Obor Materiálová chemie
|
|
- Luděk Zeman
- před 9 lety
- Počet zobrazení:
Transkript
1 Obor Materiálová chemie Státní závěrečná zkouška sestává ze dvou povinných předmětů a jednoho předmětu volitelného ze tří možností. Náplň zkoušek je koncipována na základě teoretických znalostí a praktických zkušeností získaných v profilových předmětech studijního oboru Materiálová chemie. Povinné předměty SZZ Syntéza, struktura a vlastnosti materiálů Kovové materiály Volitelné předměty SZZ Fyzikální metody studia struktury a vlastností materiálů Nekovové materiály Teoretické metody studia struktury a vlastností materiálů Zkouška klade důraz na důkladné porozumění souvislostem a poznatkům získaným absolvováním povinných a povinně volitelných kurzů magisterského studia, přihlédnuto je ke specializaci kandidáta, dané zaměřením jeho diplomové práce. Uchazeč koná zkoušku ze dvou povinných předmětů SZZ a jednoho volitelného předmětu SZZ. Rámcové okruhy témat ke státní závěrečné zkoušce jsou uvedeny níže. Součástí státní závěrečné zkoušky je též obhajoba diplomové práce, při níž má uchazeč prokázat schopnost prezentovat získané výsledky a orientovat se v problematice specializované oblasti i širší disciplíny na současné odborné úrovni. Obhajoba diplomové práce má formu ústní prezentace, během níž uchazeč seznámí komisi a posluchače s tématem a cíli práce, řešenými problémy, použitými metodami a získanými výsledky. Odpovídá na připomínky a dotazy obsažené v posudcích vedoucího a oponenta práce a reaguje na dotazy vznesené v průběhu diskuse.
2 Okruhy otázek: Povinné předměty 1. Syntéza, struktura a vlastnosti materiálů Základní typy přípravy anorganických materiálů. Redukční metody, spalovací metody, sol-gel metody, srážecí reakce, atd. Reakce v tuhém stavu a jejich kinetika. Mechanochemická syntéza. Syntéza za asistence mikrovlnného záření. Vysokotlaké metody syntézy, Detonační Reakce. Syntéza v plynné fázi a heterogenním prostředí (aerosolové metody). Syntéza z prekurzorů, reakce v taveninách a iontových solích, syntéza iontová. Hydrotermální syntéza. Sonochemická syntéza. Syntéza porézních materiálů. Zeolity. Vrstevnaté materiály. Růst monokrystalů. Stavební hmoty a silikáty. Výroba maltovin, cementů, sádry, keramiky, porcelánu, skla, výroba technických materiálů na bázi elementárního křemíku a polovodičů. Složení, chemie, vlastnosti a zpracování přírodních surovin. Dřevo, celulóza, viskóza, papír, třísloviny, silice, glukóza, lignin. Příprava, vlastnosti a aplikace polovodičů. Základy polovodičové technologie (růst krystalů, zonální tavba, difuze p-n přechod). Syntéza a vlastnosti kompaktních, vláknitých materiálů, tenkých vrstev a nanostrukturovaných materiálů. Vlastnosti krystalů. Přímá a reciproká mřížka, Bravaisovy mřížky, interference, radiální distribuční funkce. Povrchy pevných látek. Popis krystalografie povrchu, směrů a rovin. Uspořádání fází a jejich krystalová mřížka. Rovnovážná termodynamika chemických reakcí při přípravě materiálů. Termodynamické stavové funkce vícesložkových soustav. Rovnovážná konstanta reakce. Chemický potenciál a aktivita. Gibbsova energie reálné soustavy, dodatkové funkce. Fázové rovnováhy s kapalnou fází (destilace, extrakce, sublimace). Fázové diagramy vícesložkových soustav (koexistence tuhých fází, odstraňování nečistot). Příklady reálných fázových diagramů technických materiálů. Elektronová struktura pevných látek, chemická vazba, Pásová teorie. Stereochemie anorganických, koordinačních a organokovových sloučenin. Symetrické vlastnosti molekul. Bodové a prostorové grupy symetrie. Isomerie koordinačních sloučenin. Chiralita. Struktura a vlastnostmi allotropů prvků hlavních podskupin, homopolyatomických kationtů a aniontů nekovů a chemií klecovitých molekul a klastrů vytvářených P-prvky. Teorie PSEPT. Koordinační chemie. Komplexotvorné rovnováhy, mechanismy tvorby komplexů ve vodné fázi a způsoby stanovení konstant stability. Praktické využití komplexotvorných reakcí. Difúze. Základní pojmy. Atomární mechanismy difúze. Fickovy zákony. Okrajové podmínky difúze. Řešení základních difúzních problémů. Fázové transformace v kovech a jejich slitinách. Stabilní a metastabilní fázové rovnováhy, bezdifúzní a difúzní fázové přeměny, nukleace a růst. Fázové rovnováhy a difúzí řízené děje v chemické laboratoři a technologické praxi: hrubnutí a rozpouštění fází, homogenizace.
