Úvod do kvantového počítání
|
|
- Alois Urban
- před 8 lety
- Počet zobrazení:
Transkript
1 Osnova Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 10. března 2005
2 O přednáškách Osnova Přehled k přednáškám Proč kvantové počítání a počítače 1 Úvod do kvantového počítaní Úvodní slovo Osnova přednášek
3 Osnova Osnova dnešní přednášky Přehled k přednáškám Proč kvantové počítání a počítače 2 Proč kvantové počítání a počítače 3 Další alternativní modely DNA počítače
4 Osnova Osnova dnešní přednášky Přehled k přednáškám Proč kvantové počítání a počítače 2 Proč kvantové počítání a počítače 3 Další alternativní modely DNA počítače
5 Přednášky Část I Přednášky
6 Přednášky Úvodní slovo k přednáškám Úvodní slovo Osnova přednášek Nové a zajímavé téma Aplikační oblast tvoří základ mé dissertace Možnost získání zápočtu z předmětu 36SP Čas a místo liché čtvrtky místnost K4
7 Osnova přednášek Přednášky Úvodní slovo Osnova přednášek 1 Proč kvantové počítání a počítače 2 Hilbertovy prostory, qubit, unitární vývoj 3 Kvantové registry 4 Kvantové obvody a reverzibilní brány 5 Deutschův problém 6 Shorův faktorizační algoritmus 7 Teleportace a superdense kódování 8 Kvantová distribuce klíců, protokol BB84
8 Proč Část II Dnešní přednáška
9 Proč 2 Proč kvantové počítání a počítače 3 Další alternativní modely DNA počítače
10 Proč Klasický výpočetní model Turingův stroj (TM) - Alan Turing ( ) form. gramatiky RAM stroje Polynomiálně ekvivalentní s TM atd.
11 Proč Churchova teze Problém je algoritmicky řešitelný, právě když je rekurzivní. (= řešitelný pomocí TM) Problémy rekurzivní nerekurzivní
12 Proč Churchova teze Problém je algoritmicky řešitelný, právě když je rekurzivní. (= řešitelný pomocí TM) Problémy rekurzivní nerekurzivní
13 Proč Silná Churchova teze Problém je řešitelný v polynomiálním čase, právě tehdy když je v polynomiálním čase řešitelný na TM. Problémy: zvládnutelné (polynomiálně omezené) - P, BPP nezvládnutelné - NP
14 Proč Silná Churchova teze Problém je řešitelný v polynomiálním čase, právě tehdy když je v polynomiálním čase řešitelný na TM. Problémy: zvládnutelné (polynomiálně omezené) - P, BPP nezvládnutelné - NP
15 Proč Výpočetní model založený na kvantové mechanice Kvantová mechanika: Fyzika malých částic Masivní paralelismus Propletení kvantových stavů (entanglement) Měření je nedeterministické
16 Proč Výpočetní model založený na kvantové mechanice Applikační oblasti: Zrychlení klasických algoritmů Shorův faktorizační algoritmus Groverův vyhledávací algoritmus Kvantová kryptografie Kvantová distribuce klíčů Generování náhodných čísel Kvantová teleportace
17 Proč Výpočetní model založený na kvantové mechanice Applikační oblasti: Zrychlení klasických algoritmů Shorův faktorizační algoritmus Groverův vyhledávací algoritmus Kvantová kryptografie Kvantová distribuce klíčů Generování náhodných čísel Kvantová teleportace
18 Proč Výpočetní model založený na kvantové mechanice Applikační oblasti: Zrychlení klasických algoritmů Shorův faktorizační algoritmus Groverův vyhledávací algoritmus Kvantová kryptografie Kvantová distribuce klíčů Generování náhodných čísel Kvantová teleportace
19 Fyzická realizace Proč Libovolný 2-dimenzionální kvantový systém polarizace fotonu 1/2 spinový moment částice Používané technologie Ion trap Cavity QED NMR
