PB165 Grafy a sítě. Kostry grafu. PB165 Grafy a sítě
|
|
- Jindřiška Soukupová
- před 8 lety
- Počet zobrazení:
Transkript
1 Kostry grafu
2 Obsah přednášky Úvod Budování stromu v grafu Průchod grafem Průchod do šířky Průchod do hloubky Minimální kostra grafu Primův algoritmus Kruskalův algoritmus
3 Terminologický úvod Definice Stromem v grafu G rozumíme podgraf grafu G, který je stromem. Hrany a vrcholy, které do tohoto stromu náleží, nazýváme stromové. V opačném případě se hrana nazývá nestromová. Hranu, jejíž jeden vrchol je součástí stromu T v neorientovaném grafu, budeme značit jako okrajovou hranu stromu T. Je-li graf orientovaný, značíme hranu jako okrajovou, pokud je součástí stromu T její počáteční vrchol. Obrázek: Strom v grafu je vyznačen plnými vrcholy a tučnými hranami, okrajové hrany čárkovaně.
4 Růst stromu v grafu Věta Je-li G graf a T strom v G, potom graf vzniklý z T přidáním jeho libovolné okrajové hrany je také stromem. Důkaz. Jelikož hrana má jeden ze svých koncových vrcholů v T, existuje cesta z přidaného vrcholu do všech vrcholů T a graf zůstává spojitý. Přidaná hrana má mezi vrcholy stromu T zároveň nejvýše jeden vrchol. Nemůže tedy žádným způsobem vzniknout cyklus a graf zůstává i acyklický, tedy strom.
5 Kostra grafu Definice Kostra grafu G je takový strom T v grafu G, pro který platí V (T ) = V (G). (vrcholy v T a v G jsou totožné) Graf může mít více než jednu kostru. Každý acyklický podgraf grafu G je obsažen v alespoň jedné kostře grafu G. Obrázek: Kostra je vyznačena tučnými hranami.
6 Kostra komponent grafu Graf může mít kostru zřejmě jen v případě, že je souvislý. Pokud souvislý není, mohou ale mít kostru jeho komponenty souvislosti. Kostra nesouvislého grafu je tedy lesem, nikoliv stromem, přičemž každý jeho strom je kostrou jedné komponenty grafu.
7 Budování stromu v grafu Vstupem algoritmu je graf G a jeho vrchol v. Výstupem je graf s očíslovanými (přirozenými čísly ohodnocenými) vrcholy 1,..., n. inicializuj strom T jako vrchol v. Nastav počítadlo vrcholů na 1 a očísluj vrchol v, Dokud strom T neobsahuje všechny vrcholy komponenty, které je podgrafem: Vyber okrajovou hranu e. Nechť u je její vrchol, který není součástí stromu. Přidej vrchol u a hranu e do stromu T. Zvyš hodnotu počítadla vrcholů o 1. Očísluj vrchol u. Vrať strom T.
8 Budování stromu v grafu příklad Obrázek: Růst stromu. Výstupní strom T je vyznačen tučně, okrajové hrany čárkovaně.
9 Budování stromu v grafu vlastnosti Výběr okrajové hrany musí být proveden podle deterministického pravidla, aby výstup byl jednoznačný. Hranám je přidělena priorita a do grafu je přidána vždy ta s prioritou nejvyšší. Je-li algoritmus spuštěn z počátečního vrcholu v, strom T složený z očíslovaných vrcholů a stromových hran je kostrou komponenty grafu G, jíž je vrchol v součástí. Graf je spojitý, právě když algoritmus budování stromu připojí všechny vrcholy tohoto grafu.
10 Budování stromu v orientovaném grafu Algoritmus budování stromu v orientovaném grafu je stejný jako v případě grafu neorientovaného. Výstupní stromy se ovšem mohou lišit počtem vrcholů v závislosti na tom, který vrchol je vybrán jako počáteční. Výstup algoritmu budování stromu v orientovaném grafu na obrázku se bude lišit v závislosti na vybraném počátečním vrcholu.
11 Strom v grafu cvičení 1 Nakreslete výstup algoritmu budování stromu v grafu, je-li vstupem graf na obrázku. Priorita hran je určena lexikografickým pořadím sestupně (lexikograficky menší hrana má vyšší prioritu) a výpočet začíná ve vrcholu: 1 a 2 c
12 Průchod grafem do šířky BFS (Breadth-First Search) Předpokládáme, že vstupem je souvislý neorientovaný graf. Slouží k prohledání a navštívení všech vrcholů grafu. Vrcholy jsou navštěvovány v pořadí podle vzdálenosti od počátečního vrcholu. Nalezne nejkratší cestu z počátečního vrcholu do všech ostatních. Při průchodu grafem je budován strom cest do všech jeho vrcholů. Pro implementaci algoritmu se používá fronta.
13 Průchod do šířky příklad
14 Algoritmus průchodu do šířky Inicializuj strom T vrcholem s. Nastav dist[s] = 0, dist[x] = -1 pro x!= s. Inicializuj frontu vrcholů jako prázdnou a vlož s. Inicializuj počítadlo vrcholů na 1 a označ jím vrchol s. Dokud jsou ve frontě nějaké vrcholy, opakuj: Z počátku fronty odeber vrchol w. Dokud neprojdeme všechny hrany e z vrcholu w do x, opakuj: Je-li x neočíslovaný: Zvyš počítadlo vrcholů o 1. Očísluj x. Nastav dist[x] = dist[w] + 1. Přidej x na konec fronty. Přidej vrchol x a hranu e do T. Vrať strom T.
