Jan Filip 1, V. Blechta, J. Kašlík, I. Medřík, R. Zbořil, O. Schneeveiss. Regionální Centrum Pokročilých Technologií a Materiálů, PřF UP Olomouc
|
|
- Nela Jandová
- před 9 lety
- Počet zobrazení:
Transkript
1 Vysokoteplotní RTG prášková difrakce a její aplikace při studiu systému Fe-O-C Jan Filip 1, V. Blechta, J. Kašlík, I. Medřík, R. Zbořil, O. Schneeveiss 1 Regionální Centrum Pokročilých Technologií a Materiálů, PřF UP Olomouc
2 Aplikace RTG práškové difrakce Identifikace fází Kvantitativní fázová analýza Určení poměru amorfní/krystalická fáze Výpočet mřížkových parametrů Výpočet a zpřesňování struktur In-situ měření: HT/LT HP atm. čas Studium dilatace materiálů
3 RTG prášková difrakce nanomateriálů > 150 nm 20 nm 5 nm (LaB 6 ) (Fe 3 O 4 ) (g-fe 2 O 3 ) > 3 nm (g-fe 2 O 3 )
4 Metody měření velikosti částic pomocí XRD Nutno rozlišovat velikost částic a střední velikost koherentních domén velikost částic MCL Střední velikost koherentních domén (MCL) Scherrerova metoda Rietveldova analýza Velikost částic, velikost pórů, poměr povrch/bulk Rozptyl RTG záření pod nízkým úhlem (SAXS)
5 Peak Width (deg) Scherrerova metoda C = K l / (B cos q) B šířka píku v polovině výšky (FWHM) Částice Tvarový faktor K koule 0, krychle 0,83-0,91 tetraedry 0,73-1,03 oktaedry 0,82-0, Crystallite Size broading Instrumental Broadening Crystallite size (angstroms) P. SCHERRER, Estimation of the size and internal structure of colloidal particles by means of röntgen., Nachr. Ges. Wiss. Göttingen, (1918), 2,
6 Rietveldova analýza Hugo M. Rietveld - publikace 1967/1969 Rietveldova metoda umožňuje změnou parametrů přesně porovnat ideální strukturu s měřeným vzorkem - fitování metodou nejmenších čtverců s cílem nejlepší shody. Vypřesnění struktury Kvantitativní fázová analýza Střední velikost koherentních domén reziduální stres defekty struktury a pod.
7 Rozptyl RTG záření pod nízkým úhlem (SAXS) Určení velikosti částic Určení velikostní distribuce Výpočet velikosti specifické plochy povrchu
8 Vysokoteplotní RTG prášková difrakce Realizace: Anton Paar MRI Rigaku
9 HT XRD + DSC - Rigaku, Japonsko T max = 350 C Theta Endo. Melting Endo. Amorphous Exo. Crystallization Endo. Phase Transition Exo. Endo.
10 Technické parametry XRK900 Teplotní rozsah: RT C Termočlánky: NiCr-NiAl Rozsah měření: Theta Termostatovatelný plášť: RT C Okénka pro RTG svazek: berylium a Kaptonova folie Držák vzorků: sklo-keramický (Macor), ocel Absence teplotního gradientu na vzorku Navážky: ~1 mg až ~0,3 g (Fe 2 O 3 )
11 Použití reakčních plynů inertní redukční oxidační } <10 bar vakuum (~ 1 mbar) Možnost analýzy odchozích plynů (MS, IR)
12 Teplota ( C) Teplota ( C) Použití vysokoteplotní RTG práškové difrakce reakce v pevné fázi reakce pevná fáze - plyn kinetika reakcí fázová a strukturní analýza vzorků nestabilních na vzduch in-situ monitorování strukturních a katalytických parametrů 900 Teoretický průběh 300 Reálný průběh katalyzátorů 800 Dynamické strukturní změny a přechody RTG-dilatometrie ~2 C/min ~1,5 C/min Čas (min) ~40 C/min Teoretický průběh Reálný průběh Čas (min)
13 Sběr a zpracování dat Kvalitativní fázová analýza: HighScore Plus & PDF4+ Kvantitativní f. analýza & výpočet střední velikosti koherentních domén: Rietveldova analýza HighScore Plus & ICSD PANalytical X PertPRO MPD Řízení průtoku a tlaku plynů
14 Vysokoteplotní experimenty Dynamické a isotermické žíhání vhodného prekurzoru v oxidačních/redukčních (vodík/formovací plyn - N 90 H 10 ) podmínkách Prekurzory: Ferrihydrit Fe 5 HO 8 4H 2 O Goethit a-feooh Akaganéit b-feooh Lepidokrokit g-feooh Maghemit g-fe 2 O 3 Hematit a-fe 2 O 3 Magnetit Fe 3 O 4 Variabilní průtoky plynů Variabilní tlaky plynů
15 Motivace Syntéza nanomateriálů pro environmentální aplikace Použití prekurzorů, které jsou: dostupné ve velkých objemech levné snadno transformovatelné do podoby vhodných nanosorbentů & nanokatalyzétorů Použití postupů, které jsou jednoduché, levné a snadno reprodukovatelné Hlavním cílem je příprava vysoce reaktivních nanočástic elementárního železa (nanoparticles of Zero-Valent Iron - nzvi)