3 2. Kovové materiály Základní typy krystalových mřížek kovů. Těsné uspořádání. Elektronová struktura kovů. Fyzikální vlastnosti kovových materiálů (el. a tepelná vodivost, difúze, optické vlastnosti). Optické, termické, korozní a chemické vlastnosti kovů a jejich slitin. Elektrické, magnetické a mechanické vlastnosti kovů a jejich slitin. Vlastnosti kovů a slitin, strukturní defekty v kovech, jejich vliv na mechanické vlastnosti. Difúze a migrace poruch krystalové mříže (dislokace, vrstevné chyby, hranice zrn a fází). Metody studia mikrostruktury kovů a jejích slitin. Metody zkoušení kovů a jejich slitin (chemické, fyzikální, fyzikálně chemické, strukturní, mechanické). Pevnostní vlastnosti kovových materiálů (deformace, moduly pevnosti, zpevnění, houževnatost). Elektrochemická příprava kovů a jejich slitin. Kovové kompozity. Nekrystalické kovové materiály (kovová skla). Intermetalika a stechiometrické sloučeniny ve slitinách. Termodynamický popis fází kovů a jejich slitin. Základní typy fázových diagramů kovů a jejich slitin. Krystalizace kovů a jejich slitin. Prášková metalurgie a její aplikace. Kompozitní materiály. Příprava, charakterizace, vlastnosti a použití nanočástic kovů a jejich slitin. Základní typy železných slitin. Výroba slitin na bázi Fe-C. Fázové diagramy. Litina, ocel uhlíková a legovaná, třídy materiálů, ovlivňování struktury ocele tepelné zpracování, TTT diagramy ocelí. Povrchové úpravy materiálů na bázi Fe. Základní typy neželezných slitin a jejich výroba. Technologie přípravy kovových materiálů (krystalizace, kontinuální a diskontinuální technologie, tváření, odlévání, obrábění, povrchové úpravy). Lehké kovy a jejich slitiny (Al,Mg), nízkotavné kovy a jejich slitiny (Pb, Zn, Sn, pájky). Kovy a jejich slitiny se střední teplotou tání (Cu) a s vysokou teplotou tání (Ti). Technologie a vlastnosti významných kovů a jejich slitin (Ni, Pt, Zr, Mo, W, Co, ). Výroba uranu a technologie přepracování vyhořelého jaderného paliva. Svařování kovů. Pájení. Volitelné předměty 1. Fyzikální metody studia struktury a vlastností materiálů Optická mikroskopie (mikroskop, zobrazovací metody, polarizované světlo, diferenciální interferenční kontrast, fázový kontrast, barevná metalografie). Metody přípravy vzorků pro optickou mikroskopii (broušení, leštění, chemické úpravy, elektrochemické metody). Elektronová mikroskopie. Interakce elektronového svazku s materiály. Mechanismy rozptylu (nepružný, pružný, emise elektronů ze vzorku, sekundární a odražené elektrony). Příprava vzorků.
4 SEM (REM). Schéma rastrovacího mikroskopu. Tvorba obrazu. Kontrast (chemický, topografický). Zobrazovací režimy, detektory signálů. Požadavky na vzorky, příprava vzorků. Využití SEM. TEM. Charakteristika, schéma, základní konstrukční prvky. Tvorba obrazu. Difrakční konstanta. Rozptylový a difrakční kontrast. Difrakční obrazce a jejich interpretace. Příprava vzorků pro TEM, využití. Mikroskopie rastrující sondy (SPM). Obecná charakteristika metod, rozdělení podle druhu interakce (STM, AFM, SNOM, MFM, ). Rastrovací tunelová mikroskopie (STM). Mikroskopie atomových sil (AFM), princip a využití. Základy spektroskopických metod. Optická emisní spektroskopie (OES). OES s buzením v plazmatu (ICP, DCP). Elektronová mikroanalýza. Princip, detekce záření. Elektronová mikrosonda. Energiově disperzní analýza (EDA), vlnově disperzní analýza (WDA). Příprava vzorků, metody kvalitativní mikroanalýzy. Metody analýzy povrchu. Všeobecný princip. Augerovy elektronové spektroskopie (AES), SIMS, LEED, XPS, APS, RBS. Princip a využití. Specifika charakterizace nanočástic metodou DLS. Strukturní rentgenografie. Vznik a vlastnosti rtg záření, interakce rtg záření s pevnou látkou. Absorpce rtg záření a její využití. Strukturní rentgenografie využití difrakce rtg záření ke studiu struktury, Braggova rovnice. Difrakce na krystalové mřížce - Laueho metoda, Ewaldova konstrukce. Základy teorie rtg difrakce. Fyzikální podstata jevu - atom jako rozptylové centrum. Základní metody studia mono- a polykrystalických materiálů. Moderní metody. Hmotnostní spektrometrie. Moessbauerova spektroskopie. Nukleární magnetická resonanční spektroskopie. Termická analýza (křivky chladnutí, DTA, fdsc, cdsc). Rozšířená termická analýza (TG, TFIR, MS, Dilatometrie, atd.). Vlastnosti materiálů a jejich zkoušení. Délková a objemová roztažnost. Tepelná a elektrická vodivost. Korozní a chemické zkoušky. Druhy zkoušek mechanických vlastností materiálů. Statické a dynamické (rázové, cyklické). Nízkoteplotní a vysokoteplotní. Statické zkoušky pevnosti a creepu. Mez únavy. Typy lomu. Testování tvrdosti. 2. Nekovové materiály Charakteristické vlastnosti makromolekulárních látek. Střední molekulová hmotnost, polymerizační stupeň, distribuční křivka, metody měření molekulových hmotností polymerů. Termodynamické a strukturně funkční podmínky vzniku makromolekul. Konfigurace a konformace polymerů. Základní charakteristiky stupňových a řetězových polymerizací. Odlišnosti a příklady typických zástupců polymerizačních reakcí. Polykondenzace. Technické polymery: polyestery, polyamidy, fenol-, močovinoa melamino-formaldehydové pryskyřice, polysiloxany. Termoplasty a termosety. Termické chování polymerů, teplota skelného přechodu, fyzikální a skupenské stavy, viskoelasticita. Technické polymery připravované polyadicí: polyurethany, epoxidové pryskyřice. Radikálové polymerizace: mechanismus, iniciace, propagace, terminace, přenosové reakce, inhibitory a retardéry, kinetika radikálové polymerizace, gelový efekt, kopolymerizace. Způsoby provádění řetězových polymerizací: bloková, roztoková, suspenzní a emulzní polymerizace. Kationtová a aniontová polymerizace: iniciátory, růst řetězce, terminace a přenos, živé polymery, iontové kopolymerizace.