15 Průchod do šířky vlastnosti Definice Nechť u, v jsou vrcholy v grafu G. Vzdálenost vrcholů u, v (počet hran na nejkratší cestě mezi těmito vrcholy) budeme značit δ(u, v). Neexistuje-li cesta mezi těmito vrcholy, klademe δ(u, v) =. Věta Po skončení algoritmu BFS s počátečním vrcholem s na grafu G jsou očíslovány všechny vrcholy dosažitelné z s a v poli dist jsou hodnoty δ(s, v). Intuitivně: nejprve projdeme všechny vrcholy, které mají od s vzdálenost 1 pak postupně procházíme vrcholy se vzdáleností 2, 3,... a odpovídajícím způsobem se nastavuje dist
16 Průchod do šířky složitost Každou hranu "projdeme"právě jednou a všechny vrcholy také navštívíme právě jednou. Při vhodné implementaci fronty, která umožňuje přidávání a odebírání vrcholů v konstantním čase, je tedy časová složitost BFS O( V + E ). Poznámka Prezentovaný algoritmus lze snadno upravit tak, aby kromě výpočtu vzdálenosti od počátečního vrcholu s vypočítal i jeho předchůdce na nejkratší cestě z s.
17 Průchod grafem do hloubky DFS Depth First Search Namísto postupného procházení vrcholů od nejbližších ke kořeni postupuje algoritmus do hloubky dokud je to možné, vybere vždy hranu vedoucí dále z vrcholu, do kterého právě vstoupil. Poté se vrací stromem ke kořenu "backtrackuje". Algoritmus i jeho implementace velice podobné BFS stejná časová složitost. Projde všemi vrcholy grafu. Vstupem je rovněž neorientovaný souvislý graf Algoritmus ale nenalezne nejkratší cesty do vrcholů. Algoritmus je vhodnější pro prohledávání stavových prostorů a heuristiky. K implementaci se používá zásobník.
18 Průchod do hloubky příklad s s 1 2 s 1 s s s s s vrchol zešedne, když je očíslován a přidán na zásobník vrchol zčerná, když je vybrán ze zásobníku
19 Algoritmus průchodu stromu do hloubky Zjednodušená verze algoritmu pro průchod stromem Inicializuj strom T vrcholem s. Inicializuj zásobník vrcholů jako prázdný a vlož s. Inicializuj počítadlo vrcholů na 1 a označ jím vrchol s. Dokud jsou v zásobníku nějaké vrcholy, opakuj: Z vrcholu zásobníku odeber vrchol w. Dokud neprojdeme všechny hrany e z vrcholu w do x, opakuj: Je-li x neočíslovaný: Zvyš počítadlo vrcholů o 1. Očísluj x. Přidej x na vrchol zásobníku. Přidej vrchol x a hranu e do T. Vrať strom T.
20 Průchod do hloubky příklad vrchol zčerná, když je poprvé vybrán ze zásobníku a očíslován
21 Algoritmus průchodu grafu do hloubky Obecná verze algoritmu pro průchod grafem do zásobníku vkládáme kromě vrcholu i jeho předchůdce Inicializuj počítadlo vrcholů na 0. Inicializuj zásobník vrcholů jako prázdný a vlož (s,nil). Dokud jsou v zásobníku nějaké vrcholy, opakuj: Z vrcholu zásobníku odeber (w,pw). Je-li w neočíslovaný: Přidej vrchol w do stromu T. Je-li pw!= nil: (platí pro všechny vrcholy kromě s) Přidej hranu z vrcholu pw do w do stromu T. Zvyš počítadlo vrcholů o 1. Očísluj w. Dokud neprojdeme všechny hrany z w do x, opakuj: Je-li x neočíslovaný: Přidej (x,w) na vrchol zásobníku. Vrať strom T.
22 Průchod grafem cvičení 1 Pro graf z předchozího cvičení a počáteční vrchol b nakreslete výstup včetně očíslování 1 průchodu do šířky. 2 průchodu do hloubky. 2 Charakterizujte grafy, jejichž výstupní strom včetně očíslování je shodný v případě průchodu do šířky i do hloubky. 3 Upravte algoritmus BFS (DFS), aby u každého vrcholu uložil i jeho předchůdce na cestě z počátečního vrcholu.