16 Přírodní ferrihydrit Mössbauerova spektroskopie MCL ~ 4.3 nm EDX spektrum (TEM) SiO2 2,82 Mo 28,8 Sr 21,6 Al2O3 0,11 Cu 23,6 Th 0,1 Fe2O3 73,49 Pb 0,9 U 5,5 MgO 0,01 Zn 1312 W 73,6 CaO 0,66 Ni 16,7 Zr 3,2 Na 2 O 0,01 As 14,2 Y 63,7 K 2 O 0,04 Cd 1,3 La 77,1 TiO 2 0,01 Sb 0,2 Ce 104,2 P 2 O 5 0,15 Tl 0,1 Pr 13,34 MnO 0,35 Se 1,9 Nd 56,8 Cr 2 O 3 0,001 Sc 1 Sm 9,2 LOI 22,3 Ba 139,3 Eu 1,29 TOT/C 1,13 Be 1 Gd 11,25 TOT/S 0,88 Co 15,4 Tb 1,44 SUM 99,88 Rb 0,5 Dy 7,09 wt.% ppm Ho 1,32 Er 2,93 Tm 0,36 až 353 m 2 /g Yb 1,69 Lu 0,22
17 Magnetic susceptibility Transformační mechanismus v oxidačních a inertních podmínkách (z Eggleton & Fitzpatrick 1988) standardní TGA 1,0 full air-access conditions 0,8 0,6 0,4 TGA s aplikovaným vnějším magnetickým polem 0,2 0, Temperature ( C) Transformace na hematit: syntetický Fh = C; přírodní Fh = ~550 C vliv Si
18 TG /% Ferrihydrit - transformační mechanismus v H 2 : Mass Change: % Mass Change: % kvantitativní analýza amorfního podílu při reakcích v pevné fázi Mass Change: % Mass Change: % Mass Change: % Dynamické experimenty Mass Change: % Mass Change: % Temp. / C 600 N 90 H 10 Counts Isotermické experimenty C, 2 h, H 2 3 bary MCL: ~ 12 nm! 90 Mass Change: % Mass Change: % Mass Change: % ? FeO Mass Change: % 85 Mass Change: % Mass Change: % Mass Change: % Mass Change: % 300 Mass Change: % Mass Change: % Mass Change: % Mass Change: % 75 Mass Change: % Mass Change: % Mass Change: % Mass Change: % Mass Change: % Mass Change: % 100 Mass Change: % Mass Change: % Mass Change: % Time /min Position [ 2Theta] (Cobalt (Co)) N 90 H 10 ; 30 ml/min Plocha povrchu (BET): >58 m 2 /g! růst Transf. koherentních Fh-Fe 0 domén Fe 0
19 6-line ferrihydrit Redukční podmínky (H 2 ) Oxidační podmínky 400 C 6LFh a-fe 2 O 3
20 Goethit: žíhání v oxidačních podmínkách SEM 117 m 2 /g SEM 121 m 2 /g
21 Goethit (Bayoxide EF200) žíhání ve formovacím plynu a vodíku N 90 H 10 H 2
22 Goethit (formovací plyn): nanokrystalický versus mikrokrystalický prekurzor C C a-fe a-fe a-fe a-fe W W W Mgn Mgn Mgn Mgn Mgn Mgn HmHm Hm Hm Hm Hm Hm Hm Position [ 2Theta] (Co) W W W Mgn Mgn Mgn Mgn Mgn Mgn Position [ 2Theta] (Co) 80
23 Lepidokrokit: žíhání v oxidačních podmínkách a ve vodíku
24 Akaganéit: žíhání ve formovacím plynu! V oxidačních podmínkách transformace na maghemit ~ 250 C a dále na hematit >400 C
25 Intensity (counts) Intensity (counts) Maghemit žíhání ve vodíku Připravený mechanochemicky MCL = 5 nm difrakce maghemitu/magnetitu NanoTek MCL = 20 nm Theta ( ) magnetit maghemit MCL = 33 nm Theta ( ) V oxidačních podmínkách transformace na hematit >400 C
26 Maghemit: žíhání ve vakuu in-situ TEM Po schlazení 800 C, sekvence po ~5s RT 400 C 500 C 600 C 700 C
27 Intensity (counts) Magnetit žíhání v oxidačních podmínkách 220 difrakce magnetitu/maghemitu Theta ( ) magnetit maghemit
28 Intensity (counts) Magnetit žíhání ve vodíku MCL: ~40 nm difrakce magnetitu Theta ( )
29 Hematit formovací plyn versus H 2 Hematite Magnetite a-fe Temperature ( C)
30 Kontrolovaná syntéza nzvi: vliv průtoku a tlaku plynu atm. pressure a-fe 2 O 3 a-fe + Magnetite + Hematite - Magnetite - SEM gas flow 30 ml/min SEM Gas pressure: 3 bars Gas flow: 30 ml/min
31 Octan železnatý versus šťavelan železnatý oxidační podmínky Fe(CH 3 CO 2 ) 2 FeC 2 O 4 2H 2 O TG /% Peak: C DSC /(mw/mg) exo up Temperature / C 0 Heřmánek et al. J. Mater. Chem. 2006, 16,
32 Oxidační podmínky Amorfní Fe 2 O 3 z: Fe(CH 3 CO 2 ) 2 Amorfní Fe 2 O C 560 C 880 C am-fe 2 O 3 a-fe 2 O 3 Fe 3 O 4 FeO Stejný mechanismus v N 2, He a vakuu, ale nižší teploty transformace Redukční podmínky (H 2 ) 220 C 260 C 320 C am-fe 2 O 3 a-fe 2 O 3 Fe 3 O 4 FeO Amorfní Fe 2 O 3 z: KFe 3+ [Fe 2+ (CN) 6 ] 530 C am-fe 2 O 3 a-fe 2 O 3 Amorfní Fe 2 O 3 z: Fe(CH 3 CO 2 ) 2
33 Teplota ( C) Redukce Fe 2 O 3 na Fe 0 Interakce nzvi s CO H 2 CO 2 Teoretický průběh Reálný průběh Čas (min) CO 2 V N 2 transformace na wüstit začíná při 550 C
34 Interakce nzvi s CO CNTs Plocha povrchu C + Fe 3 C (800 C): 81 m 2 /g
35 Děkuji za pozornost! V prezentaci byly použity obrazové materiály firem: PANalytical Bruker AXS Thermo ARL Rigaku Anton Paar (GmbH)
