje studovat interakci mezi dvěma různými molekulami (proteiny). Tyto molekuly jsou označeny odlišnými fluorochromy, které jsou zvoleny tak, aby se emisní spektrum jednoho z nich překrývalo s excitačním spektrem druhého. Pokud tyto
5 molekuly vzájemně reagují a jejich fluorochromy se dostanou velice blízko (méně než na 4 nm), energie excitovaného světla se může přenést z jednoho fluorochromu na druhý. Tedy při osvícení komplexu excitačním světlem prvního fluorochromu dostaneme emisní světlo odpovídající druhému fluorochromu. Obvykle je tato metoda používána s dvěma odlišnými spektrálními variantami GFP například při měření interakce mezi signální molekulou a jejím receptorem. STED (Stimulated Emission Depletion) mikroskopie. Jedná se o fluorescenční mikroskopii umožňující dosáhnout rozlišení (30 nm) vyšší než je klasická mez (0,6./NA). Princip metody spočívá v tlumení fluorescence excitovaných molekul v krajních partiích stopy (rozptylové funkce) skenujícího laserového svazku a to pomocí dvou časově synchronizovaných a prostorově koincidujících (souosých) laserových pulsů z nichž první (excitační) provádí excitaci fluorochromů a druhý (STED puls) tlumí (ochuzuje) saturací emisi. K tlumení emise dochází v okrajových partiích stopy excitačního svazku, její střed však není tlumen. Dochází tak k podstatnému zmenšení fluorescenční stopy a tím k výraznému zvýšení rozlišení (Point Spread Function engineering). Holografická mikroskopie je další metodou v mikroskopii, která nám umožňuje provést záznam vlnového pole modulovaného vyšetřovaným předmětem a poté provést jeho rekonstrukci. Princip holografie spočívá v tom, že vyšetřované vlnové pole necháme interferovat s nějakým známým vlnovým polem (referenčním polem). Takto vzniklé interferenční pole zaznamenáme na detektor (fotografická deska, CCD senzor apod.) a získáme tak interferogram, který je trvalým záznamem vyšetřovaného vlnového pole. Z tohoto interferogramu pak můžeme vyšetřované pole kdykoliv zrekonstruovat a to buď fyzicky nebo digitálně. Takto zrekonstruované vlnové pole můžeme dále analyzovat a aplikovat na něj různé mikroskopové metody jako např. fázový a interferenční kontrast, temné pole atd. a to v době, kdy již vyšetřovaný předmět není k dispozici. Existuje ještě celá řada dalších mikroskopových metod jako např. 4Pi mikroskopie, FLIM (Fluorescence Lifetime Imaging Microscopy), FSC (Fluorescence Correlation Spectroscopy), SNOM (Scaning Near-field Optical Microscopy) atd.
1. Teorie mikroskopových metod
1. Teorie mikroskopových metod A) Mezi první mikroskopové metody patřilo barvení biologických preparátů vhodnými barvivy, což způsobilo ovlivnění amplitudy světla prošlého preparátem, který pak byl snadno
Optika. VIII - Seminář
Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení
- světlo je příčné vlnění
Podstata polarizace: - světlo je příčné vlnění - směr vektoru el. složky vlnění (el. intenzity) nemá stálý směr (pól, ke kterému by intenzita směrovala) takové světlo (popř.vlnění) nazýváme světlo (vlnění)
Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková
II Mikroskopie II M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Osvětlovac tlovací soustava I Výsledkem Köhlerova nastavení je rovnoměrné a maximální osvětlení průhledného preparátu, ležícího
Základní pojmy. Je násobkem zvětšení objektivu a okuláru
Vznik obrazu v mikroskopu Mikroskop se skládá z mechanické části (podstavec, stojan a stolek s křížovým posunem), osvětlovací části (zdroj světla, kondenzor, clona) a optické části (objektivy a okuláry).