23 Minimální kostra grafu Definice Nechť G je souvislý graf s ohodnocenými hranami. Kostra grafu G, jejíž součet ohodnocení všech hran je nejnižší, se nazývá minimální kostra grafu G. Nalezení nejlevnější, ale neredundantní, počítačové či např. elektrické sítě spojující všechny koncové a aktivní prvky, resp. přípojná místa. Obrázek: Minimální kostra je vyznačena tučně
24 Primův algoritmus Hledání minimální kostry. Neprohledává systematicky všechny kostry grafu. Začíná v libovolném vrcholu a buduje strom. Nejvyšší prioritu mají hrany s nejnižším ohodnocením. Stále existuje jen jedna komponenta minimální kostry, která postupně roste. Složitost závisí na datové struktuře ukládající okrajové hrany: Matice sousednosti O(V 2 ) Binární halda O(Elog(V )) Fibonacciho halda O(E + Vlog(V ))
25 Primův algoritmus Vyber libovolný vrchol s vstupního grafu. Inicializuj výstupní strom T vrcholem s. Inicializuj množinu okrajových hran jako prázdnou. Dokud T neobsahuje všechny vrcholy: Aktualizuj množinu okrajových hran. Nechť e je okrajová hrana s nejnižším ohodnocením a její koncový vrchol v nepatřící do T. Přidej vrchol v a hranu e do stromu T. Vrať strom T.
26 Primův algoritmus důkaz Věta Výstupní strom T k vytvořený k iteracemi Primova algoritmu je podstromem minimální kostry grafu. Důkaz. Indukcí přes k: 1 Pro k = 0 patří do grafu jen vrchol s. 2 Nechť T k je podstromem minimální kostry T a strom T k+1 vznikne přidáním hrany e s minimálním ohodnocením, jejíž vrchol v patří do T k a u nikoliv.
27 Primův algoritmus důkaz Důkaz pokračování Pokud T obsahuje hranu e, je T k+1 podstromem minimální kostry. V případě, že hrana e do minimální kostry nepatří, existuje v grafu T + e (minimální kostra s přidanou hranou e) cyklus hranou e procházející. Nechť f je první hrana na "delší"cestě mezi vrcholy u, v taková, že nepatří do T k. Potom je i f okrajová hrana stromu T k, ale má nižší prioritu (tudíž vyšší ohodnocení) než hrana e. Nahradíme-li tedy v T hranu f hranou e, celková váha se nezvýší a vzniklá kostra bude minimální.
28 Primův algoritmus příklad v
29 Primův algoritmus příklad v v v v v v v
30 Kruskalův algoritmus Druhý algoritmus pro hledání minimální kostry grafu. Nepostupuje cestou budování stromu, naopak vzniká les. Přidává hrany seřazené vzestupně podle jejich ohodnocení. Při použití vhodných datových struktur časová složitost O(Elog(V )).
31 Kruskalův algoritmus Setřiď hrany grafu G vzestupně podle ohodnocení. Inicializuj seznam komponent souvislosti všemi vrcholy. Dokud je ve výstupním stromu T více než 1 komponenta: Vyber hranu s nejnižším ohodnocením, která spojuje vrcholy ležící v různých komponentách. Přidej tuto hranu do výstupního stromu T. Aktualizuj seznam komponent. Vrať strom T.
32 Kruskalův algoritmus příklad
33 Kruskalův algoritmus příklad
34 Minimální kostra cvičení 1 Na graf na obrázku aplikujte některý z algoritmů hledání minimální kostry. 2 Graf na obrázku představuje komunikační síť, kde ohodnocení hran udává pravděpodobnost nechybovosti linky. Pravděpodobnost nechybové cesty v grafu je součinem pravděpodobností všech linek na trase. Najděte nejspolehlivější cestu z s do t.
Jan Březina. Technical University of Liberec. 17. března 2015
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 17. března 2015 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
Rostislav Horčík. 13. října 2006
3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem
Lineární algebra. Vektorové prostory
Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:
2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková
.. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.
2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic
.3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =
řádově různě rostoucí rostou řádově stejně rychle dvě funkce faktor izomorfismus neorientovaných grafů souvislý graf souvislost komponenta
1) Uveďte alespoň dvě řádově různě rostoucí funkce f(n) takové, že n 2 = O(f(n)) a f(n) = O(n 3 ). 2) Platí-li f(n)=o(g 1 (n)) a f(n)=o(g 2 (n)), znamená to, že g 1 (n) a g 2 (n) rostou řádově stejně rychle
MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE
MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE 1 ZAPNUTÍ SLEDOVÁNÍ ZMĚN Pokud zapnete funkci Sledování změn, aplikace Word vloží značky tam, kde provedete mazání, vkládání a změny formátu. Na kartě Revize klepněte
10.1.13 Asymptoty grafu funkce
.. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol
Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.
Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například
Business Contact Manager Správa kontaktů pro tisk štítků
Business Contact Manager Správa kontaktů pro tisk štítků 1 Obsah 1. Základní orientace v BCM... 3 2. Přidání a správa kontaktu... 4 3. Nastavení filtrů... 5 4. Hromadná korespondence... 6 5. Tisk pouze
(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.
. Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce
Fyzikální praktikum 3 - úloha 7
Fyzikální praktikum 3 - úloha 7 Operační zesilovač, jeho vlastnosti a využití Teorie: Operační zesilovač je elektronická součástka využívaná v měřící, regulační a výpočetní technice. Ideální model má nekonečně
ÚVOD DO HRY PRINCIP HRY
Počet hráčů: 2-6 Věk: od 6 let Délka hry: cca 20 min. Obsah: 66 hracích karet: 45 karet s čísly (hodnota 0 8 čtyřikrát, hodnota 9 devětkrát), 21 speciálních karet (9 karet Výměna, 7 karet Špehuj, 5 karet
a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.