20 Proč Nukleárná magnetická rezonance (NMR) Obecné schéma kvantového počítače s NMR technologií
21 Proč 7-qubitový systém od IBM Na tomto 7-qubitovém systému bylo faktorizováno číslo 15
22 Proč pentafluorobutadienyl cyclopentadienyldicarbonyl-iron complex 1 molekula 1 počítač přibližně použito molekul
23 Proč DNA počítače 2 Proč kvantové počítání a počítače 3 Další alternativní modely DNA počítače
24 Proč DNA počítače DNA počítače Deoxyribonukleová kyselina - DNA dva řetězce prostorově uspořádané do šroubovice složená z nukleotidů obsahujících dusíkovou bázi adenin - A thymin - T cytosin - C guanin - G spojení možné pouze mezi A-T a C-G nukleotidy jsou orientované
25 Proč DNA počítače DNA počítače Deoxyribonukleová kyselina - DNA dva řetězce prostorově uspořádané do šroubovice složená z nukleotidů obsahujících dusíkovou bázi adenin - A thymin - T cytosin - C guanin - G spojení možné pouze mezi A-T a C-G nukleotidy jsou orientované
26 Proč DNA počítače DNA počítače Deoxyribonukleová kyselina - DNA dva řetězce prostorově uspořádané do šroubovice složená z nukleotidů obsahujících dusíkovou bázi adenin - A thymin - T cytosin - C guanin - G spojení možné pouze mezi A-T a C-G nukleotidy jsou orientované
27 Proč DNA počítače DNA počítače Deoxyribonukleová kyselina - DNA dva řetězce prostorově uspořádané do šroubovice složená z nukleotidů obsahujících dusíkovou bázi adenin - A thymin - T cytosin - C guanin - G spojení možné pouze mezi A-T a C-G nukleotidy jsou orientované
28 DNA počítače Proč DNA počítače Adlemanův experiment Existence Hamiltonovské cesty v orientovaném grafu! NP-úplný problém! Algoritmus (nedeterministicky polynomiální): 1 generuj náhodně cesty v grafu 2 zjisti zda nějaká cesta začíná a končí v požadovaném bodě grafu 3 zjisti zda je délky požadované délky 4 zjisti zda obsahuje všechny vrcholy 5 výstup ano/ne
Úvod do kvantového počítání
2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače
Komerční výrobky pro kvantovou kryptografii
Cryptofest 05 Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 19. března 2005 O čem bude řeč Kryptografie Kryptografie se zejména snaží řešit: autorizovanost přístupu autenticitu
Kvantová informatika pro komunikace v budoucnosti
Kvantová informatika pro komunikace v budoucnosti Antonín Černoch Regionální centrum pokročilých technologií a materiálů Společná laboratoř optiky University Palackého a Fyzikálního ústavu Akademie věd
Kvantové algoritmy a bezpečnost. Václav Potoček
Kvantové algoritmy a bezpečnost Václav Potoček Osnova Úvod: Kvantové zpracování informace Shorův algoritmus Kvantová distribuce klíče Post-kvantové zabezpečení Úvod Kvantové zpracování informace Kvantový
00/20. Kvantové počítání. Pavel Cejnar Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK, Praha IBM
IBM 00/20 Kvantové počítání Pavel Cejnar Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK, Praha přednáška JČMF, Praha, říjen 2018 Intel 01/20 IBM IBM Q D Wave Piš, barde, střádej. 02/20
Komerční výrobky pro kvantovou kryptografii
Komerční výrobky pro kvantovou kryptografii Miroslav Dobšíček Katedra počítačů, Fakulta elektrotechnická, České vysoké učení technické v Praze, Karlovo náměstí 13, 121 35 Praha 2, Česká republika dobsicm@fel.cvut.cz
Třída PTIME a třída NPTIME. NP-úplnost.
VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní
Projekt SIPVZ č.0636p2006 Buňka interaktivní výuková aplikace
Nukleové kyseliny Úvod Makromolekulární látky, které uchovávají a přenášejí informaci. Jsou to makromolekulární látky uspořádané do dlouhých. Řadí se mezi tzv.. Jsou přítomny ve buňkách a virech. Poprvé
Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31
Vztah teorie vyčíslitelnosti a teorie složitosti IB102 Automaty, gramatiky a složitost, 2. 12. 2013 1/31 IB102 Automaty, gramatiky a složitost, 2. 12. 2013 2/31 Časová složitost algoritmu počet kroků výpočtu
Quantum computing. Libor Váša
Quantum computing Libor Váša Outline Zvláštní chování fyziky Kvantové jevy, polarizace etc. Abstrakce quantum computing PTM vs. QTM Hilbertovy prostory Qubit Kvantový registr Kvantová logika Kvantové algoritmy
TGH12 - Problém za milion dolarů
TGH12 - Problém za milion dolarů Jan Březina Technical University of Liberec 7. května 2013 Složitost problému Co je to problém? Složitost problému Co je to problém? K daným vstupním datům (velkému binárnímu
Složitost a moderní kryptografie
Složitost a moderní kryptografie Radek Pelánek Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Složitost a moderní kryptografie
NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky 1/76 GENY Označení GEN se používá ve dvou základních významech: 1. Jako synonymum pro vlohu
Kvantová fyzika. Pavel Cejnar mff.cuni.cz. Jiří Dolejší mff.cuni.cz
Kvantová fyzika Pavel Cejnar pavel.cejnar @ mff.cuni.cz Jiří Dolejší jiri.dolejsi @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK Praha Světlo = vlny i částice! 19. století:
Kvantová fyzika a náš svět
Kvantová fyzika a náš svět Miloslav Dušek Motto: Mě velmi těší, že se musíme uchýlit k tak podivným pravidlům a bizarnímu způsobu uvažování, abychom pochopili Přírodu, a baví mě o tom lidem vykládat.
Vtomto článku od bitů i qubitů trochu. Jemný úvod do kvantového počítání. magazín: moderní informatika
154 Jemný úvod do kvantového počítání Od bitů ke qubitům (2.) V druhé části našeho povídání se zaměříme na srovnání efektivity kvantových a klasických počítačů. Ukážeme si, jaké teoretické nástroje zde
Optické kvantové zpracování informace
Optické kvantové zpracování informace L. Čelechovská, M. Dušek, H. Fikerová, R. Filip, M. Gajdacz, M. Gavenda, Z. Hradil, M. Ježek, P. Marek, M. Mičuda, M. Miková, L. Mišta, T. Opatrný, L. Slodička, I.
Námět: Provázanost. (Napsáno cca. v roce 2004)
Námět: Provázanost Motto: Velmi málo lidí by zřejmě mohlo říct, že se zajímá o počítače i genetiku. Nakonec je obojí téměř totéž až na fakt, že jedno je o strojích a druhé o živočiších, tedy i o lidech
Třídy složitosti P a NP, NP-úplnost
Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není
Od Turingových strojů k P=NP
Složitost Od Turingových strojů k P=NP Zbyněk Konečný Zimnění 2011 12. 16.2.2011 Kondr (Než vám klesnou víčka 2011) Složitost 12. 16.2.2011 1 / 24 O čem to dnes bude? 1 Co to je složitost 2 Výpočetní modely
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace
AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně
Problémy třídy Pa N P, převody problémů
Problémy třídy Pa N P, převody problémů Cvičení 1. Rozhodněte o příslušnosti následujících problémů do tříd Pa N P(N PCověříme později): a)jedanýgrafsouvislý? danýproblémjeztřídy P,řešíhonapř.algoritmyDFS,BFS.
