STRUKTURA NANOMATERIÁLŮ: RENTGENOVÁ DIFRAKCE
|
|
- Michal Bláha
- před 8 lety
- Počet zobrazení:
Transkript
1 STRUKTURA NANOMATERIÁLŮ: RENTGENOVÁ DIFRAKCE
2 BUŇKA
3 STRUKTURA PEVNÝCH LÁTEK IONTOVÉ POLOMĚRY A KOORDINACE X 7+ X 6+ X 5+ X 4+ X 3+ X 2+ X 1+ X 0 X 1- X 2- tetraedr oktaedr
4 STRUKTURNÍ FORMY UHLÍKU 3D Amorphous carbon Vliv strukturního uspořádání na fyzikální a chemické vlastnosti (nano)materiálů!
5 FeO (wustite) Current classification of nonhydrated iron oxides Fe 3 O 4 (magnetite) α-fe 2 O 3 (hematite) β-fe 2 O 3 γ-fe 2 O 3 (hematite) ε-fe 2 O 3
6 ROZDĚLENÍ DIFRAKČNÍCH METOD Rentgenová difrakce Elektronová difrakce Neutronová difrakce magnetická struktura materiálů
7 DIFRAKČNÍ VERSUS SPEKTROSKOPICKÉ METODY Difrakční metody studium globální struktury pevných látek závislé na long-range periodicitě či krystalinitě Spektroskopické metody studium lokální struktury pevných látek nezávislé na long-range periodicitě či krystalinitě
8 OBJEV A OBLASTI VYUŽITÍ RTG ZÁŘENÍ RTG radiografie (absorpce) RTG krystalografie (difrakce) 1895 Wilhelm Conrad Roentgen objev paprsků X 1901 Nobelova cena za fyziku RTG fluorescenční spektroskopie (fluorescence)
9 VZNIK RTG ZÁŘENÍ Přechody elektronů v elektronovém obalu atomů do nížeenergetické hladiny (charakteristické RTG záření) Zpomalení pohybujících se elektronů (spojité RTG záření) Změna směru pohybu elektronů (Synchrotron) Radionuklidy
10 RTG LAMPA RENTGENKA (X-RAY TUBE) Anoda nejčastěji z: Cu, Co a Mo Rentgenka s rotační anodou: Proces přeměny energie elektronu na RTG záření je energeticky neefektivní: 99 % en. se mění na teplo až ot./min
11 LAUEHO EXPERIMENT S MONOKRYSTALEM - POCHOPENÍ STRUKTUR LÁTEK A POVAHY RTG ZÁŘENÍ Rentgenka Film Krystal Kolimátor Max Theodor Felix von Laue - Nobelova cena 1914
12 BRAGGŮV ZÁKON W.H. Bragg (otec) a W.L. Bragg (syn) odvodili jednoduchý vztah popisující rozptyl RTG záření na krystalové mřížce - rok A D B C (AB+BC) = (dhkl sin + dhkl sin ) = 2 dhkl sin n = 2d sin vlnová dálka: známe (dáno materiálem rentgenky) úhel dopadu RTG záření: měříme d mezirovinné vzdálenosti: zajímá nás n řád difrakce
13 MONOKRYSTALOVÁ RTG DIFRAKCE
14 Prášková RTG difrakce Rentgenka Film Práškový vzorek
15 DEBYE-SCHERREROVA METODA
16 BRAGG-BRENTANOVA GEOMETRIE Detektor Divergenční clona Protirozptylová clona Monochromátor Rentgenka Vzorek 2 Detectorclona fokusační kružnice
17 NÁROKY NA PRÁŠKOVÝ VZOREK Velikost částic 5 až 25 μm nekonečně tlustý pro RTG záření (0,5 až 3 mm) plochý (pro Bragg-Brentanovu geometrii) s hladkým povrchem Potlačení přednostní orientace