1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její
Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY
Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí
Ozobot aktivita lov velikonočních vajíček
Ozobot aktivita lov velikonočních vajíček Autor: Ozobot Publikováno dne: 9. března 2016 Popis: Tato hra by měla zábavnou formou procvičit programování ozokódů. Studenti mají za úkol pomoci Ozobotovi najít
téma: Formuláře v MS Access
DUM 06 téma: Formuláře v MS Access ze sady: 3 tematický okruh sady: Databáze ze šablony: 07 - Kancelářský software určeno pro: 2. ročník vzdělávací obor: vzdělávací oblast: číslo projektu: anotace: metodika:
Sekvenční obvody. S R Q(t+1) 0 0? 0 1 0 1 0 1 1 1 Q(t)
Sekvenční obvody Pokud hodnoty výstupů logického obvodu závisí nejen na okamžitých hodnotách vstupů, ale i na vnitřním stavu obvodu, logický obvod se nazývá sekvenční. Sekvenční obvody mění svůj vnitřní
Vítězslav Bártl. prosinec 2013
VY_32_INOVACE_VB09_ČaP Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, vzdělávací obor, tematický okruh, téma Anotace Vítězslav
Druhá mocnina. Druhá odmocnina. 2.8.5 Druhá odmocnina. Předpoklady: 020804. V této hodině jsou kalkulačky zakázány.
.8.5 Druhá odmocnina Předpoklady: 0080 V této hodině jsou kalkulačky zakázány. Druhá mocnina nám umožňuje určit z délky strany plochu čtverce. Druhá mocnina 1 1 9 11 81 11 délky stran čtverců obsahy čtverců
2.6.4 Lineární lomené funkce s absolutní hodnotou
.6. Lineární lomené funkce s absolutní hodnotou Předpoklady: 60, 603 Pedagogická poznámka: Hlavním cílem hodiny je nácvik volby odpovídajícího postupu. Proto je dobré nechat studentům chvíli, aby si metody
7. Silně zakřivený prut
7. Silně zakřivený prut 2011/2012 Zadání Zjistěte rozložení napětí v průřezu silně zakřiveného prutu namáhaného ohybem analyticky a experimentálně. Výsledky ověřte numerickým výpočtem. Rozbor Pruty, které
UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
Hra a hry. Václav Vopravil. Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována R },
Hra a hry Václav Vopravil Úvod 1 Kombinatorické hry Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována pomocí jednodušších her, tj. jako uspořádaná dvojice množin her.
( ) ( ) 7.2.2 Sčítání vektorů. Předpoklady: 7201
7.. Sčítání ektorů Předpoklady: 70 Pedagogická poznámka: Stdenti ětšino necítí potřeb postpoat při definici sčítání ektorů (obecně při zaádění jakékoli operace) tak striktně, jak yžadje matematika. Upozorňji
ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ
ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)
Zákon o elektronickém podpisu
Zákon o elektronickém podpisu Zaručený elektronický podpis Je jednoznačně spojen s podepisující osobou (jen fyzická osoba!); umožňuje identifikaci podepisující osoby ve vztahu k datové zprávě; byl vytvořen
Numerická integrace. 6. listopadu 2012
Numerická integrace Michal Čihák 6. listopadu 2012 Výpočty integrálů v praxi V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů. V praxi se ale poměrně často můžeme
Prostorové indexační techniky. Zdeněk Kouba
Prostorové indexační techniky Zdeněk Kouba Geografické informační systémy Data strukturovaná Relační databáze Dotazy SQL Data nestrukturovaná Mapové podklady rastrová data Geometrické objekty vektorová
NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO 3.5.5 PŘÍRUČKA UŽIVATELE
NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO 3.5.5 PŘÍRUČKA UŽIVATELE 1. Přehled možností programu 1.1. Hlavní okno Hlavní okno programu se skládá ze čtyř karet : Projekt, Zadání, Výsledky a Návrhový
Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.
Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v
Statistika ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ. Jiří Volf, Adam Kratochvíl, Kateřina Žáková. Semestrální práce - 0 -
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Jiří Volf, Adam Kratochvíl, Kateřina Žáková 2 34 Statistika Semestrální práce - 0 - 1. Úvod Popis úlohy: V této práci se jedná se o porovnání statistických
Příloha Průběžné zprávy. Shrnutí návrhu algoritmu
Příloha Průběžné zprávy Shrnutí návrhu algoritmu Obsah 1. Zadání a definice 2. Předpoklady použitíalgoritmu 3. Ocenění lesní půdy Ocenění zemědělské půdy Oceněníbudov a zastavěných ploch Ocenění vodních
Doplňující informace. A. Komentář k položkám Podklad pro stanovení záloh příspěvku vlastníka (nájemného) a na služby pro období 01/2015 12/2015.
Doplňující informace A. Komentář k položkám Podklad pro stvení záloh příspěvku vlastníka (nájemného) a na služby pro období 01/2015 12/2015. a) U položek č. 1 a 2 je uvedena výše předpisu roku 2014. Při
(sponzorský vzkaz) Grafický manuál
(sponzorský vzkaz) Grafický manuál Obsah Úvod 01 Logo 02 Značka základní varianty 02.01 Značka černá varianta 02.02 Logo vodorovná varianta 02.03 Logo svislá varianta 02.04 Logo černé varianty 02.05 Logo
V této části manuálu bude popsán postup jak vytvářet a modifikovat stránky v publikačním systému Moris a jak plně využít všech možností systému.