Kvantová kryptografie
PEF MZLU v Brně 18. listopadu 2009 Úvod V dnešní době se používá pro bezpečnou komunikaci asymetrická kryptografie. Jde o silnou šifrovací metodu, která je v dnešní době s použitím současných technologií
11 VYPOČITATELNOST A VÝPOČTOVÁ SLOŽITOST
11 VYPOČITATELNOST A VÝPOČTOVÁ SLOŽITOST Na první přednášce jsme si neformálně zavedli pojmy problém a algoritmus pro jeho řešení, které jsme na počítači vykonávali pomocí programů. Jako příklad uveďme
ENZYMY A NUKLEOVÉ KYSELINY
ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí
Kvantová kryptografie
Kvantová kryptografie aneb ŠIFROVÁNÍ POMOCÍ FOTONŮ Miloslav Dušek Kvantová kryptografie je metoda pro bezpečný (utajený) přenos informací. Její bezpečnost je garantována fundamentálními zákony kvantové
Kvantové počítání. Pavel Cejnar. Program: 1) Historie 2) Principy 3) Příklady 4) Realizace. ÚČJF MFF UK Praha mff.cuni.cz.
Kvantové počítání Pavel Cejnar ÚČJF MFF UK Praha pavel.cejnar @ mff.cuni.cz Program: ) istorie ) Principy 3) Příklady 4) Realizace Nick Park Nové Strašecí, leden 6 Kvantové počítání ) istorie ) Principy
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Principy počítačů I Perspektivní technologie, měření výkonnosti a spolehlivost
Principy počítačů I Perspektivní technologie, měření výkonnosti a spolehlivost snímek 1 Principy počítačů Část XI Perspektivní technologie, měření výkonnosti a spolehlivost 1 snímek 2 1 cm 1 µm 50 nm 1
Třída PTIME a třída NPTIME. NP-úplnost.
VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní
NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:
NUKLEOVÉ KYSELINY Deoxyribonukleová kyselina (DNA, odvozeno z anglického názvu deoxyribonucleic acid) Ribonukleová kyselina (RNA, odvozeno z anglického názvu ribonucleic acid) Definice a zařazení: Nukleové
5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace
Obsah prvního svazku 1 Úvod 1.1 Přehled pojmů a struktur 1.1.1 Množiny, čísla a relace 1.1.2 Funkce 1.1.3 Pravděpodobnost 1.1.4 Grafy 1.2 Algebra 1.2.1 Dělitelnost, prvočíselnost a základní kombinatorické
Složitost. Teoretická informatika Tomáš Foltýnek
Složitost Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika 2 Opakování z minulé přednášky Co říká Churchova teze? Jak lze kódovat Turingův stroj? Co je to Univerzální
O bsah. P řed m lu v a 11
O bsah P řed m lu v a 11 1 H istorická m otiv ace v zn ik u kvan to v é te o rie 13 1.1 Spektrum tepelného z á ře n í... 13 1.2 Fotoefekt... 17 1.3 Měrné teplo při nízkých te p lo tá c h... 19 1.4 Čárová
b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?