RTG prášková difrakce a RTG fluorescenční spektroskopie v (nano)materiálovém výzkumu. Jan Filip Centrum výzkumu nanomateriálů, PřF UPOL
RTG prášková difrakce a RTG fluorescenční spektroskopie v (nano)materiálovém výzkumu Jan Filip Centrum výzkumu nanomateriálů, PřF UPOL Oblasti využití RTG záření RTG radiografie RTG krystalografie (RTG
Klasifikace oxidů železa, strukturní formy. Tepelný rozklad jako metoda přípravy nanočástic. Příklady přípravy nanočástic oxidů železa
Obsah přednášky Klasifikace oxidů železa, strukturní formy Nanomateriály na bázi oxidů železa Tepelný rozklad jako metoda přípravy nanočástic Příklady přípravy nanočástic oxidů železa Polymorfní přeměny
Tepelné rozklady železo obsahujících sloučenin pohledem Mössbauerovy spektroskopie
Tepelné rozklady železo obsahujících sloučenin pohledem Mössbauerovy spektroskopie Libor Machala E-mail: libor.machala@upol.cz 21.10.2011 Workshop v rámci projektu Pokročilé vzdělávání ve výzkumu a aplikacích
STRUKTURA NANOMATERIÁLŮ: RENTGENOVÁ DIFRAKCE
STRUKTURA NANOMATERIÁLŮ: RENTGENOVÁ DIFRAKCE BUŇKA STRUKTURA PEVNÝCH LÁTEK IONTOVÉ POLOMĚRY A KOORDINACE X 7+ X 6+ X 5+ X 4+ X 3+ X 2+ X 1+ X 0 X 1- X 2- tetraedr oktaedr STRUKTURNÍ FORMY UHLÍKU 3D Amorphous
Slitiny titanu pro použití (nejen) v medicíně
Slitiny titanu pro použití (nejen) v medicíně Josef Stráský a spol. Katedra fyziky materiálů MFF UK Obsah Vývoj slitin Ti pro použití v ortopedii Spolupráce: Beznoska s.r.o., Kladno Ultrajemnozrnné slitiny
Termická analýza. Pavel Štarha. Zdeněk Marušák. Katedra anorganické chemie Přírodovědecká fakulta Univerzita Palackého v Olomouci
E-mail: pavel.starha@upol.cz http://agch.upol.cz E-mail: zdenek.marusak@upol.cz http://fch.upol.cz Termická analýza Pavel Štarha Zdeněk Marušák Katedra anorganické chemie Přírodovědecká fakulta Univerzita
MAGNETICKÉ NANOČÁSTICE
MAGNETICKÉ NANOČÁSTICE Jana Chomoucká Investice do rozvoje vzdělávání Obsah Úvod Vlastnosti MNPs Využití MNPs Metody přípravy MNPs na bázi oxidů železa Co je to nanotechologie? Obor zabývající se tvorbou
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
Tomáš Grygar: Metody analýza pevných látek L4-difrakce.doc
4. Rtg prášková difrakce (XRD, p-xrd) Tomáš Grygar: Metody analýza pevných látek Termíny Angstrom Å - 10-10 m = 0.1 nm. Tuhle jednotku hned tak něco nevymýtí. Důvodem je, jak pěkně se s ní popisují velikosti
Rentgenová difrakce a spektrometrie
Rentgenová difrakce a spektrometrie RNDr.Jaroslav Maixner, CSc. VŠCHT v Praze Laboratoř rentgenové difraktometrie a spektrometrie Technická 5, 166 28 Praha 6 224354201, 24355023 Jaroslav.Maixner@vscht.cz
ACH 02 VZÁCNÉPLYNY. Katedra chemie FP TUL www.kch.tul.cz VZÁCNÉ PLYNY
VZÁCNÉPLYNY ACH 02 Katedra chemie FP TUL www.kch.tul.cz VZÁCNÉ PLYNY 1 VZÁCNÉ PLYNY 2 Vzácné plyny 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 I II III IV V VI VII VIII I II III IV V VI VII VIII s 2 p
Metody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
Seznam řešených projektů včetně informací o délce trvání projektu, objemu a poskytovateli finančních prostředků
Seznam řešených projektů včetně informací o délce trvání projektu, objemu a poskytovateli finančních prostředků Podíl na řešení celkem: 52 grantových projektů V roli hlavního e/e za UP/spoluautora návrhu
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Periodická soustava prvků Chemické prvky V současné době známe 104 chemických prvků. Většina z nich se vyskytuje v přírodě. Jen malá část byla
Polymorfní transformace nanostruktur Fe 2 O 3
Polymorfní transformace nanostruktur Fe 2 O 3 Libor Machala, Jiří Tuček, Radek Zbořil Regionální centrum pokročilých technologií a materiálů, Univerzita Palackého Olomouc III. Letní škola Nanosystémy Bio-Eko-Tech,
Program XPS XRD XRF. Martin Kormunda
Program XPS XRD XRF XPS Základní rovnice X-Ray photoelectron spectroscopy nebo také někdy ESCA (Electron spectroscopy for chemical analyses) ( E W ) E = E + binding photon kinetic W výstupní práce Princip
Elektronová mikroskopie a mikroanalýza-2