18 DIFRAKČNÍ ZÁZNAM d-hodnoty Poloha difrakcí dáno velikostí, tvarem a prostorovým uspořádáním základní buňky Intenzita difrakcí závisí na interakci fotonů s elektronovou konfigurací základní buňky Tvar difrakčních píků dáno fyzikální vlastností materiálu (krystalinita,...) ideálně velmi úzký pík rozšíření dáno instrumentálně
19 APLIKACE RTG PRÁŠKOVÉ DIFRAKCE Identifikace fází Kvantitativní fázová analýza Určení poměru amorfní/krystalická fáze Výpočet mřížkových parametrů Výpočet a zpřesňování struktur In-situ měření: HT/LT HP atm. čas Studium dilatace materiálů
20 DATABÁZE DIFRAKČNÍCH ZÁZNAMŮ - PDF DATABÁZE STRUKTUR - ICSD Počet záznamů v databázi: PDF-4+: PDF-4/Minerals: PDF-4/Organics: Počet záznamů v ICSD: ~
21 Peak Width (deg) RTG PRÁŠKOVÁ DIFRAKCE NANOMATERIÁLŮ Crystallite Size broading Instrumental Broadening Crystallite size (angstroms) > 150 nm 20 nm 5 nm (LaB 6 ) (Fe 3 O 4 ) (g-fe 2 O 3 ) > 3 nm (g-fe 2 O 3 )
22 METODY MĚŘENÍ VELIKOSTI ČÁSTIC POMOCÍ XRD Nutno rozlišovat velikost částic a střední velikost koherentních domén velikost částic MCL Střední velikost koherentních domén (MCL) Scherrerova metoda Rietveldova analýza Velikost částic, velikost pórů, poměr povrch/bulk Rozptyl RTG záření pod nízkým úhlem (SAXS)
23 SCHERREROVA METODA C = K / (B cos ) B šířka píku v polovině výšky (FWHM) Částice Tvarový faktor K koule 0,89 krychle 0,83-0,91 tetraedry 0,73-1,03 oktaedry 0,82-0,93 P. SCHERRER, Estimation of the size and internal structure of colloidal particles by means of röntgen., Nachr. Ges. Wiss. Göttingen, (1918), 2,
24 RIETVELDOVA ANALÝZA Hugo M. Rietveld - publikace 1967/1969 Rietveldova metoda umožňuje změnou parametrů přesně porovnat ideální strukturu s měřeným vzorkem - fitování metodou nejmenších čtverců s cílem nejlepší shody. Vypřesnění struktury Kvantitativní fázová analýza Střední velikost koherentních domén reziduální stres defekty struktury a pod.
25 ROZPTYL RTG ZÁŘENÍ POD NÍZKÝM ÚHLEM (SAXS) Určení velikosti částic Určení velikostní distribuce Výpočet velikosti specifické plochy povrchu
26 ANALÝZA TENKÝCH (NANO)VRSTEV Hybridní monochromátor (Göblovo zrcadlo) Scintilační (proporcionální) detektor Sollerovy clony Vzorek
27 VYSOKOTEPLOTNÍ RTG PRÁŠKOVÁ DIFRAKCE reakce v pevné fázi reakce pevná fáze - plyn kinetika reakcí fázová a strukturní analýza vzorků nestabilních na vzduch in-situ monitorování strukturních a katalytických parametrů katalyzátorů Dynamické strukturní změny a přechody RTG-dilatometrie
28 GOETHIT ŽÍHÁNÍ VE FORMOVACÍM PLYNU N 90 H 10
RTG záření. Vlastnosti RTG záření. elektromagnetické vlnění s vlnovými délkami v intervalu < 10-8 ; 10-12 >m.