V této části manuálu bude popsán postup jak vytvářet a modifikovat stránky v publikačním systému Moris a jak plně využít všech možností systému. MENU Tvorba základního menu Ikona Menu umožňuje vytvořit
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Uživatelská nastavení parametrických modelářů, využití
MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA)
PH-M5MBCINT MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA) 1. TYPY TESTOVÝCH ÚLOH V TESTU První dvě úlohy (1 2) jsou tzv. úzce otevřené
Měřidla. Existují dva druhy měření:
V této kapitole se seznámíte s většinou klasických druhů měřidel a se způsobem jejich použití. A co že má dělat měření na prvním místě mezi kapitolami o ručním obrábění kovu? Je to jednoduché - proto,
Goniometrie trigonometrie
Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických
Matrika otázky a odpovědi Vidimace částečné listiny. Ing. Markéta Hofschneiderová Eva Vepřková 26.11.2009
Matrika otázky a odpovědi Vidimace částečné listiny Ing. Markéta Hofschneiderová Eva Vepřková 26.11.2009 1 Ženská příjmení Příjmení žen se tvoří v souladu s pravidly české mluvnice. Při zápisu uzavření
1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15
Varianta A 4 4 4 4 4 4 4 4 1) Vypočítej A) 32 B) 44 C) 48 D) 56 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 20 120 A. A) 12 B) 13 C) 14 D) 15 3) Najdi největší a nejmenší trojciferné číslo skládající
posl. Prof. JUDr. Helena Válková, CSC.
posl. Prof. JUDr. Helena Válková, CSC. Pozměňovací návrhy ke komplexnímu pozměňovacímu návrhu obsaženému v usnesení ústavně právního výboru č. 99 - tisku 181/3 1. V části druhé čl. III se za bod 15 vkládá
titul před titul za rodné číslo datum narození (nebylo-li přiděleno rodné číslo)
Návrh na vklad do katastru nemovitostí podle 4 zákona č. 265/1992 Sb. Spisová značka Určeno: Katastrálnímu úřadu pro Katastrální pracoviště vyplní katastrální úřad I. Údaje o účastnících řízení fyzických
Ž Á D O S T O POSKYTNUTÍ NEINVESTIČNÍ DOTACE Z ROZPOČTU MORAVSKOSLEZSKÉHO KRAJE 2016/2017 OBECNÁ ČÁST
Příloha č. 2 Dotačního programu Ž Á D O S T O POSKYTNUTÍ NEINVESTIČNÍ DOTACE Z ROZPOČTU MORAVSKOSLEZSKÉHO KRAJE Dotační program Podpora aktivit v oblasti prevence rizikových projevů chování u dětí a mládeže
Český úřad zeměměřický a katastrální vydává podle 3 písm. d) zákona č. 359/1992 Sb., o zeměměřických a katastrálních orgánech, tyto pokyny:
Český úřad zeměměřický a katastrální POKYNY Č. 44 Českého úřadu zeměměřického a katastrálního ze dne 20.12.2013 č.j. ČÚZK- 25637/2013-22, k zápisu vlastnictví jednotek vymezených podle zákona č. 72/1994
c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.
9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte
Univerzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve líně LABORATORNÍ CVIČENÍ ELEKTROTECHNIKY A PRŮMYSLOVÉ ELEKTRONIKY Název úlohy: pracovali: Měření činného výkonu střídavého proudu v jednofázové síti wattmetrem Petr Luzar, Josef
Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích
Změny 1 vyhláška č. 294/2015 Sb. Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích a která s účinností od 1. ledna 2016 nahradí vyhlášku č. 30/2001 Sb. Umístění svislých
Seriál: Management projektů 7. rámcového programu
Seriál: Management projektů 7. rámcového programu Část 4 Podpis Konsorciální smlouvy V předchozím čísle seriálu o Managementu projektů 7. rámcového programu pro výzkum, vývoj a demonstrace (7.RP) byl popsán
Oborové číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B
PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Oborové číslo Hodnocení - část
2.2.10 Slovní úlohy vedoucí na lineární rovnice I
Slovní úlohy vedoucí na lineární rovnice I Předpoklady: 0, 06 Pedagogická poznámka: Řešení slovních úloh představuje pro značnou část studentů nejobtížnější část matematiky Důvod je jednoduchý Po celou
Modul Řízení objednávek. www.money.cz
Modul Řízení objednávek www.money.cz 2 Money S5 Řízení objednávek Funkce modulu Obchodní modul Money S5 Řízení objednávek slouží k uskutečnění hromadných akcí s objednávkami, které zajistí dostatečné množství
Dijkstrův algoritmus (připomenutí)
Dijkstrův algoritmus (připomenutí) Základní předpoklad w : H R + (nezáporné délky hran) Upravený algoritmus prohledávání do šířky Dijkstra(G,s,w) 1 InitPaths(G,s) 2 S:= ; InitQueue(Q) 3 for každý uzel