Elektronová mikroskopie a mikroanalýza-2 elektronové dělo elektronové dělo je zařízení, které produkuje elektrony uspořádané do svazku (paprsku) elektrony opustí svůj zdroj katodu- po dodání určité množství
Možnosti rtg difrakce. Jan Drahokoupil (FZÚ) Zdeněk Pala (ÚFP) Jiří Čapek (FJFI)
Možnosti rtg difrakce Jan Drahokoupil (FZÚ) Zdeněk Pala (ÚFP) Jiří Čapek (FJFI) AdMat 13. 3. 2014 Aplikace Struktura krystalických látek Fázová analýza Mřížkové parametry Textura, orientace Makroskopická
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav materiálových věd a inženýrství
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav materiálových věd a inženýrství Ing. Pavla Roupcová PŘÍPRAVA A VLASTNOSTI NANOKRYSTALICKÉHO MATERIÁLU NA BÁZI Fe-Zr PREPARATION AND PROPERTIES
VYUŽITÍ AKTIVÁTORŮ ABSORPCE MIKROVLNNÉHO ZÁŘENÍ PŘI TERMICKÉ DESORPCI
VYUŽITÍ AKTIVÁTORŮ ABSORPCE MIKROVLNNÉHO ZÁŘENÍ PŘI TERMICKÉ DESORPCI Pavel Mašín - Dekonta, a.s Jiří Hendrych, Jiří Kroužek, VŠCHT Praha Martin Kubal Jiří Sobek - ÚCHP AV ČR Inovativní sanační technologie
REFERENČNÍ MATERIÁLY
I. REFEREČÍ MATERIÁLY, CERTIFIKOVAÉ Českým metrologickým institutem : C, S, v ocelích a litinách OCELI s certifikovanými obsahy C, S, resp. balení 250 g * Sada nízkolegovaných ocelí CRM CZ 2003 A 8 A CERTIFIKOVAÉ
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika
Fotonásobič vstupní okno fotokatoda E h fokusační elektrononová optika systém dynod anoda e zesílení G N typicky: - koeficient sekundární emise = 3 4 - počet dynod N = 10 12 - zisk: G = 10 5-10 7 Fotonásobič
Zpráva o analýze. Černý Kmječ MikroAnalytika, Čelákovice J. Zacha 786/11, 250 88 Čelákovice. Jan Turský (e-mail: jantursky@seznam.
Černý Kmječ MikroAnalytika, Čelákovice J. Zacha 786/11, 250 88 Čelákovice (+420) 608 002 454, www.mikroanalytika.cz ( mikroanalytika@firemni.cz) Čelákovice, Pro: Jan Turský (e-mail: jantursky@seznam.cz)
Glass temperature history
Glass Glass temperature history Crystallization and nucleation Nucleation on temperature Crystallization on temperature New Applications of Glass Anorganické nanomateriály se skelnou matricí Martin Míka
Materiálový výzkum na ústavu anorganické chemie. Ondřej Jankovský
Materiálový výzkum na ústavu anorganické chemie Ondřej Jankovský ÚSTAV ANORGANICKÉ CHEMIE Koordinační chemie Materiály pro fotoniku Oxidové materiály Polovodiče a nanomateriály Teoretická chemie Vedoucí
DISKUSE VHODNOSTI KOMBINOVANÉHO POUŢITÍ VYBRANÝCH IN-SITU SANAČNÍCH METOD PŘI ŘEŠENÍ KOTAMINACE PODZEMNÍCH VOD. Autorský kolektiv
DISKUSE VHODNOSTI KOMBINOVANÉHO POUŢITÍ VYBRANÝCH IN-SITU SANAČNÍCH METOD PŘI ŘEŠENÍ KOTAMINACE PODZEMNÍCH VOD. Autorský kolektiv Petr Kvapil, AQUATEST a.s. Lenka Lacinová, Technická univerzita v Liberci
INTERAKCE NULMOCNÉHO NANOŽELEZA SE SÍRANY. Pavla Filipská, Josef Zeman, Miroslav Černík. Ústav geologických věd Masarykova Univerzita
INTERAKCE NULMOCNÉHO NANOŽELEZA SE SÍRANY Pavla Filipská, Josef Zeman, Miroslav Černík Ústav geologických věd Masarykova Univerzita NANOČÁSTICE NULMOCNÉHO ŽELEZA mohou být používány k čištění důlních vod,
Klasifikace struktur
Klasifikace struktur typ vazby iontové, kovové, kovalentní, molekulové homodesmické x heterodesmické stechiometrie prvky, binární: X, X, m X n, ternární: m B k X n,... Title page symetrie prostorové grupy
02 Termogravimetrická analýza Thermogravimetric Analysis (TGA)
Audio test: Termická analýza 02 Termogravimetrická analýza Thermogravimetric Analysis (TGA) Přednášející: Doc. Jiří Sopoušek Brno, prosinec 2011 1 Princip Měření změn hmotnosti vzorku vystaveného změnám
na stabilitu adsorbovaného komplexu
Vliv velikosti částic aktivního kovu na stabilitu adsorbovaného komplexu Jiří Švrček Ing. Petr Kačer, Ph.D. Ing. David Karhánek Ústav organické technologie VŠCHT Praha Hydrogenace Základní proces chemického
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
Některé poznatky z charakterizace nano železa. Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová
Některé poznatky z charakterizace nano železa Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová Nanotechnologie 60. a 70. léta 20. st.: období miniaturizace 90. léta 20.