5 Koordinační stereospecifické polymerizace, Ziegler-Nattovy katalyzátory. Polymery připravované řetězovou polymerizací: polyethylen, polypropylen, polystyren, polyvinylchlorid, polytetrafluoroethylen, polyvinylalkohol, polyvinylacetát, polymethylmethakrylát, (postup výroby, vlastnosti a aplikace). Kopolymery: butadien-styrenový kaučuk, butadienakrylonitrilový kaučuk, houževnatý polystyren, kopolymery styren-akrylonitryl, ABS, (postup výroby, vlastnosti a aplikace). Přírodní polymery: polysacharidy: celulóza, škrob, hemicelulosy, lignin, přírodní kaučuk, gutaperča. Speciální polymery, tepelně odolné polymery, elektrovodivé polymery, polymery využívané v lékařství, dendrimery, perspektiva využití polymerů. Mechanické vlastnosti polymerů a metody jejich stanovení. Syntéza tenkých filmů (CVD, PVD). Příprava pigmentů. Vlastnosti nanočástic (elektronová struktura, klastry, krystalografie, magnetické a optické vlastnosti, termodynamické vlastnosti povrchu a jádra, reaktivita). Aplikace nanočástic (senzory, katalýza, nanotechnologie, medicína, atd.). Metody a příklady syntézy nanočástic. Bottom-up & top-down, syntéza z plynné fáze, pyrolýza, mokrá syntéza z prekurzorů, soll-gel, práškové metody, atd.) Příprava nanočástic (kvantové tečky, CNTs, nanokompozity). 3. Teoretické metody studia struktury a vlastností materiálů Elektronová struktura materiálů. Vlastnosti elektronů (difrakce, elektrony jako částice i záření, kvantová čísla). Schrodingerova rovnice. Elektronová stavba atomů a molekul. Chemická vazba (polární, nepolární, iontová, kovová). Molekuly a látky v elektrickém poli (polarizovatelnost, dipolový moment, permitivita dielektrika, průchod světla). Index lomu a molární refrakce. Rtg. fluorescence. Absorpce UV a vis. Záření (elektronová spektroskopie). Absorpce IČ a MW záření (spektra vibrační, rotační). Ramanova spektroskopie. Molekuly v magnetickém poli. Magnetická indukce, magnetizace, anisotropie magnetické susceptibility. Dielektrika, paramagnetika, ferromagnetika. Základní vlastnosti dielektrik dielektrika a feroelektrika, piezoelektricita, statická permitivita, optické vlastnosti dielektrik. Chemická kinetika a její metody. Rychlost reakce, rychlostní konstanta, řád reakce. Určení řádu reakce (metoda počátečních rychlostí, integrační, frakčních časů, izolační). Reakční mechanismus a rychlostní zákony (molekularita, elementární reakce). Problematika kinetiky chemických reakcí. Reakce následné, souběžné a zpětné reakce (ustálený stav, rychlost určující krok). Katalyzované reakce (homogenní, enzymatické, heterogenní). Řetězové reakce (polymerace, rozvětvený řetězec). Reakční termodynamika (Arrheniova rovnice, kolizní teorie a teorie přechodového stavu). Diferenciální podmínka fázové rovnováhy, integrální podmínka fázové rovnováhy. Souvislosti mezi fázovými, fyzikálními a mechanickými vlastnostmi. Fázové pravidlo a stabilita fází. Tuhé roztoky a intermediální fáze, intermetalika. Semiempirické (CALPHAD) a Ab-initio výpočty typy fázových diagramů. Statistická termodynamika. Molekulární stavy a jejich distribuce. Boltzmannovo rozdělení a partiční funkce. Vztah termodynamických vlastností k partiční funkci. Statistická termodynamika reálných plynů a tekutin. Statistická termodynamika směsí: model regulárního roztoku. Statistická termodynamika ideálního krystalu.