Grafický manuál jednotného vizuálního stylu. MACHINERY group
Obsah 1. ZNAČKA VÍTKOVICE MACHINERY GROUP 1.1 Logotyp VÍTKOVICE MACHINERY GROUP 1.2 Konstrukce logotypu VÍTKOVICE MACHINERY GROUP 1.3 Základní barevné provedení logotypu 1.4 Černobílé a jednobarevné provedení
Ekonomika 1. 20. Společnost s ručením omezeným
S třední škola stavební Jihlava Ekonomika 1 20. Společnost s ručením omezeným Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 -
IFU 2015900544-02 _TEFAL_BODYPARTNER_Format 110x156 03/04/12 14:09 Page1. www.tefal.com
IFU 2015900544-02 _TEFAL_BODYPARTNER_Format 110x156 03/04/12 14:09 Page1 BODYPARTNER www.tefal.com IFU 2015900544-02 _TEFAL_BODYPARTNER_Format 110x156 03/04/12 14:09 Page2 N L S U K A B O C R R G U L K
Microsoft Office Project 2003 Úkoly projektu 1. Začátek práce na projektu 1.1 Nastavení data projektu Plánovat od Datum zahájení Datum dokončení
1. Začátek práce na projektu Nejprve je třeba pečlivě promyslet všechny detaily projektu. Pouze bezchybné zadání úkolů a ovládání aplikace nezaručuje úspěch projektu jako takového, proto je přípravná fáze,
Externí zařízení Uživatelská příručka
Externí zařízení Uživatelská příručka Copyright 2009 Hewlett-Packard Development Company, L.P. Informace uvedené v této příručce se mohou změnit bez předchozího upozornění. Jediné záruky na produkty a
MATERIÁL NA JEDNÁNÍ Zastupitelstva města Doksy
MATERIÁL NA JEDNÁNÍ Zastupitelstva města Doksy Jednání zastupitelstva města dne: 08. 04. 2015 Věc: Odměny uvolněným a neuvolněným členům zastupitelstva a další odměny Předkládá: Ing. Eva Burešová, starostka
Úprava fotografií hledání detailu, zvětšování (pracovní list)
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.128/02.0055 Úprava fotografií hledání detailu, zvětšování (pracovní list) Označení: EU-Inovace-Inf-6-01 Předmět: Informatika Cílová
Příloha č. 54. Specifikace hromadné aktualizace SMS-KLAS
Název projektu: Redesign Statistického informačního systému v návaznosti na zavádění egovernmentu v ČR Příjemce: Česká republika Český statistický úřad Registrační číslo projektu: CZ.1.06/1.1.00/07.06396
OBEC HORNÍ MĚSTO Spisový řád
OBEC HORNÍ MĚSTO Spisový řád Obsah: 1. Úvodní ustanovení 2. Příjem dokumentů 3. Evidence dokumentů 4. Vyřizování dokumentů 5. Podepisování dokumentů a užití razítek 6. Odesílání dokumentů 7. Ukládání dokumentů
Základy počítačové grafiky
Základy počítačové grafiky Prezentace přednášek Ústav počítačové grafiky a multimédií Téma přednášky Textury 3D objektů Motto Objekty v reálném světě nejsou plastikové koule plující v prostoru kolem nás!
ZÁKLADNÍ PRINCIPY ÚČTOVÁNÍ DPH
ZÁKLADNÍ PRINCIPY ÚČTOVÁNÍ DPH Název školy Obchodní akademie, Vyšší odborná škola a Jazyková škola s právem státní jazykové zkoušky Uherské Hradiště Název DUMu VY_32_INOVACE_UCE1403 Autor Ing. Martina
Programování 1. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015
Programování 1. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Vstupní znalosti Podmínky, cykly Funkce, Pole, třídění Retězce
Habermaaß-hra 5657A /4796N. Maják v obležení
CZ Habermaaß-hra 5657A /4796N Maják v obležení Maják v obležení Kooperativní hra pro 2 až 4 strážce majáku ve věku od 4 do 99 let. Zahrnuje soutěžní variantu. Autoři: Carmen & Thorsten Löpmann Ilustrace:
Rychlé vyrovnávací paměti (cache)
Rychlé vyrovnávací paměti (cache) Václav ŠIMEK simekv@fit.vutbr.cz Vysoké Učení Technické v Brně, Fakulta Informačních Technologií Božetěchova 2, 612 66 Brno VPC 5. přednáška 10. března 2011 Co nás dnes
IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy:
IRACIONÁNÍ ROVNICE Motivace: V řadě matematických úloh je nutno ovládat práci s odmocninami a rovnicemi, které obsahují neznámou pod odmocninou, mj. při vyjádření neznámé z technických vzorců. Znalosti
A-28082006-113030-00001 ZKUŠEBNÍ TEST PRO SKUPINU: A 1 z 6
A-28082006-113030-00001 ZKUŠEBNÍ TEST PRO SKUPINU: A 1 z 6 1) [2 b.] Nemotorové vozidlo je: a) Každé vozidlo poháněné jiným než spalovacím motorem, například elektromobil. b) Kolejové vozidlo, které se
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor013 Vypracoval(a),
Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu.