1.1: Gén pro polypeptid, který je součástí peroxidázy buku lesního, má sekvenci 3'...TTTACAGTCCATTCGACTTAGGGGCTAAGGTACCTGGAGCCCACGTTTGGGTCATCCAG...5' 5'...AAATGTCAGGTAAGCTGAATCCCCGATTCCATGGACCTCGGGTGCAAACCCAGTAGGTC...3'
Výpočetní složitost algoritmů
Výpočetní složitost algoritmů Slajdy pro výuku na KS Ondřej Čepek Sylabus 1. Definice časové a prostorové složitosti algoritmů. Příklady na konkrétních algoritmech. Prostředky pro popis výpočetní složitosti
Formální jazyky a gramatiky Teorie programovacích jazyků
Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina
Nukleové kyseliny příručka pro učitele. Obecné informace:
Obecné informace: Nukleové kyseliny příručka pro učitele Téma Nukleové kyseliny je završením základních kapitol z popisné chemie a je tedy zařazeno až na její závěr. Probírá se v rámci jedné, eventuálně
Převoditelnost problémů nezávislé množiny na problém hamiltonovského cyklu () IS HC 1/10
Převoditelnost problémů nezávislé množiny na problém hamiltonovského cyklu () IS C 1/10 Cíle prezentace seznámit s problémem nezávislé množiny seznámit s problémem hamiltonovského cyklu seznámitspřevodemproblémup1naproblémp2(p1
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
Karel Lemr. web: Karel Lemr Fotonové páry 1 / 26
Kvantové zpracování informace s fotonovými páry Karel Lemr Společná laboratoř optiky UP Olomouc a FzÚ AVČR web: http://jointlab.upol.cz/lemr email: lemr@jointlab.upol.cz Karel Lemr Fotonové páry 1 / 26
Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková
Těsně před infarktem Jak předpovědět infarkt pomocí informatických metod Jan Kalina, Marie Tomečková Program, osnova sdělení 13,30 Úvod 13,35 Stručně o ateroskleróze 14,15 Měření genových expresí 14,00
Fyzikální informace. 1) fyzikální informace neexistuje:
Fyzikální informace kategorie fyzikálního obrazu světa: hmota, energie, prostor, čas, informace fyzikální informace: informace v anorganickém světě existuje vůbec? - názory vědců se rozcházejí fyzikální
Výpočty na bázi DNA jako nové výpočetní schéma. Petr Tomica tomica@fit.vutbr.cz FIT VUT Brno
Výpočty na bázi DNA jako nové výpočetní schéma Petr Tomica tomica@fit.vutbr.cz FIT VUT Brno 18. prosince 2002 Abstrakt Tato práce se zabývá DNA výpočty jako novým výpočetním schématem. Prezentuje jejich
Výroková a predikátová logika - XIII
Výroková a predikátová logika - XIII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIII ZS 2013/2014 1 / 13 Úvod Algoritmická (ne)rozhodnutelnost Které
Kvantová kryptografie
Kvantová kryptografie Ondřej Haderka Univerzita Palackého, Olomouc www.rcptm.com Kvantová kryptografie Metoda bezpečné komunikace na rozhraní klasické kryptografie, teorie informace a kvantové mechaniky
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Kryptografie - Síla šifer
Kryptografie - Síla šifer Rozdělení šifrovacích systémů Krátká charakteristika Historie a současnost kryptografie Metody, odolnost Praktické příklady Slabá místa systémů Lidský faktor Rozdělení šifer Obousměrné
Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).
7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené
VPN Bezpečnostní souvislosti
VPN Bezpečnostní souvislosti Karel Miko, CISA (miko@dcit.cz) DCIT, s.r.o (www.dcit.cz) Bezpečnost VPN šifrování Základní bezpečnost VPN nejčastější technologie pro VPN IPSec (příp. jeho proprietární variace)
Elektronový obal atomu
Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h
OPVK CZ.1.07/2.2.00/
18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
H = 1 ( ) 1 1. dostaneme bázi označovanou často znaménky plus a minus:
Propletené stavy Standardní bázi kubitu máme ve zvyku značit symboly a. Existuje ovšem nekonečně mnoho jiných ortonormálních bází které vzniknou ze standardní báze vždy nějakou unitární transformací. Použijeme-li
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti
Složitost her. Herní algoritmy. Otakar Trunda
Složitost her Herní algoritmy Otakar Trunda Úvod měření složitosti Formální výpočetní model Turingův stroj Složitost algoritmu = závislost spotřebovaných prostředků na velikosti vstupu Časová složitost
NP-úplnost a další. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.