6 Drudeho model elektronového plynu, elektrická a tepelná vodivost elektronového plynu Sommerfeldův model, Fermiho koule, hustota stavů Elektrony v periodickém potenciálu, pásová struktura Fermiho plocha. Kmity krystalové mřížky. Klasický popis harmonického krystalu, akustické a optické fonony interakce fononů s elmag. polem, polaritony. Elementy kvantového popisu, Debyeho model. Literatura: ATKINS, Peter William. Physical chemistry. 6th ed. Oxford: Oxford University Press, ISBN SCHUBERT, Ulrich a Nicola HÜSING. Synthesis of Inorganic Materials. Weinheim: Wiley-VCH, s. ISBN X. MÜLLER, Ulrich. Inorganic Structural Chemistry. 2. vyd. : John Wiley & Sons., ISBN INTERRANTE, L. V. a M. J. HAMPDEN-SMITH. Chemistry of Advanced Materials, An Overview. New York: Wiley-VCH, ISBN BRUCE, D. W. a D. O'HARE. Inorganic Materials. Chichester: John Wiley & Sons, ISBN YANAGIDA, H. a K. KUNIHITO a M. MIYAYAMA a H. YAMADA. The Chemistry of Ceramics. : John wiley & Sons, ISBN WEST, Anthony R. Basic Solid State Chemistry. Second Edition. Chichester: John Wiley & Sons, ISBN WELLER, Mark. Inorganic Materials Chemistry. Oxford, UK: Oxford University Press, ISBN X. CALLISTER, William D. Fundamentals of materials science and engineering : an interactive e.text. 5th ed. New York: John Wiley & Sons, ISBN I.Prokopová, Makromolekulární chemie, VSCHT Praha, ELIAS, Hans-Georg. Macromolecules. Weinheim: Wiley-VCH, ISBN BOUBLÍK, Tomáš. Statistická termodynamika. Vyd. 1. Praha: Academia, s. ISBN GILLESPIE, Ronald J. a Paul L. A. POPELIER. Chemical bonding and molecular geometry : From Lewis to Electron Densities. Edited by Petr C. Ford. Oxford: Oxford University Press, s. ISBN ZELEWSKY, Alexander von. Stereochemistry of coordination compounds. Chichester: John Wiley & Sons, ISBN Nanomaterials and nanochemistry. Edited by C. Brechignac - P. Houdy - M. Lahmani. Berlin: Springer, ISBN PORTER, David A. Phase Transfformations in Metal and Alloys. New York: Van Nostrand Reinhol, s. ISBN
7 ZANGWILL, Andrew. Physics at surfaces. 1st pub. Cambridge: Cambridge University Press, ISBN MASEL, Richard I. Chemical kinetics and catalysis. New York: John Wiley & Sons, ISBN HOVORKA, František. Technologie chemických látek. Praha: Vydavatelství VŠCHT Praha, s. ISBN URL MLEZIVA, Josef. Polymery - výroba, struktura, vlastnosti a použití. 1. vyd. Praha: Sobotáles, s. ISBN
1. rok studia. Obor Materiálová chemie doporučený studijní plán. kód název předmětu kredit rozsah ukončení vyučující Podzimní semestr
Obor Materiálová chemie doporučený studijní plán 1. rok studia kód název předmětu kredit rozsah ukončení vyučující Podzimní semestr C5020 Chemická struktura 2+2 2/0 zk Brož C5030 Chemická struktura - seminář
MATERIÁLOVÁ PROBLEMATIKA PŘI SEPARACI PLYNŮ A PAR
MATERIÁLOVÁ PROBLEMATIKA PŘI SEPARACI PLYNŮ A PAR Ing. Miroslav Bleha, CSc. Ústav makromolekulární chemie AV ČR, v.v.i. bleha@imc.cas.cz Membrány - separační medium i chemický reaktor Membránové materiály
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE PLASTY VZTAH MEZI STRUKTUROU A VLASTNOSTMI Obsah Definice Rozdělení plastů Vztah mezi strukturou a vlastnostmi chemické složení a tvar molekulárních jednotek
Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Ing. Ivana Bočková Číslo projektu CZ.1.07/1.5.00/34.
Škola Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Ing. Ivana Bočková Číslo projektu CZ.1.07/1.5.00/34.0394 Číslo dumu VY_32_INOVACE_14_MY_1.01 Název Vlastnosti
3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost
Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 25.9.2012
Označení materiálu: VY_32_INOVACE_ZMAJA_VODARENSTVI_15 Název materiálu: Přehled vlastností a struktura materiálu Tematická oblast: Vodárenství 1. ročník instalatér Anotace: Prezentace uvádí základní vlastnosti
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Příloha formuláře C OKRUHY
Příloha formuláře C OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd Základy fyziky kondenzovaných látek 1. Vazebné síly v kondenzovaných látkách
Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ
Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 7.10.2013
STRUKTURA NANOMATERIÁLŮ: RENTGENOVÁ DIFRAKCE
STRUKTURA NANOMATERIÁLŮ: RENTGENOVÁ DIFRAKCE BUŇKA STRUKTURA PEVNÝCH LÁTEK IONTOVÉ POLOMĚRY A KOORDINACE X 7+ X 6+ X 5+ X 4+ X 3+ X 2+ X 1+ X 0 X 1- X 2- tetraedr oktaedr STRUKTURNÍ FORMY UHLÍKU 3D Amorphous
PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A)
PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A) GARANT PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc. (ÚFI) VYUČUJÍCÍ PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc., Ing. Stanislav Voborný, Ph.D. (ÚFI) JAZYK
Okruhy pro bakalářské zkoušky z oboru Technologie konzervování restaurování, specializace kovové materiály Dějiny umění
Okruhy pro bakalářské zkoušky z oboru Technologie konzervování restaurování, specializace kovové materiály Materiály památkových objektů kovy Volitelný chemický: Anorganická chemie 1. Románské umění (Francie,
Matematika, Fyzika. MGV - Školní vzdělávací program osmileté studium Chemie 1
Vyučovací předmět Chemie Týdenní hodinová dotace 2 + 1LC hodin Ročník 1. ročník Roční hodinová dotace 108 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy zhodnotí vztah vývoje vědy a lidské
PRÁŠKOVÁ METALURGIE. Ing. V. Kraus, CSc. Opakování z Nauky o materiálu 1
PRÁŠKOVÁ METALURGIE Ing. V. Kraus, CSc. Opakování z Nauky o materiálu 1 PRÁŠKOVÁ METALURGIE Progresívní technologie vysoké využití materiálu nízká teplota zpracování vysoká čistota možnost spojení nejen
Fyzikální vlastnosti materiálů FX001
Fyzikální vlastnosti materiálů FX001 Ondřej Caha 1. Vazba v pevné látce, elastické a tepelné vlastnosti materiálů 2. Elektrické vlastnosti materiálů 3. Optické vlastnosti materiálů 4. Magnetické vlastnosti
Základy koloidní chemie
Základy koloidní chemie verze 2013 Disperzní soustava směs nejméně dvou látek (složek) Nejběžnějšími disperzními soustavami jsou roztoky, ve kterých složku, která je ve směsi v přebytku, nazýváme rozpouštědlo
Metalografie ocelí a litin
Metalografie ocelí a litin Metalografie se zabývá pozorováním a zkoumáním vnitřní stavby neboli struktury kovů a slitin. Dále také stanoví, jak tato struktura souvisí s chemickým složením, teplotou a tepelným
Maturitní okruhy Fyzika 2015-2016
Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní
RTG záření. Vlastnosti RTG záření. elektromagnetické vlnění s vlnovými délkami v intervalu < 10-8 ; 10-12 >m.