Umělá inteligence. Příklady využití umělé inteligence : I. konstrukce adaptivních systémů pro řízení technologických procesů
Umělá inteligence Pod pojmem umělá inteligence obvykle rozumíme snahu nahradit procesy realizované lidským myšlením pomocí prostředků automatizace a výpočetní techniky. Příklady využití umělé inteligence
4.6.6 Složený sériový RLC obvod střídavého proudu
4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu
Tvorba trendové funkce a extrapolace pro roční časové řady
Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení
Průtoková cytometrie flow-cytometrie. Biofyzikální ústav Lf, MU Vladan Bernard
Průtoková cytometrie flow-cytometrie Biofyzikální ústav Lf, MU Vladan Bernard Průtoková cytometrie Flow cytometry = flow+cyto+metry volně chápáno jako měření buněk v pohybu průtoková cytometrie Průtoková
Microsoft Office. Word styly
Microsoft Office Word styly Karel Dvořák 2011 Styly Používání stylů v textovém editoru přináší několik nesporných výhod. Je to zejména jednoduchá změna vzhledu celého dokumentu. Předem připravené styly
Tepelná výměna. výměna tepla může probíhat vedením (kondukce), sáláním (radiace) nebo prouděním (konvekce).
Tepelná výměna tepelná výměna je termodynamický děj, při kterém dochází k samovolné výměně tepla mezi dvěma tělesy s různou teplotou. Tepelná výměna vždy probíhá tak, že teplejší těleso předává svou vnitřní
1. Cizinci v České republice
1. Cizinci v České republice Počet cizinců v ČR se již delší dobu udržuje na přibližně stejné úrovni, přičemž na území České republiky bylo k 31. 12. 2011 evidováno 434 153 osob III. Pokud vezmeme v úvahu
FLUORESCENČNÍ MIKROSKOP
FLUORESCENČNÍ MIKROSKOP na gymnáziu Pierra de Coubertina v Táboře Pavla Trčková, kabinet Biologie, GPdC Tábor Co je fluorescence Fluorescence je jev spočívající v tom, že některé látky (fluorofory) po
OPTIKA Vlastnosti světla TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Vlastnosti světla TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Vlastnosti světla Světlo je příčina našich zrakových vjemů. Vidíme jen ty předměty,
Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi
Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi Co je to vlastně ta fluorescence? Některé látky (fluorofory)
Základy světelné mikroskopie
Základy světelné mikroskopie Kotrba, Babůrek, Knejzlík: Návody ke cvičením z biologie, VŠCHT Praha, 2006. zvětšuje max. 2000 max. 1 000 000 cca 0,2 mm stovky nm až desetiny nm rozlišovací mez = nejmenší
Post-Processingové zpracování V módu post-processingu je možné s tímto přístrojem docílit až centimetrovou přesnost z běžné 0,5m.
Výjimečná EVEREST technologie Aplikovaná EVEREST technologie pro dobrou ochranu vícecestného šíření GNSS signálu a pro spolehlivé a přesné řešení. To je důležité pro kvalitní měření s minimální chybou.
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Matyáš Řehák stud.sk.:
Mobilní aplikace pro ios
Předběžná zadávací dokumentace k projektu: Mobilní aplikace pro ios Kontaktní osoba: Jan Makovec, makovec@ckstudio.cz Obsah Cíl projektu... 2 Obrazovky aplikace... 2 Základní prostředí aplikace... 2 Intro...
IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE
Nové formy výuky s podporou ICT ve školách Libereckého kraje IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE Podrobný návod Autor: Mgr. Michal Stehlík IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE 1 Úvodem Tento
Fyzika pro chemiky Ukázky testových úloh: Optika 1
Fyzika pro chemiky Ukázky testových úloh: Optika 1 1. Světelný paprsek prochází rozhraním vzduchu a skla. Pod jakým úhlem se paprsek láme ve skle, dopadá-li paprsek na rozhraní ze vzduchu pod úhlem 45
Poznámky k verzi. Scania Diagnos & Programmer 3, verze 2.27
cs-cz Poznámky k verzi Scania Diagnos & Programmer 3, verze 2.27 Verze 2.27 nahrazuje verzi 2.26 programu Scania Diagnos & Programmer 3 a podporuje systémy ve vozidlech řady P, G, R a T a řady F, K a N
Označování dle 11/2002 označování dle ADR, označování dle CLP
Označování dle 11/2002 označování dle ADR, označování dle CLP Nařízení 11/2002 Sb., Bezpečnostní značky a signály 4 odst. 1 nařízení 11/2002 Sb. Nádoby pro skladování nebezpečných chemických látek, přípravků
Mikroskopy. Světelný Konfokální Fluorescenční Elektronový
Mikroskopy Světelný Konfokální Fluorescenční Elektronový Světelný mikroskop Historie 1590-1610 - Vyrobeny první přístroje, které lze považovat za použitelný mikroskop (Hans a Zaccharis Janssenové z Middleburgu
ANALÝZA MĚŘENÍ TVARU VLNOPLOCHY V OPTICE POMOCÍ MATLABU
ANALÝZA MĚŘENÍ TVARU VLNOPLOCHY V OPTICE POMOCÍ MATLABU J. Novák, P. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán software pro počítačovou simulaci
a + 1 a = φ 1 + φ 2 ; a je konvenční zraková vzdálenost. Po dosazení zobrazovací rovnice bez brýlí do zobrazovací rovnice s brýlemi platí:
OKO ) Člověk vidí nejlépe, když předměty pozoruje ze vzdálenosti 2,5 cm. Jkého druhu je vd jeho ok jké čočky do brýlí mu doporučíte? Odpověď zdůvodněte výpočtem. = 2,5 cm = 0,25 m φ =? (D) Normální oko
Rozdělení přístroje zobrazovací
Optické přístroje Rozdělení přístroje zobrazovací obraz zdánlivý subjektivní přístroje lupa mikroskop dalekohled obraz skutečný objektivní přístroje fotoaparát projekční přístroje přístroje laboratorní
Vrtání závitů bez vyrovnávací hlavičky (G331, G332)
Předpoklady Funkce Technickým předpokladem pro vrtání závitů bez vyrovnávací hlavičky je vřeteno s regulací polohy a systémem pro měření dráhy. Vrtání závitů bez vyrovnávací hlavičky se programuje pomocí
Metody měření tloušťky tenkých vrstev. váhové elektrické optické dotykové speciální
Metody měření tloušťky tenkých vrstev váhové elektrické optické dotykové speciální Váhové metody Mikrováhy přímé měření hmotnosti vrstev Mayerova torzní mikrováha citlivost lepší než 10E-8 g zjištěná hmotnost
Pracovní list vzdáleně ovládaný experiment. Obr. 1: Schéma sériového RLC obvodu, převzato z [3].
Pracovní list vzdáleně ovládaný experiment Střídavý proud (SŠ) Sériový obvod RLC Fyzikální princip Obvod střídavého proudu může mít současně odpor, indukčnost i kapacitu. Pokud jsou tyto prvky v sérii,
Novinky v Maple T.A. 10
Novinky v Maple T.A. 10 Maple T.A. 10 je nová verze aplikace Maple T.A., jejíž nová funkcionalita je zejména založena na požadavcích uživatelů z řad studentů, instruktorů, administrátorů. Došlo k rozšíření
Optická konfokální mikroskopie a mikrospektroskopie. Pavel Matějka
Optická konfokální mikroskopie a Pavel Matějka 1. Konfokální mikroskopie 1. Princip metody - konfokalita 2. Instrumentace metody zobrazování 3. Analýza obrazu 2. Konfokální 1. Luminiscenční 2. Ramanova
Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií
Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinancován
M. : MIKROSKOPIE III MIKROSKOPIE III
MIKROSKOPIE III Martina Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Příprava preparátů pro mikroskopii I 1. NATIVNÍ PREPARÁTY (bez zvláštní přípravy) podélné pohledy vláken, vzorky pigmentů, barviv
CYTOPLAZMATICKÉ PROUDĚNÍ -pohyb v rostlinné buňce
CYTOPLAZMATICKÉ PROUDĚNÍ -pohyb v rostlinné buňce Úvod: Co je to cyklóza a k čemu je dobrá? Cyklóza, neboli cytoplazmatické proudění, je pohyb cytoplazmy v živých buňkách. Lze jej pozorovat v buňkách živočišných
DIPLOMOVÁ PRÁCE DIPLOMA THESIS
DIPLOMOVÁ PRÁCE DIPLOMA THESIS AUTOR PRÁCE AUTHOR VEDOUCÍ PRÁCE SUPERVISOR OPONENT PRÁCE OPPONENT Bc. BcA. GABRIELA POKORNÁ MgA. MIKULÁŠ MACHÁČEK doc. JIŘÍ ELIŠKA BRNO 2014 DOKUMENTACE VŠKP K obhajobě
Energetický regulační
Energetický regulační ENERGETICKÝ REGULAČNÍ ÚŘAD ROČNÍK 16 V JIHLAVĚ 25. 5. 2016 ČÁSTKA 4/2016 OBSAH: str. 1. Zpráva o dosažené úrovni nepřetržitosti přenosu nebo distribuce elektřiny za rok 2015 2 Zpráva
Fluorescenční mikroskopie
Fluorescenční mikroskopie Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1 VYUŽITÍ FLUORESCENCE, PŘÍMÁ FLUORESCENCE, PŘÍMÁ A NEPŘÍMA IMUNOFLUORESCENCE, BIOTIN-AVIDINOVÁ METODA IMUNOFLUORESCENCE
DUM 11 téma: Nástroje pro transformaci obrázku
DUM 11 téma: Nástroje pro transformaci obrázku ze sady: 2 tematický okruh sady: Bitmapová grafika ze šablony: 09 Počítačová grafika určeno pro: 2. ročník vzdělávací obor: vzdělávací oblast: číslo projektu:
Postup práce s elektronickým podpisem
Obsah 1. Obecné informace o elektronickém podpisu... 2 2. Co je třeba nastavit, abyste mohli používat elektronický podpis v MS2014+... 2 2.1. Microsoft Silverlight... 2 2.2. Zvýšení práv pro MS Silverlight...
Extrakce. Princip extrakce. Rozdělení extrakce
Extrakce Extrakce je separační metoda, při které přechází určitá látka ze směsi látek, které se nacházejí v kapalné či tuhé fázi, do fáze jiné. Na rozdíl od destilace, krystalizace a sublimace je extrakce
Název a registrační číslo projektu: Číslo a název oblasti podpory: Realizace projektu: Autor: Období vytváření výukového materiálu: Ročník:
Název a registrační číslo projektu: CZ.1.07/1.5.00/34.0498 Číslo a název oblasti podpory: 1.5 Zlepšení podmínek pro vzdělávání na středních školách Realizace projektu: 02. 07. 2012 01. 07. 2014 Autor:
Systém zvukové signalizace a spouštění motoru na základě stavu světla
Systém zvukové signalizace a spouštění motoru na základě stavu světla vzorová úloha (SŠ) Jméno Třída.. Datum.. 1. Teoretický úvod Cílem této úlohy je sestavit systém sledující stav světla, které bude vyhodnocováno
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XIV Název: Relaxační kmity Pracoval: Pavel Brožek stud. skup. 12 dne 5.12.2008 Odevzdal
Analýza parametrů integrity povrchu u kalených ocelových lišt po frézování
Analýza parametrů integrity povrchu u kalených ocelových lišt po frézování Jan Jersák 2 Při obrábění je materiál v oblasti tvorby třísky velmi rychle a intenzivně plasticky deformován, dochází ke vzniku
vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46).
4. cvičení Metody zvýšení kontrastu obrazu (1. část) 1. Přivření kondenzorové clony nebo snížení kondenzoru vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46).
1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.
Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr
Hodnocení způsobilosti procesu. Řízení jakosti
Hodnocení způsobilosti procesu Řízení jakosti Hodnocení způsobilosti procesu a její cíle Způsobilost procesu je schopnost trvale dosahovat předem stanovená kriteria kvality. Snaha vyjádřit způsobilost
Věra Keselicová. červen 2013
VY_52_INOVACE_VK67 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová červen 2013 9. ročník
Základy dokumentační fotografie
Základy dokumentační fotografie - úvod do problematiky fotodokumentace sbírkových předmětů - základní pravidla fotodokumentace památkových objektů - vybavení pro fotodokumentaci - praktické cvičení studiové
RTG záření. Vlastnosti RTG záření. elektromagnetické vlnění s vlnovými délkami v intervalu < 10-8 ; 10-12 >m.
RTG záření RTG záření elektromagnetické vlnění s vlnovými délkami v intervalu < 10-8 ; 10-12 >m. Dle vlnové délky můžeme rozlišit 2 druhy RTG záření - měkké (vyšší λ= 10-8 -10-10 m) a tvrdé (λ= 10-10 -10-12
Úvod. Analýza závislostí. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Úvod Předmětem této kapitoly bude zkoumání souvislosti (závislosti) mezi
14. Vlnová optika II. Polarizace světla
14. Vlnová optika II. Polarizace světla Světlo je příčné elektromagnetické vlnění. Tvoří jej elektrická a magnetická složka viz obr. Vektor elektrické intenzity je vždy kolmý na směr šíření vlnění i vektor
Metodika pro učitele
Metodika pro učitele Úprava a práce s fotografiemi v programu PhotoScape Obrázkový editor PhotoScape je zdarma dostupný program, který nabízí jednoduchou úpravu obrázků a fotek, je určen začátečníků a
rameno/zápěstí osa x [m]
PŘÍLOHY A. Tabulky naměřených hodnot Tab. 1 Vzdálenosti kloubů (bodů) u cviku č. 1 cvik č. 1 vzdálenosti kloubů (bodů) rameno/zápěstí osa x [m] zápěstí/páteř osa z [m] loket/rameno osa z [m] levá pravá
Jednoduché optické přístroje
H Jednoduché optické přítroje Úkol :. Setrojte jednoduchý dalekohled a určete jeho zvětšení. Setrojte dalekohled e vzpřímeným obrazem 3. Setrojte mikrokop a určete jeho zvětšení Potup :. Setrojení dalekohledu
PROGRAMOVÁNÍ SVĚTELNÝCH OZDOB
Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT PROGRAMOVÁNÍ SVĚTELNÝCH OZDOB Jiří Bendík, Martin Bárta Střední odborná škola strojní a elektrotechnická U Hřiště
Měření parametrů mikročipového laseru a nelineární transmise saturovatelných absorbérů
Úloha č. 6 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2013/2014-2 Měření parametrů mikročipového laseru a nelineární transmise saturovatelných absorbérů Úvod: Lasery umožňují doručit na přesně
Fyzika - Kvarta Fyzika kvarta Výchovné a vzdělávací strategie Učivo ŠVP výstupy
- Kvarta Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo magnetické
3.2.4 Podobnost trojúhelníků II
3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).
Operační systém teoreticky
Přednášky o výpočetní technice Operační systém teoreticky Adam Dominec 2010 Rozvržení Operační systém Uživatelské účty Správa RAM Plánování procesů Knihovny Okna Správa zařízení Rozvržení Operační systém
PŘEHLED KLASICKÝCH A MODERNÍCH MIKROSKOPICKÝCH METOD
PŘEHLED KLASICKÝCH A MODERNÍCH MIKROSKOPICKÝCH METOD Jan Hošek Ústav přístrojové a řídící techniky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, Česká republika Ústav termomechaniky AV ČR,
{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.
9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme
Sekvenční logické obvody
Sekvenční logické obvody 7.přednáška Sekvenční obvod Pokud hodnoty výstupů logického obvodu závisí nejen na okamžitých hodnotách vstupů, ale i na vnitřním stavu obvodu, logický obvod se nazývá sekvenční.