NP-úplnost a další Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2018 Datové struktury a algoritmy, B6B36DSA 01/2018, Lekce 13
Protokol RSA. Tvorba klíčů a provoz protokolu Bezpečnost a korektnost protokolu Jednoduché útoky na provoz RSA Další kryptosystémy
Protokol RSA Jiří Velebil: X01DML 3. prosince 2010: Protokol RSA 1/18 Protokol RSA Autoři: Ronald Rivest, Adi Shamir a Leonard Adleman. a Publikováno: R. L. Rivest, A. Shamir a L. Adleman, A Method for
Bonn, Rheinischen Friedrich-Wilhelms-Universität
Bonn, Rheinischen Friedrich-Wilhelms-Universität Seznam přednášek Bc s anotacemi http://www.mathematics.uni-bonn.de/files/bachelor/ba_modulhandbuch.pdf Studijní plán-požadavky http://www.mathematics.uni-bonn.de/studium/bachelor/studienprogramm
Struktura biomakromolekul
Struktura biomakromolekul ejvýznamnější biomolekuly proteiny nukleové kyseliny polysacharidy lipidy... měli bychom znát stavební kameny života Proteiny Aminokyseliny tvořeny aminokyselinami L-α-aminokyselinami
Kvantové provázání. Pavel Cejnar ÚČJF MFF UK Praha
Kvantové provázání Pavel Cejnar ÚČJF MFF UK Praha Seminář PřF UK Praha, listopad 2018 Kvantové provázání monopartitní tripartitní multipartitní Kanazawa, Japonsko bipartitní Zápasníci, Uffizi muzeum, Florencie
Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.
Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
6. Nukleové kyseliny
6. ukleové kyseliny ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné buňky. ukleové kyseliny
Výuka teoretické informatiky na gymnáziu naostro. Daniel Lessner Doktorandské odpoledne,
Výuka teoretické informatiky na gymnáziu naostro Daniel Lessner Doktorandské odpoledne, 22. 1. 2013 Osnova Úvod Z předchozích vystoupení Podmínky výuky Probrané moduly Opakování Informace Grafy Výsledky
Kvantová informatika pro komunikace v budoucnosti
Antonín Černoch Kvantová informatika pro komunikace v budoucnosti Kvantová informace uchovaná v kvantovém stavu má oproti klasické informaci výhodu v tom, že princip superpozice umožňuje paralelní zpracování
10. Složitost a výkon
Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří
BUDOUCNOST A TRENDY KRYPTOGRAFIE
BANKOVNÍ INSTITUT VYSOKÁ ŠKOLA PRAHA Katedra matematiky, statistiky a informačních technologií BUDOUCNOST A TRENDY KRYPTOGRAFIE KRYPTOGRAFIE A KVANTOVÉ POČÍTAČE Bakalářská práce Autor: Vedoucí práce: Jan
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
Mumie versus Zombie: na koho si vsadit v případě jaderné katastrofy
Mumie versus Zombie: na koho si vsadit v případě jaderné katastrofy Alena Závadová* Kristýna Schwarzerová** My Hanh Hoová*** Denisa Kotenová**** Gymnázium Olgy Havlové, Marie Majerové 1691, Ostrava - Poruba,
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů Otázka č. 1 Datový model 1. Správně navržený ERD model dle zadání max. 40 bodů teoretické znalosti konceptuálního modelování správné
Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory
Plán přednášky Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Obecný algoritmus pro parsování bezkontextových jazyků dynamické programování 1 Zásobníkový
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových
Deoxyribonukleová kyselina (DNA)
Genetika Dědičností rozumíme schopnost rodičů předávat své vlastnosti potomkům a zachovat tak rozličnost druhů v přírodě. Dědičností a proměnlivostí jedinců se zabývá vědní obor genetika. Základní jednotkou
Pavel Cejnar. pavel.cejnar @ mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze
Podivuhodná říše kvant Pavel Cejnar pavel.cejnar @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze Hvězdárna a planetárium Brno, 22. 1. 2015 Podivuhodná
Kvantová mechanika ve 40 minutách
Stručný průvodce konečněrozměrnou kvantovou mechanikou České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Úvod do kryptologie 6. 5. 2010 Program 1 Od klasické mechaniky k mechanice
PŘÍJMENÍ a JMÉNO: Login studenta: DATUM:
PŘÍJMENÍ a JMÉNO: Login studenta: DATUM: Závěrečný test z předmětu Vyčíslitelnost a složitost Doba trvání: 90 minut Max. zisk: 100 bodů Obecné pokyny: Po obdržení testu ihned do pravého horního rohu napište
Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.