RTG záření RTG záření elektromagnetické vlnění s vlnovými délkami v intervalu < 10-8 ; 10-12 >m. Dle vlnové délky můžeme rozlišit 2 druhy RTG záření - měkké (vyšší λ= 10-8 -10-10 m) a tvrdé (λ= 10-10 -10-12
Studijní program: Konzervování-restaurování objektů kulturního dědictví
Magisterské státní závěrečné zkoušky Studijní program: Konzervování-restaurování objektů kulturního dědictví Studijní obor: Technologie konzervování a restaurování 1. Povinný okruh: Humanitní blok 2. Jeden
Střední odborná škola a Střední odborné učiliště, Dubno
Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_ELT-1.EI-15-TERMOPLASTY Střední odborná škola a Střední odborné učiliště, Dubno Ing. Jiří Zinek
Oddělení fyziky vrstev a povrchů makromolekulárních struktur
Oddělení fyziky vrstev a povrchů makromolekulárních struktur Témata diplomových prací 2014/2015 Studium změn elektrické vodivosti emeraldinových solí vystavených pokojovým a mírně zvýšeným teplotám klíčová
Zkušební otázky ke státní závěrečné zkoušce
Zkušební otázky ke státní závěrečné zkoušce Předměty SZZ pro specializaci PTM02 1) Předměty aplikovaného základu oboru I (PAZOI): Fázové přeměny, Fyzika pevných látek, Povrchové inženýrství 2) Předměty
Identifikace barviv pomocí Ramanovy spektrometrie
Identifikace barviv pomocí Ramanovy spektrometrie V kriminalistických laboratořích se provádí technická expertíza písemností, která se mimo jiné zabývá zkoumáním použitých psacích prostředků: tiskových
18MTY 1. Ing. Jaroslav Valach, Ph.D.
18MTY 1. Ing. Jaroslav Valach, Ph.D. valach@fd.cvut.cz Informace o předmětu http://mech.fd.cvut.cz/education/bachelor/18mty Popis předmětu Témata přednášek Pokyny k provádění cvičení Informace ke zkoušce
MAKROMOLEKULÁRNÍ LÁTKY
MAKROMOLEKULÁRNÍ LÁTKY 1. Základní pojmy - makromolekulární látky = molekulové systémy složené z velkého počtu atomů, které jsou vázány chemickou vazbou do dlouhých řetězců - řetězce jsou tvořeny stavebními
Gymnázium a Střední odborná škola, Podbořany, příspěvková organizace
Gymnázium a Střední odborná škola, Podbořany, příspěvková organizace Maturitní témata 2016 CHEMIE 1) Elektronový obal atomu a) Pravidlo o zaplňování orbitalů, tvary orbitalů b) Elektronová konfigurace
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: 22 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:
Elektrické vlastnosti pevných látek
Elektrické vlastnosti pevných látek elektrická vodivost gradient vnějšího elektrického pole vyvolá přenos náboje volnými nositeli (elektrony, díry, ionty) měrná vodivost = e n n e p p [ -1 m -1 ] Kovy
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Heterogenní katalýza. Úvod do studia katalýzy
Heterogenní katalýza Úvod do studia katalýzy Obsah : Seznámení s katalýzou Příklady katalýzy z praxe Teorie a pojmy v katalýze Speciální temata v katalýze Praxe katalýzy katalytický experiment Techniky
Metody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
Polymorfismus kovů Při změně podmínek (zejména teploty), nebo např.mechanickým působením změna krystalické struktury.
Struktura kovů Kovová vazba Krystalová mříž: v uzlových bodech kationy (pro atom H: m jádro :m obal = 2000:1), Mezi kationy: delokalizovaný elektronový plyn, vyplňuje celé kovu těleso. Hmotu udržuje elektrostatická
Podstata plastů [1] Polymery
PLASTY Podstata plastů [1] Materiály, jejichž podstatnou část tvoří organické makromolekulami látky (polymery). Kromě látek polymerní povahy obsahují plasty ještě přísady (aditiva) jejichž účelem je specifická
Učební osnova vyučovacího předmětu Silnoproudá zařízení. 3. ročník (2 hodiny týdně, celkem 52 hodin)
Učební osnova vyučovacího předmětu Silnoproudá zařízení 3. ročník (2 hodiny týdně, celkem 52 hodin) Obor vzdělání: Forma vzdělávání: 26-41-M/01 Elektrotechnika denní studium Celkový počet týdenních vyuč.