Metodický postup stanovení kovů v půdách volných hracích ploch metodou RTG.
Strana : 1 1) Význam a použití: Metoda je používána pro stanovení prvků v půdách volných hracích ploch. 2) Princip: Vzorek je po odběru homogenizován, je stanovena sušina, ztráta žíháním. Suchý vzorek
3. Termická analýza. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253
3. Termická analýza Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 1 DMA Dynamicko-mechanická analýza měření tvrdosti a tuhosti materiálů měření viskozity vzorku na materiál je
Laboratoře České geologické služby. Ceník základních služeb
Laboratoře České geologické služby Ceník základních služeb 2014 Laboratoře České geologické služby Ceník základních služeb Základní ceny platné od 1. 9. 2014 do vydání nového ceníku K uvedeným cenám je
KATALOG HNĚDÉHO UHLÍ. Severočeské doly a.s. člen Skupiny ČEZ
2012 2013 KATALOG HNĚDÉHO UHLÍ Severočeské doly a.s. člen Skupiny ČEZ Vážení obchodní přátelé, Severočeské doly a.s. člen skupiny ČEZ Vám předkládají pro rok 2012 2013 nabídku tříděného a prachového uhlí,
C5060 Metody chemického výzkumu
C5060 Metody chemického výzkumu Audio test: Start P01 Termická analýza Přednášející: Doc. Jiří Sopoušek Moderátor: Doc. Pavel Brož Operátor STA: Bc.Ondřej Zobač Brno, prosinec 2011 1 Organizace přednášky
UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra fyzikální chemie DISERTAČNÍ PRÁCE
UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra fyzikální chemie Vliv syntetických podmínek na katalytické vlastnosti oxidů železa, připravených reakcí v pevné fázi DISERTAČNÍ PRÁCE RNDr.
Metody pro studium pevných látek
Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi
LABORATOŘE GEOLOGICKÝCH ÚSTAVŮ
LABORATOŘE GEOLOGICKÝCH ÚSTAVŮ UK PRAHA - PŘÍRODOVĚDECKÁ FAKULTA NABÍDKOVÝ LIST 2009 Obsah 1. BRUSÍRNA...3 2. LABORATOŘ PLAZMOVÉ SPEKTROMETRIE (LAPS) - ICP MS, ICP MS LA, ICP OES...4 2.1. ICP MS...4 2.2.
SEKUNDÁRNÍ MINERÁLY VZNIK SEKUNDÁRNÍCH MINERÁLŮ VZNIK SEKUNDÁRNÍCH MINERÁLŮ VZNIK SEKUNDÁRNÍCH MINERÁLŮ
SEKUNDÁRNÍ MINERÁLY DEFINICE: sekundární minerály vznikají během zvětrávání zvětrávání sulfidů a okolních minerálů uvolňuje obrovské množství kationtů a aniontů do pórových vod 1. ionty mohou být sorbovány
Magnetické materiály a jejich vlastnosti. Prof.Mgr.Jiří Erhart, Ph.D. Katedra fyziky FP TUL
Magnetické materiály a jejich vlastnosti Prof.Mgr.Jiří Erhart, Ph.D. Katedra fyziky FP TUL Magnetické pole v látce Magnetovec, hematit přírodní magnetické minerály Dipólová struktura permanentních magnetů
YZIKY BAKALAŘSKÁ PRÁCE
Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra experimentální FYZIKY BAKALAŘSKÁ PRÁCE Mikrovlnná syntéza magnetických nanočástic oxidů železa Autor: Martin Ochmann Vedoucí práce: Doc. RNDr.
Krystalografie a strukturní analýza
Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl
Katalýza na nanostrukturách edí
a životní prostřed edí Zdeněk Sobalík Ústav fyzikální chemie J. Heyrovského AVČR, Praha 300 250 200 150 100 50 0 1994 1996 1998 2000 2002 2004 2006 2008 10000 cat 8000 6000 4000 Počet publikací ve všech
K uvedeným cenám je účtována DPH dle předpisů platných v době fakturace. vedoucí útvaru geochemie a laboratoří: RNDr. Jan Pašava, CSc.