9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující
PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2011
Kód uchazeče:... Datum:... PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2011 30 otázek maximum: 60 bodů čas: 60 minut 1. Napište názvy anorganických sloučenin: (4
Organizace předmětu, podmínky pro získání klasifikovaného zápočtu
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Organizace předmětu, podmínky pro získání klasifikovaného zápočtu Kurz A0B38FPGA Aplikace
Výroková a predikátová logika - XII
Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2015/2016 1 / 15 Algebraické teorie Základní algebraické teorie
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Nukleové kyseliny. Struktura DNA a RNA. Milada Roštejnská. Helena Klímová
ukleové kyseliny Struktura DA a RA Milada Roštejnská elena Klímová bsah Typy nukleových kyselin DA a RA jsou tvořeny z nukleotidů Jaký je rozdíl mezi nukleotidem a nukleosidem? Fosfodiesterová vazba Komplementarita
ElGamal, Diffie-Hellman
Asymetrické šifrování 22. dubna 2010 Prezentace do předmětu UKRY Osnova 1 Diskrétní logaritmus 2 ElGamal 3 Diffie-Hellman Osnova 1 Diskrétní logaritmus 2 ElGamal 3 Diffie-Hellman Osnova 1 Diskrétní logaritmus
Teoretická informatika průběh výuky v semestru 1
Teoretická informatika průběh výuky v semestru 1 Týden 7 Přednáška (Výpočetní) problémy, rozhodovací(ano/ne) problémy,... Připomněli jsme si obecné definice a konkrétní problémy, jako např. SAT[problém
Výpočetní složitost I
Výpočetní složitost I prooborlogikanaffuk Petr Savický 1 Úvod Složitostí algoritmické úlohy se rozumí především její časová a paměťová náročnost při řešení na počítači. Časová náročnost se měří počtem
3. Aritmetika nad F p a F 2
3. Aritmetika nad F p a F 2 m Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze c Martin Novotný, 2011 MI-BHW Bezpečnost a technické
ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY
ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac 1/31 PLÁN PŘEDNÁŠKY
POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.
POLYPEPTIDY Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. Hormony = katalyzátory v živočišných organismech (jsou
Směry rozvoje v oblasti ochrany informací PS 7
1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Směry rozvoje v oblasti ochrany informací PS 7 2 Osnova vývoj symetrických a asymetrických metod; bezpečnostní protokoly; PKI; šifrováochranavinternetu;
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
Kvantová fyzika. Pavel Cejnar mff.cuni.cz. Jiří Dolejší mff.cuni.cz
Kvantová fyzika Pavel Cejnar pavel.cejnar @ mff.cuni.cz Jiří Dolejší jiri.dolejsi @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK Praha Dvouštěrbinový experiment A Fig.
Paradoxy kvantové mechaniky
Paradoxy kvantové mechaniky Karel molek Ústav technické a experimentální fyziky, ČVUT Bezinterakční měření Mějme bombu, která je aktivována velmi citlivým mechanismem v podobě zrcátka, které je propojeno
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška jedenáctá Miroslav Kolařík Zpracováno dle P. Martinek: Základy teoretické informatiky, http://phoenix.inf.upol.cz/esf/ucebni/zti.pdf Obsah 1 Složitost algoritmu 2 Třídy složitostí
Základní genetické pojmy
Základní genetické pojmy Genetika Věda o dědičnosti a proměnlivosti organismů Používá především pokusné metody (např. křížení). K vyhodnocování používá statistické metody. Variabilita v rámci druhu Francouzský
Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15
Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší
Rozhodnutelné a nerozhodnutelné problémy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 24. dubna / 49
Rozhodnutelné a nerozhodnutelné problémy M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 24. dubna 2007 1/ 49 Co je to algoritmus? Algoritmus Algoritmus je mechanický postup skládající