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.15 Konstrukční materiály Kapitola 1 Vlastnosti
Metody spektroskopické adsorpce či emise záření Metody nespektroskopické změna vlastností při průchodu světla
Optické metody Soubor fyzikálních metod Společný mechanismus interakce hmoty a elektromagnetického záření Dělení: Metody spektroskopické adsorpce či emise záření Metody nespektroskopické změna vlastností
Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013
Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Základní škola Ústí nad Orlicí, Komenského 11 Termín zkoušky:
1 Typografie. 1.1 Rozpal verzálek. Typografie je organizace písma v ploše.
1 Typografie Typografie je organizace písma v ploše. 1.1 Rozpal verzálek vzájemné vyrovnání mezer mezi písmeny tak, aby vzdálenosti mezi písmeny byly opticky stejné, aby bylo slovo, řádek a celý text opticky
F Zdravotnictví. Více informací k tomuto tématu naleznete na: ictvi
Ústav zdravotnických informací a statistiky ČR (ÚZIS) ve spolupráci s ČSÚ sleduje od roku 2003 údaje o vybavenosti zdravotnických zařízení v ČR informačními technologiemi, a to prostřednictvím vyčerpávajícího
Obchodní řetězec Dokumentace k návrhu databázového systému
Mendelova univerzita v Brně, Provozně ekonomická fakulta Obchodní řetězec Dokumentace k návrhu databázového systému 1. Úvod Cílem této práce je seznámit čtenáře s návrhem databázového systému Obchodní
Historie výpočetní techniky Vývoj počítačů 4. generace. 4. generace mikroprocesor
4. generace mikroprocesor V roce 1971 se podařilo dosáhnout takové hustoty integrace (množství součástek v jednom obvodu), která umožňovala postavení celého mozku počítače z jednoho obvodu tento obvod
Typové schválení vozidla v EU. Typové schválení vozidla, obecně. Pozadí a účel
Typové schválení vozidla, obecně Typové schválení vozidla, obecně Pozadí a účel Po dlouhou dobu existuje v EU nařízení, které se zabývá typovým schválením osobních automobilů a motocyklů. V roce 2007 bylo
neviditelné a o to více nebezpečné radioaktivní částice. Hrozbu představují i freony, které poškozují ozónovou vrstvu.
OCHRANA OVZDUŠÍ Ovzduší je pro člověka jednou z nejdůležitějších složek, které tvoří životního prostředí a bez které se nemůže obejít. Vdechovaný vzduch a vše, co obsahuje, se dostává do lidského těla
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 0520 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Geometrická optika - Ohniskové vzdálenosti
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Vizualizace teplotních polí metodou plif Návod na cvičení Darina Jašíková Liberec 2011 Materiál vznikl v rámci projektu
Světelný mikroskop - základní pracovní nástroj
Světelný mikroskop - základní pracovní nástroj Tři cíle mikroskopie: zvětšit obraz rozlišit detaily v obraze popsat detaily viditelné okem nebo kamerou Jednoduchý mikroskop jedna čočka nebo jeden systém
Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ
Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 7.10.2013
1.3.1 Kruhový pohyb. Předpoklady: 1105
.. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň
Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví. René Kizek
Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví René Kizek 12.04.2013 Fluorescence je fyzikálně chemický děj, který je typem luminiscence. Luminiscence se dále dělí
STROPNÍ DÍLCE PŘEDPJATÉ STROPNÍ PANELY SPIROLL
4.1.1 PŘEDPJATÉ STROPNÍ PANELY SPIROLL POUŽITÍ Předpjaté stropní panely SPIROLL slouží k vytvoření stropních a střešních konstrukcí pozemních staveb. Pro svou vysokou únosnost, odlehčení dutinami a dokonalému
Euro a stabilizační role měnové politiky. 95. Žofínské fórum Euro s otazníky? V Česku v představách, na Slovensku realita Praha, 13.