Barva produkovaná vibracemi a rotacemi
Barva produkovaná vibracemi a rotacemi Hana Čechlovská Fakulta chemická Obor fyzikální a spotřební chemie Purkyňova 118 612 00 Brno Barva, která je produkována samotnými vibracemi je relativně mimořádná.
Pružnost. Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence)
Pružnost Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence) R. Hook: ut tensio, sic vis (1676) 1 2 3 Pružnost 1) Modul pružnosti 2) Vazby mezi atomy
Krystalografie a strukturní analýza
Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl
Sylabus pro předmět CHEMIE ANORGANICKÁ A ANALYTICKÁ
Sylabus pro předmět CHEMIE ANORGANICKÁ A ANALYTICKÁ Kód předmětu: CHA Název v jazyce výuky: Chemie anorganická a analytická Název česky: Chemie anorganická a analytická Název anglicky: Inorganic and Analytical
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
METALOGRAFIE I. 1. Úvod
METALOGRAFIE I 1. Úvod Metalografie je nauka, která pojednává o vnitřní stavbě kovů a slitin. Jejím cílem je zviditelnění struktury materiálu a následné studium pomocí světelného či elektronového mikroskopu.
CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ ČLOVĚK A PŘÍRODA CHEMIE Mgr. Zuzana Coufalová
CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ ČLOVĚK A PŘÍRODA CHEMIE Mgr. Zuzana Coufalová Vyučovací předmět chemie je dotován 2 hodinami týdně v 8.- 9. ročníku ZŠ. Výuka je zaměřena na
Veličiny- základní N A. Látkové množství je dáno podílem N částic v systému a Avogadrovy konstanty NA
YCHS, XCHS I. Úvod: plán přednášek a cvičení, podmínky udělení zápočtu a zkoušky. Základní pojmy: jednotky a veličiny, základy chemie. Stavba atomu a chemická vazba. Skupenství látek, chemické reakce,
Chemie - Kvinta, 1. ročník
- Kvinta, 1. ročník Chemie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OCH/SOCHA Seminář z organické chemie vyučující: doc. RNDr.
C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289
OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17
10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita
Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová
Nanotechnologie a jejich aplikace. doc. RNDr. Roman Kubínek, CSc.
Nanotechnologie a jejich aplikace doc. RNDr. Roman Kubínek, CSc. Předpona pochází z řeckého νανος což znamená trpaslík 10-9 m 380-780 nm rozsah λ viditelného světla Srovnání známých malých útvarů SPM Vyjasnění
školní vzdělávací program ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI RVP G 8-leté gymnázium Chemie II. Gymnázium Dr.
školní vzdělávací program ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI PLACE HERE ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI Název školy Adresa Palackého 211, Mladá Boleslav
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: Název projektu školy: Šablona III/2: CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České
Klasifikace chemických reakcí
Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního
Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata
Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Chemie Třída: tercie Očekávané výstupy Uvede příklady chemického děje a čím se zabývá chemie Rozliší tělesa a látky Rozpozná na příkladech fyzikální
Chemie a fyzika pevných látek p2
Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
1. rok studia. Obor Fyzikální chemie doporučený studijní plán. kód název předmětu kredit rozsah ukončení vyučující Podzimní semestr
Obor Fyzikální chemie doporučený studijní plán 1. rok studia kód název předmětu kredit rozsah ukončení vyučující Podzimní semestr C5020 Chemická struktura 2+2 2/0 zk Brož C5030 Chemická struktura - seminář
1 Tepelné kapacity krystalů
Kvantová a statistická fyzika 2 Termodynamika a statistická fyzika) 1 Tepelné kapacity krystalů Statistická fyzika dokáže vysvětlit tepelné kapacity látek a jejich teplotní závislosti alespoň tehdy, pokud
Vybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
Fyzikální vlastnosti materiálů FX001
Fyzikální vlastnosti materiálů FX001 Ondřej Caha 1. Vazba v pevné látce, elastické a tepelné vlastnosti materiálů 2. Elektrické vlastnosti materiálů 3. Optické vlastnosti materiálů 4. Magnetické vlastnosti
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním zkouškám DOKTORSKÉ STUDIUM
OKRUHY ke státním zkouškám DOKTORSKÉ STUDIUM Obor: Zaměření: Studijní program: Fyzikální inženýrství Inženýrství pevných látek Aplikace přírodních věd Předmět SDZk Aplikace přírodních věd doktorské studium
Typy interakcí. Obsah přednášky
Co je to inteligentní a progresivní materiál - Jaderné analytické metody-využití iontových svazků v materiálové analýze Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Obsah přednášky fyzikální princip
Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112
Elektřina a magnetismus UF/01100 Rozsah: 4/2 Forma výuky: přednáška Zakončení: zkouška Kreditů: 9 Dop. ročník: 1 Dop. semestr: letní Základy elektřiny a magnetismu UF/PA112 Rozsah: 3/2 Forma výuky: přednáška
Chování látek v nanorozměrech
Univerzita J.E. Purkyně v Ústí nad Labem Chování látek v nanorozměrech Pavla Čapková Přírodovědecká fakulta Univerzita J.E. Purkyně v Ústí nad Labem Březen 2014 Chování látek v nanorozměrech: Co se děje
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Plasty Plasty, známé také pod názvem plastické hmoty nebo pod ne zcela přesným (obecnějším) názvem umělé hmoty,
Nauka o materiálu. Přednáška č.11 Neželezné kovy a jejich slitiny
Nauka o materiálu Rozdělení neželezných kovů a slitin Jako kritérium pro rozdělení do skupin se volí teplota tání s př přihlédnutím na další vlastnosti (hustota, chemická stálost..) Neželezné kovy s nízkou
výpočtem František Wald České vysoké učení technické v Praze
Prokazování požární odolnosti staveb výpočtem František Wald České vysoké učení technické v Praze Motivace Prezentovat metodiku pro prokázání požární spolehlivosti konstrukce k usnadnění spolupráci při
Prof. Ing. Václav Švorčík, DrSc.