RTG záření RTG záření elektromagnetické vlnění s vlnovými délkami v intervalu < 10-8 ; 10-12 >m. Dle vlnové délky můžeme rozlišit 2 druhy RTG záření - měkké (vyšší λ= 10-8 -10-10 m) a tvrdé (λ= 10-10 -10-12
Jan Filip 1, V. Blechta, J. Kašlík, I. Medřík, R. Zbořil, O. Schneeveiss. Regionální Centrum Pokročilých Technologií a Materiálů, PřF UP Olomouc
Vysokoteplotní RTG prášková difrakce a její aplikace při studiu systému Fe-O-C Jan Filip 1, V. Blechta, J. Kašlík, I. Medřík, R. Zbořil, O. Schneeveiss 1 Regionální Centrum Pokročilých Technologií a Materiálů,
RTG prášková difrakce a RTG fluorescenční spektroskopie v (nano)materiálovém výzkumu. Jan Filip Centrum výzkumu nanomateriálů, PřF UPOL
RTG prášková difrakce a RTG fluorescenční spektroskopie v (nano)materiálovém výzkumu Jan Filip Centrum výzkumu nanomateriálů, PřF UPOL Oblasti využití RTG záření RTG radiografie RTG krystalografie (RTG
Chemie a fyzika pevných látek p2
Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
Tomáš Grygar: Metody analýza pevných látek L4-difrakce.doc
4. Rtg prášková difrakce (XRD, p-xrd) Tomáš Grygar: Metody analýza pevných látek Termíny Angstrom Å - 10-10 m = 0.1 nm. Tuhle jednotku hned tak něco nevymýtí. Důvodem je, jak pěkně se s ní popisují velikosti
Krystalografie a strukturní analýza
Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
Úloha 10. Identifikace materiálů pomocí metod rentgenové práškové difrakce
Úloha 10. Identifikace materiálů pomocí metod rentgenové práškové difrakce RNDr. Václav Vávra, Ph.D. Ústav geologických věd, Přírodovědecká fakulta, MU Brno Doc. RNDr. Jiří Pinkas, Ph.D. Ústav chemie,
1 Teoretický úvod. 1.2 Braggova rovnice. 1.3 Laueho experiment
RTG fázová analýza Michael Pokorný, pok@rny.cz, Střední škola aplikované kybernetiky s.r.o. Tomáš Jirman, jirman.tomas@seznam.cz, Gymnázium, Nad Alejí 1952, Praha 6 Abstrakt Rengenová fázová analýza se
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
Chemie a fyzika pevných látek l
Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie
RTG difraktometrie 1.
RTG difraktometrie 1. Difrakce a struktura látek K difrakci dochází interferencí mřížkou vychylovaných vln Když dochází k rozptylu vlnění na různých atomech molekuly či krystalu, tyto vlny mohou interferovat
Přednáška 12. Neutronová difrakce a rozptyl neutronů. Martin Kormunda
Přednáška 12 Neutronová difrakce a rozptyl neutronů Neutronová difrakce princip je shodný s rentgenovou difrakcí platí Braggova rovnice nλ = 2d sin θ Rozptyl záření na atomomech u XRD záření interaguje
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 6. března 2007 Obor: Fyzika Ročník: III Semestr:
Heterogenní katalýza. Úvod do studia katalýzy
Heterogenní katalýza Úvod do studia katalýzy Obsah : Seznámení s katalýzou Příklady katalýzy z praxe Teorie a pojmy v katalýze Speciální temata v katalýze Praxe katalýzy katalytický experiment Techniky
Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie
Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované
Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 25.9.2012
Označení materiálu: VY_32_INOVACE_ZMAJA_VODARENSTVI_15 Název materiálu: Přehled vlastností a struktura materiálu Tematická oblast: Vodárenství 1. ročník instalatér Anotace: Prezentace uvádí základní vlastnosti
Přednáška č. 3. Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování minerálů.
Přednáška č. 3 Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování minerálů. Strukturní krystalografie Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
Experimentální laboratoře (beamlines) ve Středoevropské synchrotronové laboratoři (CESLAB)
www.synchrotron.cz www.ceslab.cz www.ceslab.eu Experimentální laboratoře (beamlines) ve Středoevropské synchrotronové laboratoři (CESLAB) Petr Mikulík Ústav fyziky kondenzovaných látek Masarykova univerzita
Teorie rentgenové difrakce
Teorie rentgenové difrakce Vlna primárního záření na atomy v krystalu. Jádra atomů zůstanou vzhledem ke své velké hmotnosti v klidu, ale elektrony jsou rozkmitány se stejnou frekvencí jako má primární
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ
Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 7.10.2013
Elektrické vlastnosti pevných látek
Elektrické vlastnosti pevných látek elektrická vodivost gradient vnějšího elektrického pole vyvolá přenos náboje volnými nositeli (elektrony, díry, ionty) měrná vodivost = e n n e p p [ -1 m -1 ] Kovy
stavební kostičky, z těch vše sestaví TESELACE chybí měřítko na velikosti kostiček nezáleží Pyrit krychle pentagonalní dodekaedr granát trapezoedr
René Hauy otec moderní krystalografie islandský živec stejné částečky (stejné úhly, plochy) 1781 prezentace pro fr. akademii věd hlubší studium i dalších krystalů: krystaly stejného složení mají stejný
Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D.
Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D. Rentgenová fluorescenční spektrometrie ergiově disperzní (ED-XRF) elé spektrum je analyzováno najednou polovodičovým
Využití metod atomové spektrometrie v analýzách in situ
Využití metod atomové spektrometrie v analýzách in situ Oto Mestek Úvod Termínem in situ označujeme výzkum prováděný na místě původního výskytu analyzovaného vzorku nebo jevu (opakem je analýza ex situ,
2. Difrakce elektronů na krystalu
2. Difrakce elektronů na krystalu Interpretace pozorování v TEM faktory ovlivňující interakci e - v krystalu 2 způsoby náhledu na interakci e - s krystalem Rozptyl x difrakce částice x vlna Difrakce odchýlení
1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.
1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci
POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD. René Kizek. Název: Školitel: Datum: 20.09.2013
Název: Školitel: POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD René Kizek Datum: 20.09.2013 Základy počítačové tomografie položil W. C. Röntgen, který roku 1895 objevil paprsky X. Tyto paprsky,
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
stavební kostičky, z těch vše sestaví TESELACE chybí měřítko na velikosti kostiček nezáleží krystalografie na vědeckém základě
René Hauy otec moderní krystalografie islandský živec stejné částečky (stejné úhly, plochy) 1781 prezentace pro fr. akademii věd hlubší studium i dalších krystalů: krystaly stejného složení mají stejný
Optika. VIII - Seminář
Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení
Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika
Fotonásobič vstupní okno fotokatoda E h fokusační elektrononová optika systém dynod anoda e zesílení G N typicky: - koeficient sekundární emise = 3 4 - počet dynod N = 10 12 - zisk: G = 10 5-10 7 Fotonásobič
MASARYKOVA UNIVERZITA V BRNĚ PEDAGOGICKÁ FAKULTA
MASARYKOVA UNIVERZITA V BRNĚ PEDAGOGICKÁ FAKULTA Katedra fyziky Rtg záření, jeho vlastnosti a využití Diplomová práce Brno 2007 Autor práce: Eva Martykánová Vedoucí práce: Prof.RNDr.Vladislav Navrátil,CSc.
Slitiny titanu pro použití (nejen) v medicíně
Slitiny titanu pro použití (nejen) v medicíně Josef Stráský a spol. Katedra fyziky materiálů MFF UK Obsah Vývoj slitin Ti pro použití v ortopedii Spolupráce: Beznoska s.r.o., Kladno Ultrajemnozrnné slitiny
Příprava polarizačního stavu světla
Příprava polarizačního stavu světla Konzultant: RNDr. Jakub Zázvorka (zazvorka.jakub@gmail.com) Projekt bude zaměřen na přípravu a charakterizaci polarizačního stavu světla pro spinově závislou luminiscenci
GRAFEN VERSUS MWCNT; POROVNÁNÍ DVOU FOREM UHLÍKU V DETEKCI TĚŽKÉHO KOVU. Název: Školitel: Mgr. Dana Fialová. Datum: 15.3.2013
Název: Školitel: GRAFEN VERSUS MWCNT; POROVNÁNÍ DVOU FOREM UHLÍKU V DETEKCI TĚŽKÉHO KOVU Mgr. Dana Fialová Datum: 15.3.2013 Reg.č.projektu: CZ.1.07/2.3.00/20.0148 Název projektu: Mezinárodní spolupráce
Metody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
SAXSpace. Modulární řešení analýzy nanostruktur. ::: Innovation in Materials Science
SAXSpace Modulární řešení analýzy nanostruktur ::: Innovation in Materials Science Základní informace k metodě SAXS. Princip Internal Structure SAXS - Maloúhlový rozptyl RTG paprsků je nedestruktivní metoda
Elektronová mikroskopie II
Elektronová mikroskopie II Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Transmisní elektronová mikroskopie TEM Informace zprostředkována prošlými e - (TE, DE) Umožň žňuje studium vnitřní
Rentgenová difrakce a spektrometrie
Rentgenová difrakce a spektrometrie RNDr.Jaroslav Maixner, CSc. VŠCHT v Praze Laboratoř rentgenové difraktometrie a spektrometrie Technická 5, 166 28 Praha 6 224354201, 24355023 Jaroslav.Maixner@vscht.cz
Principy a metody monokrystalové strukturní analýzy
Principy a metody monokrystalové strukturní analýzy Jaromír Marek Obsah přednášky Monokrystalová krystalografie jako chemická metodika Historie difrakční krystalografie, krystalografické databáze Principy
Přednášky z lékařské přístrojové techniky