Svarové spoje Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Vybrané druhy svarů a jejich posouzení dle EN ČSN 1993-1-8. Koutový svar -T-spoj - přeplátovaný
Poukázky v obálkách. MOJESODEXO.CZ - Poukázky v obálkách Uživatelská příručka MOJESODEXO.CZ. Uživatelská příručka. Strana 1 / 1. Verze aplikace: 1.4.
MOJESODEXO.CZ Poukázky v obálkách Verze aplikace: 1.4.0 Aktualizováno: 22. 9. 2014 17:44 Strana 1 / 1 OBSAH DOKUMENTU 1. ÚVOD... 2 1.1. CO JSOU TO POUKÁZKY V OBÁLKÁCH?... 2 1.2. JAKÉ POUKÁZKY MOHOU BÝT
VYHLÁŠKA ČÁST PRVNÍ STÁTNÍ ZKOUŠKY Z GRAFICKÝCH DISCIPLÍN. Předmět úpravy
58 VYHLÁŠKA ze dne 10. února 2016 o státních zkouškách z grafických disciplín a o změně vyhlášky č. 3/2015 Sb., o některých dokladech o vzdělání Ministerstvo školství, mládeže a tělovýchovy stanoví podle
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla
Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,
Vzdělávací program pro obchodní partnery společnosti ROCKWOOL průvodce školením
Vzdělávací program pro obchodní partnery společnosti ROCKWOOL průvodce školením RockExpert školení přímo pro Vás RockExpert je internetový vzdělávací nástroj (přístupný online), určený pro zaměstance obchodních
HERNÍ PLÁN. pro provozování okamžité loterie ZLATÁ RYBKA
HERNÍ PLÁN pro provozování okamžité loterie ZLATÁ RYBKA OBSAH článek strana 1. ÚVODNÍ USTANOVENÍ... 3 2. VYMEZENÍ POJMŮ A JEJICH VÝKLAD... 3 3. ÚČAST NA HŘE... 4 4. ZPŮSOB HRY A ZJIŠTĚNÍ VÝHRY... 5 5.
Nabíjení proběhlo cca 25x. Jednotlivé průběhy při nabíjení se shodují. Dominantní vyšší harmonické proudu v průběhu nabíjení jsou, viz obr. 13.
Nabíjení elektromobilu typ SMART II Začátek nabíjení interní nabíječkou (je součástí elektromobilu) od cca 5% až cca 70% nabité (vybité) baterie (viz obr. 1) je spuštěn zastrčením nabíjecího kabelu do
Zadávací dokumentace
Zadávací dokumentace Název veřejné zakázky: Fotovoltaická elektrárna Cítov Identifikační údaje zadavatele: Obec Cítov Cítov 203 277 04 Cítov IČ: 00236764 Osoba oprávněná jednat za zadavatele: Ing. Marie
INTERNETOVÝ TRH S POHLEDÁVKAMI. Uživatelská příručka
INTERNETOVÝ TRH S POHLEDÁVKAMI Uživatelská příručka 1. března 2013 Obsah Registrace... 3 Registrace fyzické osoby... 3 Registrace právnické osoby... 6 Uživatelské role v systému... 8 Přihlášení do systému...
Výsledky přijímacích zkoušek
Výsledky přijímacích zkoušek V tomto modulu komise zadává výsledky přijímací zkoušky a navrhuje, zda uchazeče přijmout či nepřijmout včetně odůvodnění. 1. Spuštění modulu "Výsledky přijímacích zkoušek"
HERNÍ PLÁN pro provozování okamžité loterie POMÁHÁME NAŠÍ ZOO - DŽUNGLE
HERNÍ PLÁN pro provozování okamžité loterie POMÁHÁME NAŠÍ ZOO - DŽUNGLE 1. ÚVODNÍ USTANOVENÍ 1.1. Společnost Play games a.s., se sídlem V Holešovičkách 1443/4, 180 00 Praha 8, IČO: 247 73 255, zapsaná
PŘÍPRAVNÝ TEST Z GOLFOVÝCH PRAVIDEL PRO ZISK GOLFOVÉ ZPŮSOBILOSTI (HCP 54) VODNÍ PŘEKÁŽKY
PŘÍPRAVNÝ TEST Z GOLFOVÝCH PRAVIDEL PRO ZISK GOLFOVÉ ZPŮSOBILOSTI (HCP 54) VODNÍ PŘEKÁŽKY 1) Jak je značena podélná vodní překážka? A. Červenými kolíky B. Žlutými kolíky C. Červenými kolíky s černým pruhem
Nezaměstnanost. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Nezaměstnanost pokud na trhu práce převyšuje. práce zam..po práci firem. Při měření nezaměstnanosti rozlišujeme tyto typy skupin: 1)Ekonomicky aktivní obyvatelstvo (EAO) (nad 15 let) EOA Zaměstnaní Nezaměstnaní
Autor: Datum vytvoření: Ročník: Tematická oblast: Předmět: Klíčová slova: Anotace: Metodické pokyny:
Autor: Ing. Vladimír Bendák Datum vytvoření: 18.10.2013 Ročník: 2. ročník nástavbové studium Tematická oblast: Přeprava nebezpečných věcí dle ADR Předmět: Technologie a řízení dopravy Klíčová slova: Odpojovač
DOTWALKER NAVIGACE PRO NEVIDOMÉ A SLABOZRAKÉ
DOTWALKER NAVIGACE PRO NEVIDOMÉ A SLABOZRAKÉ Libor DOUŠEK, Marek SUSČÍK ACE Design, s.r.o., Drážní 7, Brno, oko@acedesign.cz Anotace: DotWalker je aplikace pro usnadnění cestování zrakově hendikepovaných
V Černošicích dne 30. 9. 2014. Výzva k podání nabídky na veřejnou zakázku malého rozsahu s názvem: Nákup a pokládka koberců OŽÚ.