CENÍK Platný od 1. 4. 2015 Laboratoře České geologické služby K uvedeným cenám je účtována DPH dle předpisů platných v době fakturace. vedoucí útvaru geochemie a laboratoří: RNDr. Jan Pašava, CSc. Laboratoře
Úvod do studia anorg. materiálů - MC240P33
Úvod do studia anorg. materiálů - MC240P33 Magnetismus, Magneticky uspořádané a neuspořádané struktury, Feromagnetismus, Antiferomagnetismus, Magnetické materiály, Záznamové materiály. Příprava magnetických
In vivo příklady biomateriálů [Ratner, 2005] Biomateriály
Bioaktivní materiály in vivo, in vitro Aleš Helebrant Ústav skla a keramiky Fakulta chemické technologie VŠCHT Praha OBSAH Úvod definice biomateriálu, biomateriály v lidském těle bioaktivní x bioinertní
Nanokrystalické tenké filmy oxidu železitého pro solární štěpení vody
Nanokrystalické tenké filmy oxidu železitého pro solární štěpení vody J. Frydrych, L. Machala, M. Mašláň, J. Pechoušek, M. Heřmánek, I. Medřík, R. Procházka, D. Jančík, R. Zbořil, J. Tuček, J. Filip a
VLIV EXPERIMENTÁLNÍCH PODMÍNEK NA ZÍSKÁVANÉ HODNOTY TEPELNÝCH EFEKTŮ A TEPLOT FÁZOVÝCH PŘEMĚN ČISTÉHO ŽELEZA A OCELI METODOU DTA
VLIV EXPERIMENTÁLNÍCH PODMÍNEK NA ZÍSKÁVANÉ HODNOTY TEPELNÝCH EFEKTŮ A TEPLOT FÁZOVÝCH PŘEMĚN ČISTÉHO ŽELEZA A OCELI METODOU DTA EXPERIMENTAL CONDITIONS INFLUENCE ON PHASE TRANSFORMATIONS HEAT EFFECTS
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 09.04.2013 Číslo DUMu: VY_32_INOVACE_02_Ch_ACH
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 09.04.2013 Číslo DUMu: VY_32_INOVACE_02_Ch_ACH Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Anorganická
Přednáška 12. Neutronová difrakce a rozptyl neutronů. Martin Kormunda
Přednáška 12 Neutronová difrakce a rozptyl neutronů Neutronová difrakce princip je shodný s rentgenovou difrakcí platí Braggova rovnice nλ = 2d sin θ Rozptyl záření na atomomech u XRD záření interaguje
(a) (a) de hydratovan ze olitu (b) silikage l. Aktivní uhlí. (c)
Hydrotermální syntéza Molekulová síta Molekulově sítový effekt - rozdělení molekul dle jejich velikosti ve vztahu k velikosti porů - distribuce velikosti porů Rozdělení IUPAC Zeolity Mikroporézní látky
VZÁCNÉ PLYNY ACH 02. Katedra chemie FP TUL
VZÁCNÉ PLYNY ACH 02 Katedra chemie FP TUL www.kch.tul.cz VZÁCNÉ PLYNY VZÁCNÉ PLYNY Xenon Radon Vzácné plyny 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 I II III IV V VI VII VIII I II III IV V VI VII
Materiál odebraný v opuštěném lomu s označením 146C a 146D
Příloha číslo I. ZÁKLADNÍ OPTICKÁ MIKROSKOPIE I. A Materiál odebraný v opuštěném lomu s označením 146C a 146D Makroskopický popis: světlá, šedá až šedozelená místy narůžovělá jemnozrnná hornina granitoidního
Aplikace nano-sorbentů pro stabilizaci Pb a Zn v kontaminované půdě
Aplikace nano-sorbentů pro stabilizaci Pb a Zn v kontaminované půdě Martina Vítková, Z. Michálková, L. Trakal, M. Komárek Katedra geoenvironmentálních věd, Fakulta životního prostředí, Česká zemědělská
MODELOVÁNÍ MIGRAČNÍCH SCHOPNOSTÍ ŽELEZNÝCH NANOČÁSTIC A OVĚŘENÍ MODELU PŘI PILOTNÍ APLIKACI
Technická univerzita v Liberci MODELOVÁNÍ MIGRAČNÍCH SCHOPNOSTÍ ŽELEZNÝCH NANOČÁSTIC A OVĚŘENÍ MODELU PŘI PILOTNÍ APLIKACI J. Nosek, M. Černík, P. Kvapil Cíle Návrh a verifikace modelu migrace nanofe jednoduše
Geochemie endogenních procesů 1. část
Geochemie endogenních procesů 1. část geochemie = použití chemických nástrojů na studium Země a dalších planet Sluneční soustavy počátky v 15. století spjaté zejména s kvalitou vody a půdy rozmach a první
Kovy a jejich vlastnosti. Kovy dělíme na: a) nepřechodné (s- a p-prvky) b) přechodné (d- a f- prvky)
Kovy a jejich vlastnosti Kovy dělíme na: a) nepřechodné (s- a p-prvky) b) přechodné (d- a f- prvky) Nepřechodné kovy mají konfiguraci valenční slupky: ns 1 ns 2 ns 2 p 1 ns 2 p 2 ns 2 p 3 ns 2 p 4 ns 2
Autokláv reaktor pro promíchávané vícefázové reakce
Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.
Odhad zdrojů atmosférického aerosolu v městském obvodu Ostrava-Radvanice a Bartovice v zimě 2012
Odhad zdrojů atmosférického aerosolu v městském obvodu Ostrava-Radvanice a Bartovice v zimě 212 CENATOX, GAČR P53/12/G147 P. Pokorná 1, J. Hovorka 1, Jan Bendl 1, Alexandra Baranová 1, Martin Braniš 1
charakterizaci polymerů,, kopolymerů
Vysoká škola chemicko technologická v Praze Fakulta chemické technologie Ústav polymerů Využit ití HiRes-TGA a MDSC při p charakterizaci polymerů,, kopolymerů a polymerních směsí Jiří Brožek, Jana Kredatusová,
Metody pro studium pevných látek
Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi
Analýza magnetických mikročástic mikroskopií atomárních sil
Analýza magnetických mikročástic mikroskopií atomárních sil Zapletalová 1 H., Tvrdíková 2 J., Kolářová 1 H. 1 Ústav lékařské biofyziky, LF UP Olomouc 2 Ústav chemie potravin a biotechnologií, CHF VUT Brno
RTG difraktometrie 1.