Přednášky z lékařské přístrojové techniky Masarykova univerzita v Brně Biofyzikální centrum Radionuklidové a jiné radioterapeutické metody Co je třeba znát? Biologické účinky ionizujícího záření Vlastnosti
ADJUSTACE DIFRAKTOMETRU D8 - ADVANCE BRUKER AXS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Náboj a hmotnost elektronu
1911 určení náboje elektronu q pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty
Identifikace barviv pomocí Ramanovy spektrometrie
Identifikace barviv pomocí Ramanovy spektrometrie V kriminalistických laboratořích se provádí technická expertíza písemností, která se mimo jiné zabývá zkoumáním použitých psacích prostředků: tiskových
Lasery RTG záření Fyzika pevných látek
Lasery RTG záření Fyzika pevných látek Lasery světlo monochromatické koherentní malá rozbíhavost svazku lze ho dobře zfokusovat aktivní prostředí rezonátor fotony bosony laser stejný kvantový stav učební
Úvod. Analýza závislostí. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Úvod Předmětem této kapitoly bude zkoumání souvislosti (závislosti) mezi
Jak se pozorují černé díry? - část 2. Základy rentgenové astronomie
Jak se pozorují černé díry? - část 2. Základy rentgenové astronomie Jiří Svoboda Astronomický ústav Akademie věd ČR Vybrané kapitoly z astrofyziky, Astronomický ústav UK, prosinec 2013 Osnova přednáškového
1. Stejnosměrný proud základní pojmy
1. Stejnosměrný proud základní pojmy Stejnosměrný elektrický proud je takový proud, který v čase nemění svoji velikost a smysl. 1.1. Mezinárodní soustava jednotek Fyzikální veličina je stanovena s fyzikálního
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4.1 Mikrostruktura stavebních hmot 4.1.1 Úvod Vlastnosti pevných látek, tak jak se jeví při makroskopickém zkoumání, jsou obrazem vnitřní struktury materiálu. Vnitřní
Metody charakterizace nanomaterálů I
Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I RNDr. Věra Vodičková, PhD. Molekulová spektroskopie atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením
Dualismus vln a částic
Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz
Úvod do studia anorg. materiálů - MC240P33
Úvod do studia anorg. materiálů - MC240P33 Magnetismus, Magneticky uspořádané a neuspořádané struktury, Feromagnetismus, Antiferomagnetismus, Magnetické materiály, Záznamové materiály. Příprava magnetických
IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE
IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE Úvod Ramanova spektrometrie je metodou vibrační molekulové spektrometrie. Za zakladatele této metody je považován indický fyzik Čandrašékhara
C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289
OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17
Fluorescence (luminiscence)
Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle
Fyzika rentgenových paprsků
Absorpce rentgenového záření Fyzika rentgenových paprsků rtg. paprsky elektromagnetické záření o λ 10-4 10 nm nejčastěji využívaná oblast s vlnovou délkou 0.1 nm (tj. přibližně rozměry atomů) spektroskopie
Fyzika rentgenových paprsků
Absorpce rentgenového záření Fyzika rentgenových paprsků rtg. paprsky elektromagnetické záření o λ 10-4 10 nm nejčastěji využívaná oblast s vlnovou délkou 0.1 nm (tj. přibližně rozměry atomů) spektroskopie
Osnova. Stimulovaná emise Synchrotroní vyzařování Realizace vyzařování na volných elektronech FLASH XFEL
Osnova 1 2 Stimulovaná emise Synchrotroní vyzařování Realizace vyzařování na volných elektronech 3 FLASH XFEL 4 Diagnostika Rozpoznávání obrazu Medicína Vysoko parametrové plazma 5 Laserový svazek fokusovaný
Infračervená spektroskopie
Infračervená spektroskopie 1 Teoretické základy Podstatou infračervené spektroskopie je interakce infračerveného záření se studovanou hmotou, kdy v případě pohlcení fotonu studovanou hmotou mluvíme o absorpční
OPTIKA - NAUKA O SVĚTLE
OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790
Zkoušení materiálů prozařováním
Zkoušení materiálů prozařováním 1 Elektromagnetické vlnění Energie elektromagnetického vlnění je dána jeho frekvencí nebo vlnovou délkou. Čím kratší je vlnová délka, tím vyšší je frekvence. c T c f Př:
TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE
TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE Klára Šafářová Centrum pro výzkum nanomateriálů, UP Olomouc 4.12.2009 Workshop: Mikroskopické techniky SEM a TEM Obsah konstrukce transmisního elektronového mikroskopu
Úloha 21: Studium rentgenových spekter
Petra Suková, 3.ročník 1 Úloha 21: Studium rentgenových spekter 1 Zadání 1. S využitím krystalu LiF jako analyzátoru proveďte měření následujících rentgenových spekter: a) Rentgenka s Cu anodou. proměřte
Úloha 5: Studium rentgenových spekter Mo a Cu anody
Úloha 5: Studium rentgenových spekter Mo a Cu anody FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 22.2.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp. Spolupracovník:
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
Měření parametrů mikročipového laseru a nelineární transmise saturovatelných absorbérů
Úloha č. 6 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2013/2014-2 Měření parametrů mikročipového laseru a nelineární transmise saturovatelných absorbérů Úvod: Lasery umožňují doručit na přesně
Možnosti rtg difrakce. Jan Drahokoupil (FZÚ) Zdeněk Pala (ÚFP) Jiří Čapek (FJFI)
Možnosti rtg difrakce Jan Drahokoupil (FZÚ) Zdeněk Pala (ÚFP) Jiří Čapek (FJFI) AdMat 13. 3. 2014 Aplikace Struktura krystalických látek Fázová analýza Mřížkové parametry Textura, orientace Makroskopická
Struktura atomů a molekul
Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů
NITON XL3t GOLDD+ Nový analyzátor
Nový analyzátor NITON XL3t GOLDD+ Ruční rentgenový analyzátor NITON XL3t GOLDD+ je nejnovější model od Thermo Fisher Scientific. Navazuje na úspěšný model NITON XL3t GOLDD. Díky špičkovým technologiím
Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů
Program XPS XRD XRF. Martin Kormunda
Program XPS XRD XRF XPS Základní rovnice X-Ray photoelectron spectroscopy nebo také někdy ESCA (Electron spectroscopy for chemical analyses) ( E W ) E = E + binding photon kinetic W výstupní práce Princip
Výuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie
Úvod do mineralogie Specializovaná věda zabývající se minerály (nerosty) se nazývá mineralogie. Patří mezi základní obory geologie. Geologie je doslovně věda o zemi (z řec. gé = země, logos = slovo) a
Aplikace texturní rtg-difrakční analýzy v tektonice - kvantifikace přednostní orientace kalcitu v karbonátových horninách
MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fakulta Ústav geologických věd Aplikace texturní rtg-difrakční analýzy v tektonice - kvantifikace přednostní orientace kalcitu v karbonátových horninách Bakalářská
2.cvičení. Vlastnosti zemin
2.cvičení lastnosti zemin Složení zemin a hornin Fyzikální a popisné vlastnosti Porovitost Číslo pórovitosti n = e = p p s.100 [%] [ ] n e = e = n 1 + e 1 n lhkost Měrná Objemová w w m m w =.100 [%] =
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: 22 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:
Chemie a fyzika pevných látek p3
Chemie a fyzika pevných látek p3 strukturní faktor, monokrystalové a práškové difrakční metody Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce
Vlnově částicová dualita
Vlnově částicová dualita Karel Smolek Ústav technické a experimentální fyziky, ČVUT Vlnění Vlněním rozumíme šíření změny nějaké veličiny prostorem. Příklady: Vlny na moři šíření změny výšky hladiny Zvukové
SPRÁVNOST A PŘESNOST RTG-DIFRAKČNÍCH ANALÝZ RIETVELDOVOU METODOU A AUTOMATIZACE FÁZOVÝCH ANALÝZ V CEMENTÁRNÁCH. Dalibor Všianský
Semináři VUMO, Skalský Dvůr, 16.-18.5.2016 SPRÁVNOST A PŘESNOST RTG-DIFRAKČNÍCH ANALÝZ RIETVELDOVOU METODOU A AUTOMATIZACE FÁZOVÝCH ANALÝZ V CEMENTÁRNÁCH Dalibor Všianský Komplexní služby fázové analýzy
Difrakce elektronů v krystalech a zobrazení atomů
Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit
Svazek pomalých pozitronů
Svazek pomalých pozitronů pozitrony emitované + zářičem moderované pozitrony střední hloubka průniku Příklad: 0 z P z dz 1 Mg: -1 =154 m Al: -1 = 99 m Cu: -1 = 30 m z pravděpodobnost, p že pozitron pronikne
Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Ing. Ivana Bočková Číslo projektu CZ.1.07/1.5.00/34.