Prof. Ing. Václav Švorčík, DrSc. Ústav inženýrství pevných látek Fakulta chemické technologie Vysoká škola chemicko-technologická v Praze tel.: 220445149, 220445150 e-mail: vaclav.svorcik@vscht.cz Sylabus
TECHNOLOGIE SKLA. Lubomír Němec
TECHNOLOGIE SKLA Lubomír Němec Laboratoř anorganických materiálů, společné pracoviště Ústavu anorganické chemie AV ČR v Řeži u Prahy a Vysoké školy chemicko-technologické v Praze Skladba předmětu Technologie
Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné
Otázka: Obecná chemie Předmět: Chemie Přidal(a): ZuzilQa Základní pojmy v chemii, periodická soustava prvků Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné -setkáváme
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.15 Konstrukční materiály Kapitola 1 Vlastnosti
Zasedání OR FCH 27. ledna 2016 zápis
Zasedání OR FCH 27. ledna 2016 zápis 1. Předseda OR (prof. Pekař) informoval o prodloužení akreditace. OR projednala související změny ve struktuře studijních předmětů konstatovala, že návrh z posledního
Chemie. Charakteristika vyučovacího předmětu:
Chemie Charakteristika vyučovacího předmětu: Obsahové vymezení Vyučovací předmět chemie je součástí vzdělávací oblasti Člověk a příroda. Vede žáky k poznávání vybraných chemických látek a reakcí, které
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
METODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ
METODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ J. KAŠPAROVÁ, Č. DRAŠAR Fakulta chemicko - technologická, Univerzita Pardubice, Studentská 573, 532 10 Pardubice, CZ, e-mail:jana.kasparova@upce.cz
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Japonsko, Kajima Corp., PVA-ECC (Engineered Cementitious Composites)ohybová zkouška
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE KOMPOZITNÍ MATERIÁLY Japonsko, Kajima Corp., PVA-ECC (Engineered Cementitious Composites)ohybová zkouška Obsah Definice kompozitních materiálů Synergické působení
D - PŘEDMĚTY - AKREDITAČNÍ SESTAVA
1 / 60 D - Předměty studijního programu Fakulta: PRF Akad.rok: 2014 N1407-Chemie Obor: Specializace: Aprobace: Typ studia: Forma studia: Interní forma: Interní specifikace: Etapa: Verze: 1407T007-Materiálová
Vzdělávací oblast: Člověk a příroda Vzdělávací obor (předmět): Chemie - ročník: PRIMA
Směsi Látky a jejich vlastnosti Předmět a význam chemie Vzdělávací oblast: Člověk a příroda Vzdělávací obor (předmět): Chemie - ročník: PRIMA Téma Učivo Výstupy Kódy Dle RVP Školní (ročníkové) PT K Předmět
Struktura atomů a molekul
Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů
Úvod do předmětu Technická Mineralogie
Úvod do předmětu Technická Mineralogie Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 1 Osnova přednášky Organizační plán přednášek a cvičení z TM Historie a současnost TM a
POLYMERY PRINCIPY, STRUKTURA, VLASTNOSTI. Doc. ing. Jaromír LEDERER, CSc.
POLYMERY PRINCIPY, STRUKTURA, VLASTNOSTI Doc. ing. Jaromír LEDERER, CSc. O čem budeme mluvit Úvod do chemie a technologie polymerů Makromolekulární řetězce Struktura, fázový stav a základní vlastnosti
Elektrické vlastnosti pevných látek. Dielektrika
Elektrické vlastnosti pevných látek Dielektrika pásová struktura: valenční pás zcela zaplněný elektrony prázdný vodivostní pás, široký pás zakázaných energií vnější elektrické pole nevyvolá změnu rychlosti
Záporná elektroda PALIVOVÁ (anodický oxidační proces uvolnění elektronů) Kladná elektroda OKYSLIČOVADLO (redukční proces zpracování elektronů)
Palivové články aktivní látky nejsou součástí katody a anody, ale jsou přiváděné zvenku obě elektrody působí jako katalyzátory není zde pojem kapacita, pouze se hovoří o měrném a objemovém výkonu základní
CZ.1.07/1.5.00/34.0304
Technické materiály Základním materiálem používaným ve strojírenství jsou nejen kovy a jejich slitiny. Materiály v každé skupině mají z části společné, zčásti pro daný materiál specifické vlastnosti. Kovy,
Základní chemické pojmy a zákony
Základní chemické pojmy a zákony LRR/ZCHV Základy chemických výpočtů Jiří Pospíšil Relativní atomová (molekulová) hmotnost A r (M r ) M r číslo udávající, kolikrát je hmotnost daného atomu (molekuly) větší
CHEMIE / 8. ROČNÍK. Strategie (metody a formy práce) nácvik pozorování řízený rozhovor s žáky skupinová práce žáků samostatná práce žáků.