RTG difraktometrie 1. Difrakce a struktura látek K difrakci dochází interferencí mřížkou vychylovaných vln Když dochází k rozptylu vlnění na různých atomech molekuly či krystalu, tyto vlny mohou interferovat
APLIKACE POKROČILÝCH METOD IČ SPEKTROSKOPIE
APLIKACE POKROČILÝCH METOD IČ SPEKTROSKOPIE PŘI ANALÝZE MINERALOGICKÉHO SLOŽENÍ HORNIN Ing. Lenka VACULÍKOVÁ, Ph.D. Ústav geoniky AV ČR, v.v.i. Ostrava Ing. Michal RITZ, Ph.D. Katedra analytické chemie
10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita
Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová
Svazek pomalých pozitronů
Svazek pomalých pozitronů pozitrony emitované + zářičem moderované pozitrony střední hloubka průniku Příklad: 0 z P z dz 1 Mg: -1 =154 m Al: -1 = 99 m Cu: -1 = 30 m z pravděpodobnost, p že pozitron pronikne
Termická analýza. Pavel Štarha. Katedra anorganické chemie Přírodovědecká fakulta Univerzita Palackého v Olomouci
Termická analýza Pavel Štarha Katedra anorganické chemie Přírodovědecká fakulta Univerzita Palackého v Olomouci E-mail: pavel.starha@upol.cz http://agch.upol.cz 01/27 1. část: Rozdělení metod termické
METODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
Prvky 8. B skupiny. FeCoNi. FeCoNi. FeCoNi 17.12.2011
FeCoNi Prvky 8. B skupiny FeCoNi Valenční vrstva: x [vzácný plyn] ns 2 (n-1)d 6 x [vzácný plyn] ns 2 (n-1)d 7 x [vzácný plyn] ns 2 (n-1)d 8 Tomáš Kekrt 17.12.2011 SRG Přírodní škola o. p. s. 2 FeCoNi Fe
OPTIMALIZACE CHEMICKY PODPOROVANÝCH METOD IN SITU REDUKTIVNÍ DEHALOGENACE CHLOROVANÝCH ETHYLENŮ.
OPTIMALIZACE CHEMICKY PODPOROVANÝCH METOD IN SITU REDUKTIVNÍ DEHALOGENACE CHLOROVANÝCH ETHYLENŮ. Jaroslav Hrabal, MEGA a.s., Drahobejlova 1452/54, 190 00 Praha 9 e-mail: audity@mega.cz Něco na úvod Boj
Elektronová mikroanalýz Instrumentace. Metody charakterizace nanomateriálů II
Elektronová mikroanalýz ýza 1 Instrumentace Metody charakterizace nanomateriálů II RNDr. Věra V Vodičkov ková,, PhD. Elektronová mikroanalýza relativně nedestruktivní rentgenová spektroskopická metoda
VYUŽITÍ METOD TERMICKÉ ANALÝZY PRO STUDIUM TEPLOT FÁZOVÝCH PŘEMĚN REÁLNÝCH JAKOSTÍ OCELÍ VE VYSOKOTEPLOTNÍ OBLASTI
VYUŽITÍ METOD TERMICKÉ ANALÝZY PRO STUDIUM TEPLOT FÁZOVÝCH PŘEMĚN REÁLNÝCH JAKOSTÍ OCELÍ VE VYSOKOTEPLOTNÍ OBLASTI Karel GRYC a, Bedřich SMETANA b, Karel MICHALEK a, Monika ŽALUDOVÁ b, Simona ZLÁ a, Michaela
Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D.
Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D. Rentgenová fluorescenční spektrometrie ergiově disperzní (ED-XRF) elé spektrum je analyzováno najednou polovodičovým
VLIV KOROZNÍHO PŮSOBENÍ OCELÍ S VYSOKÝM OBSAHEM MANGANU A CHROMU NA ŽÁRUVZDORNOU KERAMIKU. Libor BRAVANSKÝ, Kateřina KADLÍKOVÁ
VLIV KOROZNÍHO PŮSOBENÍ OCELÍ S VYSOKÝM OBSAHEM MANGANU A CHROMU NA ŽÁRUVZDORNOU KERAMIKU Libor BRAVANSKÝ, Kateřina KADLÍKOVÁ SEEIF Ceramic,a.s., Rájec-Jestřebí, Česká Republika libor.bravansky@ceramic.cz
Úpravy chemických rovnic
Úpravy chemických rovnic Chemické rovnice kvantitativně i kvalitativně popisují chemickou reakci. Na levou stranu se v chemické rovnici zapisují výchozí látky (reaktanty), na pravou produkty. Obě strany
Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,
Státní bakalářská zkouška. 9. 05 Fyzika (učitelství) Zkouška - teoretická fyzika (test s řešením) Jméno: Pokyny k řešení testu: Ke každé úloze je správně pouze jedna odpověď. Čas k řešení je 0 minut (6
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
Materiálově neagresivní činidla pro. dekontaminaci. citlivých komponent techniky
neagresivní činidla pro dekontaminaci citlivých komponent techniky Ing. František OPLUŠTIL, CSc. VOP-026 Šternberk, s.p., divize VTÚO Brno, CZE tel.: 532 191 317, e-mail: oplustil@vtuo.cz Jemně dispersní
SAXSpace. Modulární řešení analýzy nanostruktur. ::: Innovation in Materials Science
SAXSpace Modulární řešení analýzy nanostruktur ::: Innovation in Materials Science Základní informace k metodě SAXS. Princip Internal Structure SAXS - Maloúhlový rozptyl RTG paprsků je nedestruktivní metoda
Záchyt pozitronů v precipitátech
Záchyt pozitronů v precipitátech koherentní precipitát materiál ve vakuu E elektrony pozitrony vakuum E F E, valenční č pás vakuum výstupní práce: povrchový potenciál: chemický potenciál: Záchyt pozitronů
F7030 Rentgenový rozptyl na tenkých vrstvách
F7030 Rentgenový rozptyl na tenkých vrstvách O. Caha PřF MU Prezentace k přednášce Numerické simulace Příklady experimentů Vybrané vztahy Sylabus Elementární popis vlnového pole: Rtg vlna ve vakuu; Greenova
Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková
Přírodovědecká fakulta UJEP Ústí n.l. a Ústecké materiálové centrum na PřF UJEP http://sci.ujep.cz/faculty-of-science.html Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková Kontakt: Doc. RNDr.