Město Černošice IČ: 00241121 Riegrova 1209 252 28 Černošice V Černošicích dne 30. 9. 2014 Výzva k podání nabídky na veřejnou zakázku malého rozsahu s názvem: Nákup a pokládka koberců OŽÚ. Město Černošice
SMĚŠOVACÍ KALORIMETR -tepelně izolovaná nádoba s míchačkou a teploměrem, která je naplněná kapalinou
KALORIMETRIE Kalorimetr slouží k měření tepla, tepelné kapacity, případně měrné tepelné kapacity Kalorimetrická rovnice vyjadřuje energetickou bilanci při tepelné výměně mezi kalorimetrem a tělesy v kalorimetru.
Metodika kontroly naplněnosti pracovních míst
Metodika kontroly naplněnosti pracovních míst Obsah Metodika kontroly naplněnosti pracovních míst... 1 1 Účel a cíl metodického listu... 2 2 Definice indikátoru Počet nově vytvořených pracovních míst...
S_5_Spisový a skartační řád
Základní škola a mateřská škola Staré Město, okres Frýdek-Místek, příspěvková organizace S_5_Spisový a skartační řád Č.j.:ZS6/2006-3 Účinnost od: 1. 5. 2011 Spisový znak: C19 Skartační znak: S10 Změny:
Řeší parametry kaskády (obvodu složeného ze sériově řazených bloků)
Kaskádní syntéza Kaskádní syntéza Řeší parametry kaskády (obvodu složeného ze sériově řazených bloků) Šumové číslo (N) Dynamický rozsah (I) Bod zahrazeni produkty třetího řádu Dynamický rozsah bez produktů
Leadership JudgementIndicator -LJI (Test stylůvedení)
Leadership JudgementIndicator -LJI (Test stylůvedení) Hogrefe Testcentrum, Praha 2012 Autoři: M. Lock, R. Wheeler Autořičeskéverze:R. Bahbouh, V. Havlůj(ed.), M. Konečný, H. Peterková, E. Rozehnalová LJI
statutární město Děčín podlimitní veřejná zakázka na služby: Tlumočení a překlady dokumentů
statutární město Děčín Zadávací dokumentace podlimitní veřejná zakázka na služby: Tlumočení a překlady dokumentů vyhlášená v otevřeném řízení dle zákona č. 137/2006 Sb., o veřejných zakázkách, ve znění
Sada nástrojů pro technická opatření pro použití partnerstvím SPIN. Hydraulické nastavení topných systémů
Sada nástrojů pro technická opatření pro použití partnerstvím SPIN Hydraulické nastavení topných systémů únor 2016 Autor: Reinhard Ungerböck Grazer Energieagentur GmbH Kaiserfeldgasse 13/1 A 8010 Graz
Geometrické plány (1)
Geometrické plány (1) Geometrické plány Ing. Tomáš Vacek - VÚGTK, v.v.i. Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115
4 Stromy a les. Petr Hlin їn 0 5, FI MU Brno 1 FI: MA010: Stromy a les
4 Stromy a les Jedn m ze z kladn ch, a patrn ї nejjednodu 0 8 0 8 m, typem graf 0 1 jsou takzvan і stromy. Jedn se o souvisl і grafy bez kru 0 6nic. P 0 0es svou (zd nlivou) jednoduchost maj stromy bohatou
Celková částka pro tuto výzvu: 127 000 000 Kč v rozdělení dle tabulky č.1
Ministerstvo práce a sociálních věcí ČR, odbor řízení pomoci z Evropského sociálního fondu, vyhlašuje výzvu k předkládání žádostí o finanční podporu v rámci Programu Iniciativy Společenství EQUAL. Identifikace
M - Příprava na čtvrtletní písemnou práci
M - Příprava na čtvrtletní písemnou práci Určeno pro třídu 1ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
MOBILNÍ KOMUNIKACE STRUKTURA GSM SÍTĚ
MOBILNÍ KOMUNIKACE STRUKTURA GSM SÍTĚ Jiří Čermák Letní semestr 2005/2006 Struktura sítě GSM Mobilní sítě GSM byly původně vyvíjeny za účelem přenosu hlasu. Protože ale fungují na digitálním principu i
1 Měření kapacity kondenzátorů
. Zadání úlohy a) Změřte kapacitu kondenzátorů, 2 a 3 LR můstkem. b) Vypočítejte výslednou kapacitu jejich sériového a paralelního zapojení. Hodnoty kapacit těchto zapojení změř LR můstkem. c) Změřte kapacitu