CHEMIE / 8. ROČNÍK Učivo Čas Strategie (metody a formy práce) Pomůcky Chemie jako přírodní věda Úvodní, motivační hodina Chemie, chemický děj Vlastnosti látek a lidské smysly, zásady bezpečnosti práce
Fyzika pevných látek. doc. RNDr. Jan Voves, CSc. Fyzika pevných látek Virtual Labs OES 1 / 4
Garant předmětu: doc. RNDr. Jan Voves, CSc. voves@fel.cvut.cz Otevřené Elektronické Systémy Fyzika pevných látek Virtual Labs OES 1 / 4 Čím se zde bude zabývat? Obecné základy fyziky pevných látek Základy
Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie
Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie Základním předmětem výzkumu prováděného ústavem je chemická termodynamika a její aplikace pro popis vybraných vlastností chemických systémů
MATERIÁLY PRO ELEKTROTECHNIKU
Vysoká škola báňská Technická univerzita Ostrava MATERIÁLY PRO ELEKTROTECHNIKU učební text Jaromír Drápala Ostrava 2013 ` Recenze: Ing. Dušan Nohavica, CSc. Název: Materiály pro elektrotechniku Autor:
PŮVOD BARVY U NEVODIČŮ A ČISTÝCH POLOVODIČŮ (KŘEMÍK, GALENIT, RUMĚLKA, DIAMANT)
PŮVOD BARVY U NEVODIČŮ A ČISTÝCH POLOVODIČŮ (KŘEMÍK, GALENIT, RUMĚLKA, DIAMANT) Martin Julínek Ústav fyzikální a spotřební chemie, Fakulta chemická VUT v Brně Purkyňova 118, 612 00 Brno, e-mail: julinek@fch.vutbr.cz
laboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa
Vyučovací předmět Fyzika Týdenní hodinová dotace 2 hodiny Ročník 1. Roční hodinová dotace 72 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy používá s porozuměním učivem zavedené fyzikální
Životní prostředí. Plasty v životním prostředí
Životní prostředí Plasty v životním prostředí 1868 John Wesley Hyatt inzerát 1856 Alexander Parkes nitrát celulosy 1870 John Wesley Hyatt celuloid 1872 The Celluloid Manufacturing Co. & J. W. Hyatt
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
Vysoká škola báňská Technická univerzita Ostrava, 708 33 Ostrava 4, ČR
NOVÉ TYPY MATERIÁLŮ NA BÁZI SILICIDŮ Jaromír Drápala Vysoká škola báňská Technická univerzita Ostrava, 708 33 Ostrava 4, ČR Abstrakt NEW MATERIALS ON SILICIDES BASE There are today loaded new types of
Technické materiály test
test 1.Technické materiály dělíme na: A kovy, přírodní B oceli, nekovy, vrstvené materiály, syntetické Cmateriály, provozní a materiály, provozní a pomocné látky pomocné látky C kovy, nekovy, D kovy, nekovy,
Pavel Matějka
Pavel Matějka Pavel.Matejka@vscht.cz Pavel.Matejka@gmail.com www.vscht.cz/anl/matejka Strukturní a povrchová analýza Analýza struktury (pevných látek) a analýza povrchu, resp. fázového rozhraní pevných
Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008
Keramika Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008 Tuhost a váha materiálů Keramika má největší tuhost z technických materiálů Keramika je lehčí než kovy, ale
Tematické okruhy pro státní závěrečné zkoušky v navazujícím magisterském studiu na Fakultě chemicko-inženýrské v akademickém roce 2015/2016
Tematické okruhy pro státní závěrečné zkoušky v navazujícím magisterském studiu na Fakultě chemicko-inženýrské v akademickém roce 2015/2016 1. Průběh státní závěrečné zkoušky (SZZ) navazujících magisterských
MASARYKOVA UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA ŽÁDOST O AKREDITACI. Navazujícího magisterského studijního programu. Chemie. Obor. Materiálová chemie
MASARYKOVA UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA ŽÁDOST O AKREDITACI Navazujícího magisterského studijního programu Chemie Obor Materiálová chemie Brno, ř íjen 2011 OBSAH OBSAH... 1 A Žádost o akreditaci
Pracovní list: Opakování učiva 8. ročníku
Pracovní list: Opakování učiva 8. ročníku Komentář ke hře: 1. Třída se rozdělí do čtyř skupin. Vždy spolu soupeří dvě skupiny a vítězné skupiny se pak utkají ve finále. 2. Každé z čísel skrývá otázku.
Struktura a vlastnosti kovů I.
Struktura a vlastnosti kovů I. Vlastnosti fyzikální (teplota tání, měrný objem, moduly pružnosti) Vlastnosti elektrické (vodivost,polovodivost, supravodivost) Vlastnosti magnetické (feromagnetika, antiferomagnetika)
Chemie. Charakteristika předmětu
Vzdělávací obor : Chemie Chemie Charakteristika předmětu Chemie je zahrnuta do vzdělávací oblasti Člověk a příroda. Chemie je vyučována v 8. a 9. ročníku s hodinovou dotací 2 hodiny týdně. Převáţná část
Zdroj: Bioceramics: Propertie s, Characterization, and applications (Biokeramika: Vlastnosti, charakterizace a aplikace) Překlad: Václav Petrák
Zdroj: Bioceramics: Properties, Characterization, and applications (Biokeramika: Vlastnosti, charakterizace a aplikace) Překlad: Václav Petrák Kapitola 8., strany: 167-177 8. Sklokeramika (a) Nádoby Corning