Škola Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Ing. Ivana Bočková Číslo projektu CZ.1.07/1.5.00/34.0394 Číslo dumu VY_32_INOVACE_14_MY_1.01 Název Vlastnosti
ATOMOVÁ SPEKTROMETRIE SUBVALENČNÍCH ELEKTRONŮ
ATOMOVÁ SPEKTROMETRIE SUBVALENČNÍCH ELEKTRONŮ Atomic X-Ray Spectrometry (c) -2010 Rentgenové záření Elektromagnetické záření krátkých vlnových délek (analytické využití od 0,01 do 100 nm). E potřebná k
Isingův model. H s J s s h s
Ising Isingův model H s J s s h s i, j Motivován studiem fázových přechodů a kritických jevů Užíva se popis pomocí magnetických veličin i j i i Vlastnosti pomocí partiční sumy počítej: měrné teplo, susceptibilitu
1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am.
1 Pracovní úkoly 1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am. 2. Určete materiál několika vzorků. 3. Stanovte závislost účinnosti výtěžku rentgenového záření na atomovém
PVGIS - Fotovoltaický GIS Photovoltaic Geographical Information System (PVGIS)
Photovoltaic Geographical Information System (PVGIS) Vznik - Joint Research Centre o podpora projektu EU pro zvýšení podílu energie z obnovitelných zdrojů o dostupné v podobě webové služby pro širokou
5 Studium rentgenových spekter Mo a Cu anody
5 Studium rentgenových spekter Mo a Cu anody 9. května 2010 Fyzikální praktikum FJFI ČVUT v Praze Jméno: Vojtěch Horný Datum měření: 15.března 2010 Pracovní skupina: 2 Ročník a kroužek: 2. ročník, pondělí
Některé poznatky z charakterizace nano železa. Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová
Některé poznatky z charakterizace nano železa Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová Nanotechnologie 60. a 70. léta 20. st.: období miniaturizace 90. léta 20.
NMR spektroskopie v pevné fázi
NMR spektroskopie v pevné fázi A. Charakteristika jaderného spinu v pevné fázi. B. Měření základního spektra přáškového vzorku. 2D homonukleární C korelované spektrum U- C-L-tyrosinu při 9.4 T sekvencí
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Lasery - druhy Laser je tvořen aktivním prostředím, rezonátorem a zdrojem energie. Zdrojem energie, který může
Elektronová mikroskopie
Elektronová mikroskopie Princip elektronové mikroskopie Optické přístroje podobně jako světelné mikroskopy. Místo světelného svazku používají elektrickým polem urychlené elektrony. Místo skleněných čoček
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
Wilhelm Conrad Röntgen
Wilhelm Conrad Röntgen Vynikající německý fyzik, který svým objevem zachránil obrovské množství životů. Sám však na svůj objev bohužel doplatil smrtí. Narodil se roku 27. 3. 1845 a zemřel na leukémii 10.
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz
CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ
CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ Lukáš ZUZÁNEK Katedra strojírenské technologie, Fakulta strojní, TU v Liberci, Studentská 2, 461 17 Liberec 1, CZ,