Euro a stabilizační role měnové politiky Zdeněk k TůmaT 95. Žofínské fórum Euro s otazníky? V Česku v představách, na Slovensku realita Praha, 13. listopadu 2008 Co nás spojuje a v čem se lišíme Režim
Téma 10: Podnikový zisk a dividendová politika
Téma 10: Podnikový zisk a dividendová politika 1. Tvorba zisku (výsledku hospodaření) 2. Bod zvratu a provozní páka 3. Zdanění zisku a rozdělení výsledku hospodaření 4. Dividendová politika 1. Tvorba hospodářského
Cvičení č. 1: Mikroskopie živých buněk. A. Teorie
Cvičení č. 1: Mikroskopie živých buněk A. Teorie SVĚTELNÁ MIKROSKOPIE Složený světelný mikroskop, který užívá viditelné spektrum vlnových délek světla žárovky, zůstává stále nejdůležitějším nástrojem pro
PNG (Portable Network Graphics)
Formáty uložení dat Používat pokud možno otevřené formáty s dobrou podporou Podstatná je možnost migrace na nový formát Ukládat Master soubory s pokud možno nejúplnější informací o procesu digitalizace
Operativní plán. Operativní řízení stavby
Operativní plán Operativní řízení stavby OPERATIVNÍ PLÁN - celkový časový plán je pro potřeby řízení stavby málo podrobný Operativní plán - zpracovávají se podrobnější časové plány operativní plány (OP)
Průřezové téma - Enviromentální výchova Lidské aktivity a životní prostředí Zdroje energie I.
Průřezové téma - Enviromentální výchova Lidské aktivity a životní prostředí Zdroje energie I. Anotace: Prezentace slouží jako výukový materiál k průřezovému tématu EV Lidské aktivity a životní prostředí
Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448
Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu
Lokální a globální extrémy funkcí jedné reálné proměnné
Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální
Techniky mikroskopie povrchů
Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní
Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky
Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.
(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.
I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n
Využití válcových zkušeben při ověřování tachografů. Prezentace pro 45. konferenci ČKS 1. část: metrologické požadavky
Využití válcových zkušeben při ověřování tachografů Prezentace pro 45. konferenci ČKS 1. část: metrologické požadavky Lukáš Rutar, GŘ Brno Související nařízení a předpisy: TPM 5210-08 Metody zkoušení při
Číslo projektu CZ.1.07/1.4.00/21.1405 Název sady materiálů Technické práce 7. ročník Název materiálu VY_32_INOVACE_07_Plátování Autor.
Číslo projektu CZ.1.07/1.4.00/21.1405 Název sady materiálů Technické práce 7. ročník Název materiálu VY_32_INOVACE_07_Plátování Autor Frait Josef Plátování Plátování je jeden ze způsobů konstrukčního spojení
Uplatnění nových informačních technologií ve výuce a na zdravotnickém pracovišti. Marie Marková
Uplatnění nových informačních technologií ve výuce a na zdravotnickém pracovišti Marie Marková Podpora mobilních technologií na pracovišti onkologických sester Supporting innovative learning approaches
Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013
Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Gymnázium, Šternberk, Horní náměstí 5 Termín zkoušky: 13.
PŘÍLOHA č. 2B PŘÍRUČKA IS KP14+ PRO OPTP - ŽÁDOST O ZMĚNU
PŘÍLOHA č. 2B PRAVIDEL PRO ŽADATELE A PŘÍJEMCE PŘÍRUČKA IS KP14+ PRO OPTP - ŽÁDOST O ZMĚNU OPERAČNÍ PROGRAM TECHNICKÁ POMOC Vydání 1/7, platnost a účinnost od 04. 04. 2016 Obsah 1 Změny v projektu... 3
Napájecí soustava automobilu. 2) Odsimulujte a diskutujte stavy které mohou v napájecí soustavě vzniknout.
VŠB-TU Ostrava Datum měření: 3. KATEDRA ELEKTRONIKY Napájecí soustava automobilu Fakulta elektrotechniky a informatiky Jména, studijní skupiny: Zadání: 1) Zapojte úlohu podle návodu. 2) Odsimulujte a diskutujte
2.7.2 Mocninné funkce se záporným celým mocnitelem
.7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,
Infračervená spektroskopie
Infračervená spektroskopie 1 Teoretické základy Podstatou infračervené spektroskopie je interakce infračerveného záření se studovanou hmotou, kdy v případě pohlcení fotonu studovanou hmotou mluvíme o absorpční