GEOCHEMICKÁ REAKTIVNÍ BARIÉRA PERSPEKTIVNÍ PRVEK IN - SITU SANAČNÍCH TECHNOLOGIÍ
GEOCHEMICKÁ REAKTIVNÍ BARIÉRA PERSPEKTIVNÍ PRVEK IN - SITU SANAČNÍCH TECHNOLOGIÍ Jaroslav HRABAL MEGA a.s. monitorovací vrt injektážní vrt reakční zóna Geochemická bariera zóna s odlišnými fyzikálně-chemickými
Fitování spektra dob života pozitronů
Fitování spektra dob života pozitronů modelová funkce S n I t i i e R t t B i1 i n i1 I i 1 diskrétní exponenciální komponenty -volné lépozitrony - pozitrony zachycené v defektech - zdrojové komponenty
1 Teoretický úvod. 1.2 Braggova rovnice. 1.3 Laueho experiment
RTG fázová analýza Michael Pokorný, pok@rny.cz, Střední škola aplikované kybernetiky s.r.o. Tomáš Jirman, jirman.tomas@seznam.cz, Gymnázium, Nad Alejí 1952, Praha 6 Abstrakt Rengenová fázová analýza se
Rentgenfluorescenční analýza, pomocník nejen při studiu památek
Rentgenfluorescenční analýza, pomocník nejen při studiu památek Ondřej Vrba (vrba.ondrej@gmail.com) Do Hoang Diep - Danka(dohodda@gmail.com) Verča Chadimová (verusyk@email.cz) Metoda využívající RTG záření
Chemie a fyzika pevných látek p2
Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.04.2013 Číslo DUMu: VY_32_INOVACE_01_Ch_ACH
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.04.2013 Číslo DUMu: VY_32_INOVACE_01_Ch_ACH Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Anorganická
Zařízení na tepelné zpracování. Katedra materiálu SF TU v Liberci 2010
Zařízení na tepelné zpracování Katedra materiálu SF TU v Liberci 2010 Požadavky na zařízení Ohřev zpravidla odporový elektrický, výjimečně plynový Maximální dosažitelná teplota : - běžná univerzální zařízení
Heterogenní katalýza
Ústav fyzikální chemie Jaroslava Heyrovského AV ČR Heterogenní katalýza Blanka Wichterlová Katalýza cíle Zvýšení rychlosti reakce termodynamicky schůdné Snížení aktivační bariéry tvorbou vazby s katalyzátorem
Využití oxidů Fe a Mn pro stabilizaci As v kontaminované půdě. Ing. Zuzana Michálková, doc. RNDr. Michael Komárek, Ph.D.
Využití oxidů Fe a Mn pro stabilizaci As v kontaminované půdě Ing. Zuzana Michálková, doc. RNDr. Michael Komárek, Ph.D. Oxidy Fe a Mn N Oxidy Fe a Mn 1 µm 1 µm 1 µm Nanomaghemit Nanomagnetit Amorfní oxid
Kovy II. hlavní skupiny (alkalických zemin + Be,, Mg)
Kovy II. hlavní skupiny (alkalických zemin + Be,, Mg) I II III IV V VI VII VIII I II III IV V VI VII VIII 1 H n s n p He 2 Li Be B C N O F Ne 3 Na Mg (n-1) d Al Si P S Cl Ar 4 K Ca Sc Ti V Cr Mn Fe Co
EVROPSKÁ STANDARDIZACE TUHÝCH ALTERNATIVNÍCH PALIV. Ing. Jan Gemrich
EVROPSKÁ STANDARDIZACE TUHÝCH ALTERNATIVNÍCH PALIV Ing. Jan Gemrich Agregované údaje - spotřeba tepla na výpal slínku Agregované údaje - palivová základna cementářského průmyslu Agregované údaje - emise
Magnetokalorický jev MCE
Magnetokalorický jev a jeho aplikační potenciál P. Svoboda Katedra fyziky kondenzovaných látek Magnetokalorický jev MCE MCE: znám déle než 120 let renesance zájmu během posledních 35 let PROČ? Připomínka
REFERENČNÍ MATERIÁLY
REFERENČNÍ MATERIÁLY www.spl-bohumin.cz I. REFERENČNÍ MATERIÁLY, CERTIFIKOVANÉ Českým metrologickým institutem : C, S, N v ocelích a litinách OCELI s certifikovanými obsahy C, S, resp. N balení 250 g *
LABORATOŘE GEOLOGICKÝCH ÚSTAVŮ
LABORATOŘE GEOLOGICKÝCH ÚSTAVŮ UK PRAHA - PŘÍRODOVĚDECKÁ FAKULTA NABÍDKOVÝ LIST Externí- 2016 Obsah 1. BRUSÍRNA... 3 2. LABORATOŘ PLAZMOVÉ SPEKTROMETRIE (LAPS) - ICP MS, ICP MS LA, ICP OES... 4 2.1. ICP
Využití nanotechnologií (a biotechnologií) pro čištění vod
Využití nanotechnologií (a biotechnologií) pro čištění vod Miroslav Černík, Petr Kvapil, Radek Zbořil, Stanislav Kratochvíl TUL, AQUATEST a.s., UPOL, MEGA Nanotechnologie v životním prostředí Nano na San